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ABSTRACT

G2PDeep is an open-access web server, which pro-
vides a deep-learning framework for quantitative phe-
notype prediction and discovery of genomics mark-
ers. It uses zygosity or single nucleotide polymor-
phism (SNP) information from plants and animals
as the input to predict quantitative phenotype of in-
terest and genomic markers associated with phe-
notype. It provides a one-stop-shop platform for re-
searchers to create deep-learning models through an
interactive web interface and train these models with
uploaded data, using high-performance computing
resources plugged at the backend. G2PDeep also
provides a series of informative interfaces to mon-
itor the training process and compare the perfor-
mance among the trained models. The trained mod-
els can then be deployed automatically. The quanti-
tative phenotype and genomic markers are predicted
using a user-selected trained model and the results
are visualized. Our state-of-the-art model has been
benchmarked and demonstrated competitive per-
formance in quantitative phenotype predictions by
other researchers. In addition, the server integrates
the soybean nested association mapping (SoyNAM)
dataset with five phenotypes, including grain yield,
height, moisture, oil, and protein. A publicly avail-
able dataset for seed protein and oil content has
also been integrated into the server. The G2PDeep
server is publicly available at http://g2pdeep.org. The
Python-based deep-learning model is available at
https://github.com/shuaizengMU/G2PDeep model.

GRAPHICAL ABSTRACT

INTRODUCTION

Genomic selection (GS), one type of marker-assisted selec-
tion (MAS) strategy, originally proposed by Meuwissen (1)
for animal breeding, has made significant improvement in
quantitative phenotype prediction for breeding. It utilizes
single nucleotide polymorphisms (SNP) to predict quanti-
tative phenotypes and enhancing traits in breeding popu-
lations. Identifying SNP markers allows researchers to in-
crease the effectiveness of identifying candidate genes that
affect the diversities of phenotypes, such as protein and oil
content in soybean.

With the advances in next-generation sequencing (NGS)
technologies, large amounts of SNP data have been gener-
ated and are publicly available. Recently, many GS applica-
tions have been developed and widely used in bioinformat-
ics studies. These applications provide a fast and low-cost
approach comparing to lengthy experimental methods. The
rrBLUP (2) is an R package to estimate phenotype by ridge
regression with a relationship matrix and Gaussian kernel.
DeepGS (3), another R package, applies a deep convolu-
tional neural network and fully connected neural network
to predict phenotype from genotypes. Several GS tools
based on Bayesian ridge regression have been launched for
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crops, such as soybeans, rice, corn and oil palm, as well as
domesticated animals such as Holstein dairy cattle (4–7).

Despite the availability of these applications and
databases, there is still no web-based service available
to provide phenotype prediction and genomic marker
discovery. The off-line applications have steep learning
curves and require complicated installations. Typically,
these applications do not provide an easy-to-use interface
to create and train a complex deep-learning model effi-
ciently. These applications require users to spend extensive
time on the pipeline implementation, dataset creation and
transformation into an appropriate model, performance
summarization among trained models, and visualization
of predicted quantitative phenotype and genomic markers.
Furthermore, due to the large size of the SNP datasets
for phenotype prediction and marker discovery, these
applications often require intensive computing resources
that exceed the standard desktop machines, especially
for those demanding more memory for model training
purposes. Therefore, users must access high-performance
computing Linux resources and get familiar with running
analyses in such environments, which is a daunting task for
many users accustomed to using less technical interfaces.

To address this issue, we have developed G2PDeep, an
open-access web server providing a deep-learning frame-
work for quantitative phenotype prediction and genomic
marker discovery. The model deployed in G2PDeep was in-
troduced by Liu et al. (8) in 2019. It uses the dual-CNN
layer, which contains two parallel CNN streams (9), extract-
ing features from one-hot binary coding of genotypes. It
also uses a fully connected neural network to predict quan-
titative phenotype. The saliency map (10), first introduced
for visualization of image features in classification, is ap-
plied to evaluate the contribution of genomic markers to the
phenotype of interest. The method has been benchmarked
by other predictors and has always ranked in the first or
second place. Both the model and the saliency map are
deployed in the webserver. To the best of our knowledge,
G2PDeep is the first web-based deep-learning framework
available for quantitative phenotype prediction and ge-
nomic marker discovery. Unlike other extant related appli-
cations, G2PDeep provides an interactive interface enabling
deep-learning models to be created, trained and monitored
live with dashboards for model performance and report-
ing, which is unique in the field of bioinformatics. Trained
models are stored in G2PDeep and can be retrieved eas-
ily by users, making the models reusable and reproducible.
G2PDeep applies the guest privacy policy enabling users to
retrieve their datasets, models and results without logging.
G2PDeep provides real-time predictions for a large number
of genotype data using CPU resources, and visualization
for predicted phenotype and markers associated with the
corresponding phenotype. Currently, G2PDeep integrates
the soybean nested association mapping (SoyNAM) (11)
dataset, as well as five phenotypes including grain yield,
height, moisture, oil, and protein in soybean. A publicly
available SNP dataset provided by Bandillo et al. (12) in
2015 for seed protein and oil content with over 12 000
unique G. max accessions is also available on the server.
G2PDeep supports two types of genotype data, i.e. zygos-
ity (homozygous, heterozygous and reference homozygous)

Figure 1. (A) Architecture of dual-stream CNN model. The genotypes are
one-hot coded. The layers in the left stream are two CNN layers with kernel
sizes of 4 and 20, respectively, and the same number of filters 10. The layer
in the right stream is a single CNN layer with a kernel size of 4 and number
of filters 10. The add-up layer aggregates the output from two streams, fol-
lowed by a single CNN layer with a kernel size of 4 and number of filters 10.
The fully connected layers with numbers of neurons 512 and 1 are regres-
sion blocks to predict quantitative phenotype. (B) Flowchart of genomic
markers discovery using a well-trained model and saliency map. The test
dataset is used to estimate the marker significance. For each sample in the
test dataset, the saliency map and well-trained model are used to estimate
saliency values. The marker significance is calculated by the mean saliency
value for each marker position.

and SNP from plants and animals. G2PDeep provides an
easy-to-use web interface for genomic selection studies and
integrates several publicly available datasets, thus, serving
as a valuable tool for the breeders and research community.

MATERIALS AND METHODS

Deep-learning architecture

The architecture of the default model in G2PDeep for quan-
titative phenotype prediction is shown in Figure 1A. We
treated the quantitative phenotype prediction problem as a
regression problem. The model takes zygosity and SNP data
as input. For zygosity data, three genotypes (homozygous,
heterozygous, reference homozygous) and missing data are
encoded using one-hot binary encoding. For SNP data, four
genotypes (adenine (A), thymine (T), cytosine (C) and gua-
nine (G)) and missing data are also encoded by one-hot bi-
nary encoding. Each genomic marker is represented by a
four-dimensional and a five-dimensional vector, for zygos-
ity and SNP data respectively, with 1 for a corresponding
genotype and 0 for the rest of the genotypes. The output of
the model is a numeric value representing the quantitative
phenotype. The model consists of a dual-CNN layer, and a
fully connected neural network. The encoded genotypes are
passed into dual-CNN, which contains two parallel CNN
streams, followed by the single-CNN to enhance the repre-
sentation of markers. The flattened layer integrated repre-
sentation of markers is passed to a fully connected neural
network with a single neuron in the output layer to estimate
the quantitative phenotype. The detailed description of the
architecture is described in Supplementary Text S1.
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Marker significance estimation using saliency map

G2PDeep utilizes the saliency map to investigate and quan-
tify marker significance to a specific phenotype. As shown
in Figure 1B, given a set of genotype data provided by users,
the quantitative phenotype and marker significance are es-
timated by the user-selected well-trained model. For each
sample, the values of saliency range from 0 to 1, represent-
ing markers lowly and highly associated with a single phe-
notype, respectively. The final marker significance is deter-
mined by the median saliency on a whole set of data.

Web server implementation

G2PDeep is applied with a mature and convention-over-
configuration Model-View-Controller (MVC) framework,
maintained on the CyVerse advanced computing infrastruc-
ture (13,14) and hosted on Docker (https://www.docker.
com/). It is designed to provide users with clean and or-
derly appearance of interface components, reducing the
chances of faulty operations and improving user experience.
It utilizes high-performance computing resources to guar-
antee efficient, sustainable, and reliable services through-
out a high volume of tasks. All datasets, models and re-
sults are stored with unique user identification generated
by G2PDeep, keeping the information private and retriev-
able for users even without logging. The architecture of
G2PDeep consists of four modules shown in Figure 2 and
their details are summarized below.

Web interface module. This module is designed to be user-
friendly by using enterprise-level user interface (UI) li-
braries, such as Ant Design and React UI (https://ant.
design/ and https://reactjs.org/). The interface is responsive,
making its appearance virtually the same regardless of the
screen size on a computer and tablet. The Highcharts (https:
//www.highcharts.com/), an interactive JavaScript multi-
platform charting library, is used for data visualization
on cross-platform web browsers including Google Chrome,
Firefox, Microsoft Edge and Safari. The interactive charts
not only facilitate user access to the most interesting por-
tions of experimental results but also provide a comprehen-
sive view to explore the results from all aspects.

Middleware module. This module is used to bridge the gap
between the web interface and the database. The Django
framework (https://www.djangoproject.com/), a Python-
based server-side web framework, is used to provide ro-
bust and powerful services. The module utilizes restful API,
which uses HTTP requests to access and retrieve data and
model information. It uses Python data analysis libraries,
such as Pandas, NumPy and SciPy (https://pandas.pydata.
org/, https://numpy.org/ and https://www.scipy.org/), to val-
idate uploaded files and create training, validation and test
datasets. The module saves the MD5 message-digest algo-
rithm for uploaded files and ignores those files with the
same MD5 code when uploading data to the database. It
is equipped with TensorFlow (https://www.tensorflow.org/)
and Keras (https://keras.io/) open-source machine learning
platforms, for construction, training and inference of deep-
learning neural networks.

Core module. This module is developed primarily based
on Celery (https://github.com/celery/celery/), a Python-
based task scheduler library. The module mainly contains
task queues, worker nodes, task schedulers and message
brokers. The task queues are used as a mechanism to dis-
tribute the work across threads and the number of threads
is detected automatically according to CPU cores with high-
computing resources. The tasks of training and inference of
deep-learning networks are executed concurrently on multi-
ple workers using multiprocessing. The task scheduler com-
municates via messages with message brokers to mediate
among workers, allowing high horizontal calling.

Database module. MySQL (https://www.mysql.com/) and
Redis and (https://redis.io/) databases are used in this mod-
ule. Using the advantage of a relational database, MySQL
integrates various datasets, metadata of datasets, project in-
formation, performance of model and model hyperparame-
ters, including learning rate, structure of model, epochs, etc.
All private datasets and models are only visible and accessi-
ble to datasets uploaders, in order to prevent data from leak-
ing to unauthorized parties. Redis is a NoSQL database and
extremely fast in reading and writing operations because of
data stored in primary memory. The module utilizes Redis
to store the task information and details of the scheduler,
bring the reliability of data storage and transactions during
multiple tasks processing.

Methods to generate inputs

The input files for the server are genotype and quantitative
phenotype files in comma-separated values (CSV) format.
To generate the required format, users can utilize PLINK2
and VCFTools, for zygosity and SNP data respectively, to
convert a Variant Call Format (VCF) (15) file into a tab-
delimited text file. Users can use Pandas to filter out the un-
necessary information from the tab-delimited text file and
save it to a CSV file.

RESULTS

Evaluation and metrics

To demonstrate the performance of quantitative pheno-
type prediction of G2PDeep, we compared G2PDeep with
four well-established statistical models such as DeepGS,
rrBLUP, Bayesian ridge regression (BRR) and Bayesian
with LASSO.

For SoyNAM dataset, it contains 5132 recombinant in-
bred lines (RILs) and 4236 SNPs. From 2013 and 2012
at Illinois Location, we selected five traits including grain
yield, height, moisture, oil, and protein of the soybean
dataset. We generated five datasets with the same genotype
and five different quantitative phenotypes. The Bandillo’s
dataset consists of 52,041 SNPs scored on 12 000 G. max
accessions using the Illumina Infinium SoySNP50K Bead-
Chip. Currently available oil and protein content data
from the USDA GRIN (https://data.nal.usda.gov/dataset/
germplasm-resources-information-network-grin) was used
as phenotype. Likewise, we generated two datasets with
the same genotype and two different quantitative pheno-
types. We independently trained and evaluated our model
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Figure 2. Illustration of G2PDeep architecture. The architecture consists of four modules and these modules communicate with each other via appropriate
APIs.

Table 1. Pearson correlation coefficient of models on five datasets from the
SoyNAM dataset. The dualCNN is the model currently used in G2PDeep.
DeepGS is a model combining CNN and a fully connected neural network.
rrBLUP is ridge regression with a relationship matrix and Gaussian kernel.
BRR is Bayesian ridge regression. Bayesian LASSO is Bayesian regression
with an L2 penalty.

Pearson correlation coefficient

Model Yield Protein Oil Moisture Height

dualCNN 0.448 0.624 0.654 0.453 0.611
DeepGS 0.391 0.506 0.531 0.310 0.452
rrBLUP 0.412 0.392 0.39 0.413 0.458
BRR 0.422 0.392 0.39 0.413 0.458
Bayesian LASSO 0.419 0.394 0.388 0.416 0.458

using five datasets from SoyNAM and two datasets from
the Bandillo’s dataset.

None of the datasets was processed by any imputation.
Each of the datasets was split randomly into training, val-
idation and test datasets with the ratio of 3:1:1. The quan-
titative phenotype is normalized by a z-score. The perfor-
mance of test data from SoyNAM and Bandillo’s datasets
was evaluated independently using the Pearson correlation
coefficient, as shown in Tables 1 and 2, respectively.

Table 2. Pearson correlation coefficient of models on two datasets from
the Bandillo’s dataset. The dualCNN is the model currently used in
G2PDeep. The DeepGS is a model combining CNN and a fully connected
neural network. rrBLUP is ridge regression with a relationship matrix and
Gaussian kernel. BRR is Bayesian ridge regression. Bayesian LASSO is
Bayesian regression with the L2 penalty.

Pearson correlation coefficient

Model Protein Oil

dualCNN 0.467 0.674
DeepGS 0.453 0.543
rrBLUP 0.434 0.533
BRR 0.443 0.521
Bayesian LASSO 0.412 0.534

To measure the performance of marker significance es-
timation, we compared the saliency map with a standard
GWAS method using the ‘gwas2’ function of the ‘NAM’ R
package (6) with the SoyNAM and Bandillo’s datasets. The
package estimates marker significance by negative log of the
P-value. The marker significance estimated using saliency
map and GWAS for SoyNAM and Bandillo’s datasets is
shown in Supplementary Figures S1 and S2, respectively.
Furthermore, for each of the datasets, two sets of 100 mark-
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Figure 3. Dataset creation and retrieval in G2PDeep. (A) An example of an uploading file by a shared link to data. Both dataset name and link are required.
(B) The uploaded dataset and publicly available dataset are shown with metadata. (C) Details of the dataset including the number of features and number
of SNPs in the training and validation datasets.

ers with the highest significance from saliency and GWAS
are used to show the logical relations. The relationships are
shown in Supplementary Figures S3 and S4, for SoyNAM
and Bandillo’s datasets respectively, which shows that mark-
ers with high significance in the saliency map also have a
high significance in the GWAS.

Datasets in G2PDeep

The server allows users to upload and create datasets that
are used to train and evaluate the model (see Figure 3A). It
provides two options for input data, uploading a file directly
or transferring data from a link. For a small-size dataset,
users can upload a comma-separated values (CSV) file up
to 50MB. For a large-size dataset, users can upload data by
entering a shared link to the file to reduce data transfer time.
The shared link can be generated using CyVerse Data Store,
Google Drive, Dropbox and Microsoft OneDrive, and its
file is parsed and downloaded directly via the server. The
maximum dataset size allowed is 5GB. The server also pro-
vides the instruction and an example of data format aligned

with the upload field. The uploaded dataset is validated ac-
cording to data type and format. For an invalid dataset or
file format, the server has functionalities to stop dataset cre-
ation and show corresponding error message. A progress
bar is shown, allowing users to monitor the status of the
dataset creation. The server integrates the publicly avail-
able SoyNAM and Bandillo’s datasets and users are able
to use them to train a model directly. The summary of the
datasets is listed with dataset names and number of samples
(see Figure 3B). Users can retrieve details of the datasets in-
cluding number of features, and sizes of training and vali-
dation dataset (see Figure 3C). Sizes of training and valida-
tion datasets can be changed via the options on the website
as well. The server takes ∼5 minutes on average to create a
dataset with 1GB size file.

Deep-learning projects in G2PDeep

Conducting customizable deep-learning projects on a web-
server is one of the key features in G2PDeep. In creating a
project page (see Figure 4A), G2PDeep requires users to en-
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Figure 4. Project section in G2PDeep. (A) Interactive chart to configure the deep-learning model. (B) Learning curve showing losses and metrics for each
epoch. The scatter plot of predicted and true quantitative phenotypes for training and validation dataset. (C) An example of comparison results between
two models. The Pearson correlation coefficient, R-squared, mean absolute error and mean squared error are shown in the form of a table.
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Figure 5. Results of predicted quantitative phenotypes and marker significance. The saliency map shows that the marker highly associated with phenotype
is located in around 3000 SNP index.

ter the project name and appropriate description as a unique
identification for future retrieval. Users can choose from the
publicly available dataset or the private dataset created by
themselves in the Datasets section. Users are also able to
define the project settings by modifying parameters, such as
learning rate, epoch and batch size. The architecture of the
model is configurable in terms of hyperparameters to per-
form a reachability prediction. The number of CNN layers
and fully connected neural network (DNN) can be changed
independently using ‘add’ and ‘delete’ buttons. The size of
filters and kernel size for each layer of CNN can also be
changed separately using the sidebars. The number of neu-
rons in DNN is configurable as well. The range of number
of layers is restricted to 1 to 3. The early stopping method is
applied by default to stop training when a monitored met-
ric has stopped improving. This functionality significantly
reduces the time required for training. Once the project is
submitted, the project is placed in a task queue waiting for

the computing resource allocation. The project settings and
configuration of models are saved in the database. Using the
CPU resource, the server takes about 50 minutes on average
to train a customized model with 4000 training samples in
1000 epochs.

All these user-specific projects are retrievable on the sum-
mary page. The projects and their status are shown in the ta-
ble. The status of the project is shown by a category such as
pending, running, success and failure along with a progress
bar showing the progress of model training. The details
regarding dataset loading, parameters loading and model
training can be seen by hovering the mouse over the status
of the project. The estimated time remaining to complete
the training process is also shown. All of the statuses of
projects are updated automatically every ten seconds. The
project name is linked to the corresponding details section
(see Figure 4B), which provides a flow chart of the model,
along with a number of parameters in each layer. The train-
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ing parameters and hyperparameters are also listed in the
table. In addition, a learning curve for training and valida-
tion datasets is shown during the training process, graphi-
cally depicting the strength of overfitting and underfitting.
The scatterplot of the predicted and true quantitative phe-
notypes is displayed once the training process is done, in-
tuitively showing their relationship. Users can observe the
specific values using their mouse to hover over these charts.

G2PDeep allows users to compare the performance with
up to four models. In the comparison section (see Fig-
ure 4C), the project details are listed as a table with loss
and metrics including Pearson correlation coefficient, R-
squared, mean absolute error, and mean squared error for
both training and validation datasets. These losses and met-
rics are also displayed in a chart, providing users with exact
values for each specific epoch.

Phenotype prediction and marker discovery

With the selection of a well-trained model and the correctly
formatted input data, users can predict and visualize the re-
sults instantly. G2PDeep takes less than 30 seconds on av-
erage to predict quantitative phenotype and marker signif-
icance for 1000 samples of genotypes. For the input data,
users can copy the genotype data from an excel file and
paste it into the text field. Users can also upload a CSV file
directly to the server. As usual, there is an example along
with the Input Data field to illustrate the data format or
simply load the publicly available SoyNAM dataset. The
input data is validated according to the required data type
and format. G2PDeep shows an error message for invalid
input data. The maximum number of allowed samples is 10
000. G2PDeep also provides a progress bar for monitoring
the status of prediction easily. After submission, G2PDeep
provides a bar chart of predicted values and a saliency map
(see Figure 5). In the saliency map, the particular value of a
marker can be observed by using their mouse to hover over
the data point. The predicted quantitative phenotypes and
markers ranked by saliency values can be downloaded via
the link in the chart.

User guide

We have developed a user guide with instructions about the
functions and usage of G2PDeep website. The entire user
guide is divided into four sections according to the main
functions of G2PDeep – Introduction, Datasets, Projects,
Prediction and Discovery. Both new and experienced users
can find detailed instructions on how to utilize these func-
tions. When users navigate the user guide on G2PDeep web-
site, they can easily find demos for every single function.
On each page, a link to a tutorial video is provided to show
users how to follow different steps to run predictions using
the server.

CONCLUSIONS AND FUTURE WORK

G2PDeep, to our knowledge, is the first web server for quan-
titative phenotype prediction and genomics marker discov-
ery. It features a web-based framework with an interac-
tive interface, enabling deep-learning models to be created,

trained and inferenced using datasets uploaded by users.
With an efficient and powerful middleware and core back-
end, the server can provide real-time training, model eval-
uation, live monitoring and inference for large-scale geno-
type data. G2PDeep provides users with interactive charts
to show significant markers that are highly associated with
a specific quantitative phenotype. Compared with other re-
lated works, G2PDeep has great performance in accuracy
and scale. Considering the great potential of genomic se-
lection in machine learning, G2PDeep would be a useful
server in marker discovery associated with various pheno-
types for plants and animals. The deep-learning model used
in G2PDeep is developed as a publicly available stand-alone
tool, enabling users to run G2PDeep on their local machine.

In the future, we plan to extend the server by applying au-
tomated machine learning (AutoML) to automatically ad-
just hyperparameters, eliminating the need for skilled data
scientists to build deep-learning models. We will expand the
server to support Variant Call Format (VCF) as input for
SNP data. Our future efforts will also include regular up-
dates to incorporate publicly available genotype datasets.
We will also deploy G2PDeep on a server with both CPU
and GPU resources to facilitate model training and infer-
ence. Currently, we are working on combining significant
markers, that are highly associated with phenotype, with
biological meaningful annotation such as Gene Ontology
(GO) (16), Pfam protein families and domains (17) and
KEGG Pathway (18) annotation. This will become avail-
able as a feature in the upcoming version.

DATA AVAILABILITY

G2PDeep is available as a web server at http://g2pdeep.org.
The Python-based deep-learning model to conduct quanti-
tative phenotype and marker discovery prediction on a lo-
cal machine is available in the GitHub repository (https:
//github.com/shuaizengMU/G2PDeep model).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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