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Due to their robust immunomodulatory capabilities, mesenchymal stem/stromal cells
(MSCs) have been used as a cellular therapy for a number of human diseases. Part
of the mechanism of action of MSCs is the production of extracellular vesicles (EVs)
that contain proteins, nucleic acids, and lipids that transmit signals to recipient cells that
change their biologic behavior. This review briefly summarizes the development of MSCs
as a treatment for human diseases as well as describes our present understanding of
exosomes; how they exert their effects on target cells, and how they are differentiated
from other EVs. The current treatment paradigm for acute radiation syndrome (ARS)
is discussed, and how MSCs and MSC derived exosomes are emerging as treatment
options for treating patients after radiation exposure. Other conditions such as graft-
versus-host disease and cardiovascular disease/stroke are discussed as examples to
highlight the immunomodulatory and regenerative capacity of MSC-exosomes. Finally,
a consideration is given to how these cell-based therapies could possibly be deployed
in the event of a catastrophic radiation exposure event.
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INFUSION OF MSCS FOR TREATING INFLAMMATORY
DISEASES

Mesenchymal stem/stromal cells (MSCs) are a potent immunomodulatory cell subset that are
readily obtainable and easily expandable in vitro. MSCs can be obtained from many different tissues
(bone marrow, adipose tissue, peripheral blood, umbilical cord blood), and are being studied for
a number of conditions due to their ability to differentiate into various cell types, to migrate to
various tissues, and to function as potent immunomodulators (Hass et al., 2011; Musiał-Wysocka
et al., 2019). These cells are already approved in Europe for the treatment of complex perianal
fistulas in adults with non-active/mildly active luminal Crohn’s disease (daradstrocel, Alofisel) and
in Japan for steroid-refractory acute graft-versus-host-disease (GVHD) (TEMCELL). A Biologics
License Application (BLA) has been submitted to the Food and Drug Administration (FDA) in
the United States for steroid refractory acute GVHD in children (remestemcel-L, Ryoncil), with
approval expected late 2020. Future BLAs may soon follow since MSCs have shown to be safe or
exhibit clinical efficacy for the treatment of other highly inflammatory conditions such as chronic
GVHD (Gao et al., 2016; Chen et al., 2019), ankylosing spondylitis (Wang P. et al., 2014), atopic
dermatitis (Kim et al., 2017), bronchopulmonary dysplasia (Chang et al., 2014; Ahn et al., 2017),
pulmonary emphysema (de Oliveira et al., 2017), non-ischemic cardiomyopathy (Chin et al., 2011;
Butler et al., 2017), liver allograft rejection (Shi et al., 2017) and cirrhosis (Zhang et al., 2012;
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Suk et al., 2016; Liang et al., 2017), juvenile idiopathic arthritis
(Swart et al., 2019), type 1 and type 2 diabetes (Jiang et al.,
2011; Cai et al., 2016; Bhansali et al., 2017), rheumatoid arthritis
(Park et al., 2018; Shadmanfar et al., 2018; Ghoryani et al., 2019),
multiple sclerosis (Mohyeddin Bonab et al., 2007; Karussis et al.,
2010; Bonab et al., 2012; Li J.F. et al., 2014; Harris et al., 2018;
Riordan et al., 2018), systemic lupus erythematous (Wang D.
et al., 2013, 2014), and osteoarthritis (Davatchi et al., 2011,
2016; Koh and Choi, 2012; Orozco et al., 2013; Wong et al.,
2013; Vega et al., 2015; Lamo-Espinosa et al., 2016, 2018; Soler
et al., 2016; Emadedin et al., 2018; Khalifeh Soltani et al., 2019;
Matas et al., 2019).

INFUSION OF MSCS FOR TISSUE
REPAIR AND REGENERATION

In part due to their immunomodulatory properties, MSCs have
been observed to promote a regenerative environment that aids
in the functional recovery of various damaged tissues (Bernardo
et al., 2012). MSCs have proven to be safe or exhibited clinical
efficacy in the field of regenerative medicine. Examples include
improving neurologic function in amyotrophic lateral sclerosis
(Petrou et al., 2016; Sykova et al., 2017; Berry et al., 2019),
cerebral palsy (Wang X. et al., 2013; Huang et al., 2018), delayed
encephalopathy after carbon monoxide poisoning (Wang H.
et al., 2016), epilepsy (Hlebokazov et al., 2017), stroke (Bang
et al., 2005; Lee et al., 2010), metachromatic leukodystrophy
(Koc et al., 2002), and spinal cord injury (Vaquero et al., 2018);
improved sexual function in erectile dysfunction (Al Demour
et al., 2018); improved motor activity with frailty disorder
(Tompkins et al., 2017), and multiple system atrophy (Lee
et al., 2008, 2012; Singer et al., 2019); improved cardiovascular
function in heart failure (Hare et al., 2012; Golpanian et al., 2015;
Mathiasen et al., 2015; Bartolucci et al., 2017), and myocardial
ischemia/angina (Hare et al., 2009; Friis et al., 2011; Haack-
Sorensen et al., 2013; Karantalis et al., 2014; Kim et al., 2018),
improved bone repair in hypophosphatasia (Taketani et al., 2015),
lumbar disc degeneration (Orozco et al., 2011; Noriega et al.,
2017), osteogenesis imperfecta (Gotherstrom et al., 2014), and
osteonecrosis (Hernigou et al., 2018); improved healing from
kidney injury (Tan et al., 2012; Saad et al., 2017); improved
healing from liver injury related to acute on chronic hepatitis
(Shi et al., 2012; Lin et al., 2017) and ischemic biliary lesions
following liver transplantation (Zhang et al., 2017); improved
hematopoietic recovery (Xiao et al., 2013; Zhang et al., 2013;
Xiong et al., 2014); and accelerated wound healing (Falanga et al.,
2007). From these indications, remestemcel-L is already in phase
III trials for advanced heart failure and chronic low back pain.

POTENTIAL MECHANISMS OF ACTION

Mesenchymal stem/stromal cells have been shown to suppress
inflammation through direct cell-to-cell contact in inflamed
tissues and through production of numerous anti-inflammatory
molecules such as indoleamine 2,3 dioxygenase (IDO)

(Su et al., 2014), nitric oxide (NO) (Su et al., 2014), prostaglandin
E2 (PGE2) (Hsu et al., 2013), transforming growth factor
(TGF)-β (de Araujo Farias et al., 2018), heme oxygenase 1 (HO1)
(Chabannes et al., 2007), and hepatocyte growth factor (HGF)
(Lee et al., 2018), among others. These molecules suppress the
effect of immune cells such as macrophages (Nemeth et al., 2009;
Eslani et al., 2018), monocytes (Cutler et al., 2010), dendritic
cells (Jiang et al., 2005), B-cells (Corcione et al., 2006), NK cells
(Sotiropoulou et al., 2006), and T-cells (Engela et al., 2013; Li M.
et al., 2014). In addition to immuno-suppressive molecules,
MSCs can influence target cell function through the secretion of
large amounts of exosomes. MSC-derived exosomes have been
investigated in preclinical models as a potential therapeutic for
many of the same conditions that MSCs have shown efficacy in
treating, such as wound healing (Fang et al., 2016; Samaeekia
et al., 2018), angiogenesis (Teng et al., 2015; Huang et al., 2017),
bronchopulmonary dysplasia (Braun et al., 2018), and various
autoimmune disorders (Riazifar et al., 2019), but have also shown
efficacy in facilitating skeletal muscle regeneration (Nakamura
et al., 2015), neurogenesis (Reza-Zaldivar et al., 2019), recovery
from stroke (Zhang and Chopp, 2016), and tendon repair
(Chamberlain et al., 2019).

To date, no clinical trials infusing MSC-exosomes have
been published although some studies have been completed
(NCT03384433, NCT02138331) or are recruiting/about to open
to accrual (Table 1).

This review focuses on recent pre-clinical work on the
potential therapeutic uses of MSCs and MSC-exosomes to
polarize or “educate” immune cells into anti-inflammatory cells,
with treatment of acute radiation syndrome (ARS) and GVHD
as models for the systemic effects of the anti-inflammatory
properties of MSC-exosomes. The organ-specific regenerative
effects of MSC-exosomes are also explored, using cardiovascular
disease and stroke as examples. ARS is also used as an example of
how MSC derived exosomes could be developed as a cell-based
therapeutic, with consideration given to the potential challenges
and drawbacks of such an approach. For a thorough review on
how MSC exosomes are being used for the treatment of other
conditions, a recently published review is highly recommended
(Joo et al., 2020).

EXOSOMES: FORMATION,
CHARACTERISTICS, AND CARGO

Extracellular vesicles (EVs) are lipid bilayer particles that are
released from cells. This diverse family of particles includes
microvesicles (MVs), apoptotic bodies, and exosomes. EVs
are composed of membrane-bound particles that are classified
according to size with exosomes generally defined as 30–150 nm
in diameter (Helwa et al., 2017; Bebelman et al., 2018). Exosomes
are generally considered to be produced through the inward
budding of late stage endosomes, forming multi-vesicular bodies
(MVBs) which then release these “buds” (exosomes) upon fusion
with the plasma membrane (Hessvik and Llorente, 2018). Due
to the fact that exosomes are differentiated from EVs based on
their relative size, it can be difficult to separate exosomes from
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TABLE 1 | Clinical trials infusing MSC-derived exosomes.

Clinical trial number Title Sponsor

NCT03857841 A Safety Study of Intravenous Infusion of Bone Marrow Mesenchymal Stem Cell-derived
Extracellular Vesicles (UNEX-42) in Preterm Neonates at High Risk for Bronchopulmonary Dysplasia

United Therapeutics

NCT04173650 A Safety Study of the Administration of MSC Extracellular Vesicles in the Treatment of Dystrophic
Epidermolysis Bullosa Wounds

Aegle Therapeutics

NCT04276987 A Pilot Clinical Study on Aerosol Inhalation of the Exosomes Derived From Allogenic Adipose
Mesenchymal Stem Cells in the Treatment of Severe Patients With Novel Coronavirus Pneumonia

Jiao Tong University School of Medicine
Shanghai, China

NCT04213248 Effect of Umbilical Mesenchymal Stem Cells Derived Exosomes on Dry Eye in Patients With Chronic
Graft Versus Host Diseases

Sun Yat-sen University
Guangdong, China

NCT04313647 A Tolerance Clinical Study On Aerosol Inhalation of Mesenchymal Stem Cells Exosomes In Healthy
Volunteers

Jiao Tong University School of Medicine
Shanghai, China

NCT03437759 Mesenchymal Stem Cells Derived Exosomes Promote Healing of Large and Refractory Macular
Holes

Tianjin Medical University Hospital
Tianjin, China

NCT04270006 Effect of Adipose Derived Stem Cells Exosomes as an Adjunctive Therapy to Scaling and Root
Planning in the Treatment of Periodontitis: A Human Clinical Trial

Beni-Suef University
Beni-Suef, Egypt

According to clinicaltrials.gov as of 14 April 2020.

smaller EVs. In fact, the formation of a smaller subset of EVs
in the size range of what is considered to be exosomes has been
observed through the direct budding of the plasma membrane
(Casado et al., 2017). Cholesterol, sphingomyelin, ceramide, and
various lipid molecules are found in large quantities on the
exosomal membrane (Mashouri et al., 2019). Once the exosomes
are released into the intercellular space, they can be taken up
by recipient cells by endocytosis, receptor–ligand binding, or
through direct binding (Kahroba et al., 2019).

Exosomes exert their effects by releasing their contents into
the cytosol of recipient cells. Exosome cargo can consist of
a number of different molecules such as nucleic acids (DNA,
RNA, mRNA miRNA), pro-inflammatory and anti-inflammatory
cytokines, enzymes, and various other proteins (Mathivanan
et al., 2010; D’Asti et al., 2012). Cytokines can be found not
only encapsulated in the exosome, but also imbedded in the
exosomal membrane itself (Fitzgerald et al., 2018). The authors
of this study hypothesized that exosomes can deliver smaller
amounts of cytokines directly to the intended target cell, a
more efficient delivery mechanism compared to the traditional
cytokine “dump” into the intercellular space (which could be
taken up by any cell with a corresponding receptor). Other
proteins found in the exosomal membrane such as various
heat-shock and signaling proteins have shown to perform
immunomodulatory functions as well (Urbanelli et al., 2013;
Reddy et al., 2018). A visual representation of exosomes, their
formation, and their cargo can be seen in Figure 1.

POTENTIAL BENEFITS AND
CHALLENGES OF USING
MSC-EXOSOMES

Utilizing MSC-exosomes as a therapy has a number of advantages
compared to using MSCs themselves. One advantage is that
viability is not a concern with exosomes, as they are not cells.
This makes exosomes potentially much easier to use post thaw.
Indeed, there is preliminary evidence that the thawing process

may alter exosomal membranes so that they are absorbed more
easily by target cells, although more research is needed to confirm
this finding (Cheng et al., 2019). In one report, familial patients
who received autologous adipose tissue-derived MSCs all had
incidences of pulmonary embolisms related to the infusion (Jung
et al., 2013). As MSC-exosomes are not a cellular product,
there should be no risk to potential patients of developing
pulmonary embolisms. Exosomes can also cross the blood–
brain barrier, while MSCs cannot, making MSC-exosomes an

FIGURE 1 | Exosomes: Formation, cargo, and characteristics. Exosome
formation typically begins as endosomes (1) begin to bud inward and form
multi-vesicular bodies (MVBs) (2). These MVBs then fuse with the plasma
membrane (3) and release the exosomes into the intracellular space. However,
the plasma membrane can also bleb off small EVs 30–150 nm in diameter
which also fall in the same size classification as exosomes, so differentiating
the two can be difficult (4). If these plasma membrane blebs are > 150 nm in
diameter, they are classified as microvesicles or microparticles (5). Exosomes
can contain a number of different molecules as cargo such as proteins/
cytokines (free floating and membrane bound), DNA, RNA, and other nucleic
acids.
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attractive potential therapy option for various degenerative brain
disorders (Chen et al., 2016). Just as with any novel therapy,
there are challenges that need to be addressed before MSC-
exosomes can be used in the clinic. First and foremost there needs
to be a method of selecting suitable donors for the production
of the MSCs that are used to produce exosomes, as well as
the development of an exosome isolation protocol that meets
good manufacturing practice (GMP) standards. Additionally,
a consistent release criterion (size, surface marker expression,
cargo, etc.) needs to be established for the exosomes themselves
before they can be infused into potential patients. Depending
on the condition being treated, markers need to be identified
that distinguish functional from non-functional exosomes. Also,
the optimal dose of MSC-exosomes for humans is unknown,
which would need to be determined for each condition being
treated. Furthermore, the best route of administration (local
versus systemic) is unclear, as is the length of time MSC-exosomes
remain in the patient before they are cleared by phagocytic
cells. These challenges must be overcome and standards must be
defined before patients can be tested for the immunomodulatory
and regenerative capabilities of MSC-exosomes.

MSC DERIVED EXOSOMES FOR THE
TREATMENT OF ARS

Acute radiation syndrome is caused by a high dose of ionizing
radiation (>1 GY) over a short period of time (Lopez and
Martin, 2011). The most severe side effects of ARS occur due
to damage in highly proliferative cells found in the skin, the
gastrointestinal tract, and the bone marrow (Heslet et al., 2012).
Loss of bone marrow progenitor cells places patients at high risk
for infections, as they can no longer produce leukocytes (Dainiak,
2018). The current standard of care for ARS involves the use of
supportive care measures such as prophylactic antibiotics, blood
and platelet transfusions, and the growth factors granulocyte
colony-stimulating factor (G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) (Waselenko et al., 2004;
Gourmelon et al., 2010) which are FDA-approved to treat ARS.
These interventions can keep patients alive and provide valuable
time to patients who are waiting for an allogeneic hematopoietic
stem cell transplant (HSCT) (Weisdorf et al., 2006). However, this
process can take several weeks, during which time the patient may
die from the initial exposure event. Even if the patient successfully
receives a HSCT, this procedure comes with its own set of risks
such as engraftment failure and GVHD (Ghimire et al., 2017;
Ozdemir and Civriz Bozdag, 2018).

Most cases of ARS are seen in nuclear power plant employees
upon accidental exposure resulting from incidents occurring
at the plants such as those seen at Chernobyl and Fukushima
(Mettler et al., 2007; Cerezo and Macia, 2012). Increasing usage
of medical isotopes like iodine-131 to treat cancer has resulted
in patients needing to cryopreserve their own (autologous)
hematopoietic stem cells prior to treatment so that the bone
marrow can be rescued from the cancer treatment. However, due
to the current proliferation of nuclear technology worldwide, a
mass exposure event from a terrorist attack using an improvised

nuclear device or from a nuclear warhead deployed as an act-of-
war is also a possibility. ARS could also impact future astronauts
as both government agencies like the National Aeronautics and
Space Administration (NASA) and private companies push for
human voyages back to the moon as well as to Mars. An event
such as a solar flare could expose astronauts to a high dose
of cosmic radiation (Chancellor et al., 2014). Possible sources
of radiation exposure, as well as current treatment options
are summarized in Figure 2. Due to the current standard of
care for ARS as well as the increased risk of exposure events
due to accidents at power plants, cancer treatments, political
instability, or through the colonization of the inner solar system;
a priority has been placed on the development of “off-the-shelf ”
cell-based therapies that seek to mitigate or even reverse the
deleterious effects of ARS.

A number of preclinical studies have shown that MSCs can
be used to reverse radiation damage seen in a variety of tissues,
including the bone marrow (Fukumoto, 2016). The majority of
preclinical work has been done utilizing bone marrow-derived
MSCs for treatment of ARS (Lange et al., 2011; Yang et al.,
2012). However, adipose tissue derived MSCs have also shown
to prolong survival in irradiated mice, as well as enhance
the reconstitution of hematopoietic cells (Cousin et al., 2003).
Intramuscularly injected human placenta-derived MSCs have
also shown the ability to enhance hematopoietic regeneration,
reverse severe weight loss, and increase survival in lethally
irradiated mice (Gaberman et al., 2013; Pinzur et al., 2018).
Interestingly, in a study that exposed C57/BL6 mice to lethal
irradiation followed by subsequent treatment with bone marrow-
derived syngeneic MSCs within 24 h after exposure, the infused
MSCs were cleared from the recipient mice within 3 days (Yang
et al., 2012). This finding suggests that the protective effect seen

FIGURE 2 | Acute radiation syndrome: sources of injury and current treatment
options. Sources of radiation injury can include solar flares (1), nuclear
weapons (2), or an accident at a nuclear power plant (3). The current
treatment options for ARS involve the use of antibiotics (4) and the growth
factors G-CSF and GM-CSF (5). In the more severe cases of ARS, an HSCT
may need to be performed (6).
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in these mice was not due to the infused MSCs themselves,
but rather through endogenous cells that were “educated” by
the MSCs. One way in which these target cells could have
been educated was by paracrine factors such as EVs produced
from MSCs. Indeed, sublethally irradiated C57/BL6 lineage
negative bone marrow cells (isolated 7 days after irradiation)
showed an increased capacity to engraft in syngeneic recipient
mice after being cultured with murine or human MSC-EVs
(Wen et al., 2016).

Presently, only one clinical trial using allogeneic ex vivo
expanded placental MSCs (PLX-R18, Pluristem Ltd.) is available
for ARS, but is not yet recruiting (NCT03797040). However as
stated above, it is possible that the benefits of MSCs in ARS
may not be from MSCs themselves. Rather, the MSCs may
be educating other immune cell subsets such as macrophages
to mediate their radioprotective effects (Davies et al., 2017).
Human MSC-educated macrophages, or “MEMs,” are a high
interleukin (IL)-6 and IL-10 producing macrophage subset (Kim
and Hematti, 2009) that are more effective than human MSCs
alone in treating ARS in an immunocompromised xenogeneic
model (Bouchlaka et al., 2017). In this study, MEMs expressed
higher levels of inhibitory molecules such as PD-L1 and PD-
L2, as well as molecules CD73 and arginase-1, when compared
to untreated macrophages. Furthermore, MEMs were found to
secrete higher levels of IL-6, while exhibiting a greater capacity
to inhibit the proliferation of T-cells while promoting fibroblast
proliferation as compared to untreated macrophages. IL-6 is
typically considered to be a pro-inflammatory cytokine (Tanaka
et al., 2014), although it has also been found in some instances
to have anti-inflammatory effects as well as playing a role in
tissue regeneration (Scheller et al., 2011; Galun and Rose-John,
2013). In fact, the presence of IL-6 has been associated with
reduced inflammation caused by radiation induced injury (Bell
et al., 2019). This increased secretion of IL-6 was enhanced when
MEMs were “primed” with the TLR-4 ligand lipopolysaccharide
(LPS) (Bouchlaka et al., 2017). The role of LPS in promoting
the radio-protective effect of MEMs was investigated in a recent
study, where LPS induced generation of MSC derived exosomes
in a dose-dependent manner (Kink et al., 2019). In this study,
human bone marrow-derived MSCs were primed with LPS
for 24 h, after which time exosomes were harvested (Kink
et al., 2019). The LPS-MSC exosomes (and unprimed MSC
exosomes) were then cultured with human macrophages for
3 days, followed by infusion into immunocompromised mice
with ARS. Results from this study show that the LPS-primed
MSC exosome educated macrophages (LPS EEMs) significantly
prolonged survival from ARS, enhanced hematopoietic recovery
(by complete blood count and histologic analysis of bone marrow
and spleen), and increased phagocytic capacity compared to
unprimed MSC exosome educated macrophages (EEMs). The
mechanism behind this protective effect is currently unknown,
although there are a few intriguing avenues to investigate. The
protection may be due to the effects of the increased levels of IL-
6 or enhanced expression of PD-L1 found on the surface of the
LPS EEMs. This immunomodulatory environment could possibly
facilitate the reconstitution of the host mouse bone marrow. In
order to investigate these possibilities, researchers could perform

a similar study to those mentioned above, except for the inclusion
of the administration of IL-6 and/or PD-L1 blocking monoclonal
antibodies and observe how the radio-protective effect of the
LPS-EEMs is altered. Furthermore, the use of LPS causes some
concerns in a clinical setting, as LPS is toxic to humans (Stewart
et al., 2006). Therefore, it would be prudent to perform similar
experiments using synthetic LPS analogs in place of LPS.

MSC DERIVED EXOSOMES FOR THE
TREATMENT OF GVHD AND COVID-19

Due to their immunomodulatory capabilities, MSC-exosomes
are an intriguing potential therapy for GVHD. Similar to
ARS, GVHD is characterized by damaging proinflammatory
responses that affect multiple organs. Immunosuppression with
corticosteroids remains the most common treatment for both
acute and chronic GVHD, but with sustained response rates
around 40–50%, more effective approaches are needed (Garnett
et al., 2013). Recent preclinical studies have investigated the
use of human MSC-exosomes in mice with acute GVHD. Both
umbilical cord derived MSC-exosomes and BM derived MSC
exosomes prolonged survival of mice with GVHD compared to
controls (Wang L. et al., 2016; Fujii et al., 2018). Furthermore,
these studies showed a lower number of T cells, impaired T cell
proliferation, and lower levels of proinflammatory cytokines IL-
2, TNF-α, and IFN-γ in MSC-exosome treated mice (Wang L.
et al., 2016; Fujii et al., 2018). Human BM derived MSC-
exosomes have also shown efficacy in mouse models of chronic
GVHD. In this study, treated mice showed improved survival,
diminished clinical scores, reduced fibrosis in the skin, lung and
liver, inhibition of Th17 cells, and induction of IL-10 expressing
regulatory cells (Lai et al., 2018). Interestingly, BM derived
MSC-exosomes have been given to a human patient with severe
therapy-resistant GVHD as an individualized compassionate use
treatment (Kordelas et al., 2014). The patient responded well
to the therapy, as patient PBMCs showed decreased production
of IL-1β, TNF-α, and IFN-γ after the third infusion (Kordelas
et al., 2014). Additionally, clinical GVHD symptoms improved
significantly, which allowed for a reduced dosage of steroids
(Kordelas et al., 2014). The patient remained stable for months
before eventually dying 7 months later due to pneumonia
(Kordelas et al., 2014). A more recent finding, although not
GVHD related, also shows the impact that MSC-exosomes
have on reducing inflammatory responses; 24 severe COVID-
19 patients were given a dose of ExoFloTM (a BM derived
MSC-exosome product) at a single hospital center (Sengupta
et al., 2020). Of these 24 patients, 17 fully recovered, three died,
and three remain in intensive care at the time of publication
(Sengupta et al., 2020). There were no adverse reactions to
ExoFlowTM seen in any of the patients (Sengupta et al., 2020).
Patients showed a significant decrease in neutrophil count,
an increase in T lymphocyte count, reversal of hypoxia, and
downregulation of cytokine storm (Sengupta et al., 2020).
More clinical work is needed to determine if MSC-exosomes
constitute an effective therapy for inflammatory diseases, but
initial results are promising.
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MSC DERIVED EXOSOMES FOR THE
TREATMENT OF CARDIOVASCULAR
DISEASE AND STROKE

Cardiovascular diseases are the leading cause of morbidity
and mortality worldwide. One major cause/result of these
conditions is the death of cardiomyocytes and the subsequent
loss of tissue remodeling capabilities (Olivetti et al., 1996).
Cell-based therapies, including MSCs, have been investigated
as a potential therapeutic option to help replace the lost
cardiomyocytes, and improve heart function (Golpanian et al.,
2016; Majka et al., 2017). MSC-exosomes have also shown
promise in promoting cardioprotection in a mouse model
of myocardial ischemia/reperfusion (I/R) injury, evidenced by
reduced infarct size in mice treated with purified MSC-exosomes
(Lai et al., 2010). Similarly, in a rat model of myocardial ischemic
injury, human umbilical cord MSC-exosomes were found to
reduce cardiac cell fibrosis, suppress apoptosis, and promote
proliferation (Zhao et al., 2015). In a different study, researchers
found that this protective effect of MSC-exosomes was in part due
to their ability to deliver miRNAs, specifically miR-19a (Yu et al.,
2015). Enhanced myocardial viability has also been observed
in an I/R injury mouse model, resulting from increased ATP
levels and decreased oxidative stress seen in the heart tissue
of mice treated with MSC-exosomes (Arslan et al., 2013). Like
cardiovascular disease, stroke is one of the leading causes of death
and disability. MSC therapy has shown preclinical and clinical
success in promoting recovery from stroke (Zhang and Chopp,
2016), and MSC-exosomes have shown promise in various
preclinical models of stroke recovery. In rat models of traumatic
brain injury (TBI), administration of MSC-exosomes has been
shown to enhance neurogenesis and angiogenesis, and improve
spatial learning and sensorimotor functional recovery (Xin et al.,
2013a; Zhang et al., 2015). One potential mechanism of the
enhanced recovery from TBI is the delivery of the miRNA miR-
133b, as MSC-exosomes with elevated miR-133b led to improved
axonal remodeling and neurological function when compared
to standard MSC-exosomes (Xin et al., 2013b). MSC-exosomes
promote tissue repair/remodeling in a number of preclinical
disease models in addition to cardiovascular disease/stroke, and
provide an exciting potential therapy for patients who suffer from
these debilitating conditions.

IMPLEMENTATION OF CELL-BASED
THERAPIES FOR ARS

Considerations on how MSCs/MSC-exosomes can be best
utilized need to be taken into account on a condition by
condition basis. Here, ARS is used as an example to explore
what hurdles need to be cleared before MSCs/MSC-exosomes
can be used as a treatment for this condition. Cell-based
treatment strategies for ARS need to be safe and efficacious in
the event of a potentially lethal radiation exposure. To achieve
this goal, a number of logistical challenges need to be taken
into account. In order to outline the nature of these challenges,

and develop strategies to overcome them, the National Institute
of Allergy and Infectious Diseases (NIAID) co-sponsored an
international workshop in July 2015 in Paris, France, with the
Institut de Radioprotection et de Sûreté Nucléaire. A report on
this workshop was published in Radiation Research (DiCarlo
et al., 2017). In this report, the authors summarize the numerous
regulatory hurdles that need to be cleared in order for these cell-
based therapies to be approved for human use. Of particular
interest was the potential of MSC produced paracrine factors,
particularly exosomes, to treat the effects of radiation exposure
(Tran et al., 2013). However, the report stated that both cell-
based therapies as well as exosomes alone could be used in
a mass exposure event (DiCarlo et al., 2017). Patients who
were exposed to higher levels of radiation could receive MSCs
or MSC exosome educated cells, while the larger number
of patients exposed to lower radiation levels (who still have
surviving hematopoietic stem cells) could receive MSC exosomes
alone to help boost the capacity of their own bone marrow
to replenish itself. Importantly, in both of these scenarios, the
patient would be receiving an “off-the-shelf ” thawed product,
so the development of a consistent and effective post-thaw
procedure prior to infusion is of upmost importance. Cell-based
therapies would likely be stored in a cryopreserved state at a few
centralized locations. Therefore, therapeutic cells would need to
show efficacy up to 24 or 48 h after the initial radiation exposure
in order to account for the time it would take for the product to
reach the patient.

CONCLUSION

Mesenchymal stem/stromal cell-exosomes are an emerging
treatment for a variety of inflammatory and degenerative
conditions, and are beginning to be translated from preclinical
models into early phase clinical trials. For ARS, not only will
therapies like MSCs, MSC-exosomes, and MSC-educated/MSC
exosome-educated macrophages need to be tested for safety
and efficacy, but they will also need to retain their function
after cryopreservation/thawing so that supplies could be added
to a National Stockpile or be transported on a space shuttle.
Testing these cell-based options will either require clinical
trials in patients with cancer receiving molecularly targeted
radioactive therapies that show hematopoietic toxicity requiring
growth factors, transfusions or HSCT, or become approved
through mechanisms that bypass testing in patients like the
FDA two-animal rule (Singh and Olabisi, 2017). Likewise,
biomanufacturing standards need to be defined and standardized
release criteria need to be developed for MSC-exosomes as
they are used to treat other inflammatory conditions such
as GVHD or COVID-19, as well as degenerative conditions
such as cardiovascular disease and stroke. Depending on the
indication, different potency assays may need to be used to
verify anti-inflammatory versus tissue regenerative properties
of MSC-exosomes. For these milestones to be met, increasing
support from government agencies like NIAID, Department of
Defense, NASA, and FDA will be needed to insure successful
biomanufacturing of MSC-exosomes.
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