
ORIGINAL RESEARCH
published: 29 September 2020

doi: 10.3389/fnbot.2020.578834

Frontiers in Neurorobotics | www.frontiersin.org 1 September 2020 | Volume 14 | Article 578834

Edited by:

Jeff Pieper,

University of Calgary, Canada

Reviewed by:

Luis Arturo Soriano,

National Polytechnic Institute of

Mexico (IPN), Mexico

Dante Mujica-Vargas,

Centro Nacional de Investigación y

Desarrollo Tecnológico, Mexico

Genaro Ochoa,

Instituto Tecnológico Superior de

Tierra Blanca, Mexico

*Correspondence:

Paola A. Niño Suarez

pninos@ipn.mx

Received: 01 July 2020

Accepted: 18 August 2020

Published: 29 September 2020

Citation:

Perez Reynoso FD, Niño Suarez PA,

Aviles Sanchez OF, Calva Yañez MB,

Vega Alvarado E and Portilla Flores EA

(2020) A Custom EOG-Based HMI

Using Neural Network Modeling to

Real-Time for the Trajectory Tracking

of a Manipulator Robot.

Front. Neurorobot. 14:578834.

doi: 10.3389/fnbot.2020.578834

A Custom EOG-Based HMI Using
Neural Network Modeling to
Real-Time for the Trajectory Tracking
of a Manipulator Robot
Francisco D. Perez Reynoso 1, Paola A. Niño Suarez 1*, Oscar F. Aviles Sanchez 2,

María B. Calva Yañez 3, Eduardo Vega Alvarado 3 and Edgar A. Portilla Flores 3

1 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Mexico City, Mexico, 2Departamento de

Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá, Colombia, 3Centro de Innovación Tecnológica en

Computo, Instituto Politécnico Nacional, Mexico City, Mexico

Although different physiological signals, such as electrooculography (EOG) have been

widely used in the control of assistance systems for people with disabilities, customizing

the signal classification system remains a challenge. In most interfaces, the user must

adapt to the classification parameters, although ideally the systems must adapt to the

user parameters. Therefore, in this work the use of a multilayer neural network (MNN) to

model the EOG signal as a mathematical function is presented, which is optimized using

genetic algorithms, in order to obtain the maximum and minimum amplitude threshold

of the EOG signal of each person to calibrate the designed interface. The problem of the

variation of the voltage threshold of the physiological signals is addressed by means of

an intelligent calibration performed every 3min; if an assistance system is not calibrated,

it loses functionality. Artificial intelligence techniques, such as machine learning and fuzzy

logic are used for classification of the EOG signal, but they need calibration parameters

that are obtained through databases generated through prior user training, depending

on the effectiveness of the algorithm, the learning curve, and the response time of the

system. In this work, by optimizing the parameters of the EOG signal, the classification

is customized and the domain time of the system is reduced without the need for a

database and the training time of the user is minimized, significantly reducing the time of

the learning curve. The results are implemented in an HMI for the generation of points in

a Cartesian space (X,Y ,Z) in order to control a manipulator robot that follows a desired

trajectory by means of the movement of the user’s eyeball.

Keywords: EOG, HMI, customization calibration, MNN, optimization, robots trajectories

INTRODUCTION

The development of human–machine Interfaces (HMI) has been on the rise due to the
incorporation of physiological signals as inputs to the control algorithms. Currently, robots are
collaborative and interact with humans to improve their quality of life, which has allowed the
development of intuitive interfaces for human–robot collaboration, in tasks, such as assistance
and robotic rehabilitation. One of the study objectives in these systems is shared control, where
a robotic system and human control the same body, tool, mechanism, etc. Shared control has
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originated in research fields, such as human–robot co-adaptation,
where the two agents can benefit by each other’s skills or must
adapt to the other’s behavior, to achieve the execution of effective
cooperative tasks.

In this paper, it was considered that the human and individual
characteristics affect the execution of the task that the HMI
perform; these parameters are highly variable, and it is required to
analyze and reduce the effects on the efficiency of the system. It is
difficult to determine the level of adaptability or personalization
of an HMI; however, calibrating a system looking for it to
adapt to the personal parameters of a user has been shown to
decrease the learning curve, improving the level of acceptance
of inexperienced users. The proposed HMI will be implemented
in the future to assist people with severe disabilities, where a
manipulator robot will be adapted to a wheelchair, so that the user
can control the movements of the robot by means of orientation
of the gaze with the ability of taking objects and increasing
their autonomy.

The work presented proposes to develop an intelligent
calibration system to personalize the use of an HMI, where using
EOG signals controls the trajectory tracking of a manipulator
robot in its workspace. To achieve this, a fuzzy inference
system is calibrated using the EOG signal of each user. The
individual EOG signal was modeled by means of an MNN,
implementing descending backpropagation using the Widrow–
Hoff technique, obtaining a mathematical function that describes
the waveform of the signal discrete EOG. The objective function
obtained by means of the neural network is optimized using
genetic algorithms to obtain the maximum and minimum
voltage threshold of the EOG signal corresponding to each
person. Once the variability range is obtained by optimizing the
EOG signal, the fuzzy classifier is calibrated for the generation
of coordinates in the Cartesian space (X, Y , Z). Gaussian
membership functions define position in space by detecting EOG
signal voltage thresholds; each threshold corresponds to a point
in space defined precisely by calibration for each individual. In
this case, a database is not required for the system to work; in
most interfaces, they have a set of signals stored, and through
training the user it is expected to reach the expected values, which
only then does the system respond.

In section Overview of Related Work of this document, a
summary of related works is presented; section Materials and
Methods provides an overview of the neural network for non-
linear regression of discrete EOG signal samples and details of the
method used to implement the calibration system using genetic
algorithms. The experimental procedure and analysis of results
are presented in section Experiments and Results Analysis, and
section Conclusion concludes the current work and discusses the
advantages and limitations of the proposed system.

OVERVIEW OF RELATED WORK

People with severe disabilities cannotmove their lower and upper
extremities, so designing interfaces with custom features has
become a technological challenge (Lum et al., 2012); for this
reason, controllers have been implemented that can adapt to the

needs of the user using haptic algorithms, multimodal human–
machine interfaces (mHMI) and incorporation of artificial
intelligence algorithms (Dipietro et al., 2005) among others. In
Gopinathan et al. (2017), a study is presented that describes
the physical human–robot interaction (pHRI) using a custom
rigidity control system of a 7-DOF KUKA industrial robot; the
system is calibrated using a force profile obtained through each
user and validates their performance by 49 participants using a
heuristic control. A similar control system is applied in Buchli
et al. (2011), where the level of force of each user is adapted
to the control of a 3-DOF robot by haptics and is adjusted to
the biomechanics of the user, in order to work on cooperative
environments with humans (Gopinathan et al., 2017).

To customize assistive systems, Brain–Computer Interface
(BCI) systems have also been developed in combination with
electroencephalography (EEG), electromyography (EMG), and
electrooculography (EOG) signals (Ang et al., 2015). In Zhang
et al. (2019), a multimodal system (mHMI) is presented that
can achieve a classification accuracy of physiological signals with
an average of 93.83%, which is equivalent to a control speed of
17 actions per minute; the disadvantage that it presents is the
long training time and the excessive use of sensors placed on
the user. In Rozo et al. (2015), Gaussian functions are used to
classify and learn cooperative human–robot skills in the context
of object transport. In Medina et al. (2011), a method is proposed
usingMarkov models to increase the experience of a manipulator
robot in collaborative tasks with humans; the control adapts
and improves cooperation through user speech commands and
repetitive haptic training tasks.

The disadvantages of handling EEG for the development of
Brain–Computer Interfaces (BCI) are described in Xiao and
Ding (2013), since EEG signals do not have sufficient resolution
because they attenuate during transmission; however, detection
is reported in the EEG bandwidth using artificial intelligence
that decodes individual finger movements for the control of
prostheses. Advanced methods have been used for the detection,
processing, and classification of EMG signals generated by
muscle movements. In Gray et al. (2012), a comprehensive
review was conducted on the changes that occur in the muscle
after clinical alterations and how it affects the characteristics
of the EMG signal, emphasizing the adaptability of the signal
classification due to muscle injuries.

In the case of wheelchair control in Djeha et al. (2017), they
use wavelet transform and an MNN for the classification of EOG
and EEG signals, obtaining a classification accuracy rate of 93%;
the classifier works in a control system for a virtual wheelchair.
In Kumar et al. (2018), a review of human–computer interface
systems based on EOG is presented; the work of 41 authors
is explained, where the interfaces used implement artificial
intelligence algorithms for signal classification. To calibrate the
classifier, they use databases that contain an average of the signal
threshold; they are characterized by implementing pattern search
algorithms so that the machines designed to provide assistance
have a response.

The HMI system presented in this paper has the property
of being calibrated in real time, so it can be adapted to an
EOG signal of any user, without the need for a database, unlike
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most of the systems reported in Kumar et al. (2018). The HMI
works with any inexperienced user because of its capability of
adapting to personal characteristics after a brief training. This is
mainly due to the use of a calibration system designed from a
multilayer neural network (MNN) to model the EOG signal as
a mathematical function. The proposal in this work is that the
user is not the one that adapts to previously acquired signals to
generate a response in the system and that the system is the one
that adapts to personal parameters of any user with severe motor
disability. The preliminary results, obtained with 60 different
users without disabilities in order to measure the adaptability of
the system, showed that it was possible to generate trajectories to
control a robot by means of ocular commands.

MATERIALS AND METHODS

The developed system is presented in Figure 1; there is an analog
acquisition stage of the EOG signal and two parallel processing
of the signal. One is for classification, where the EOG signal is
divided by means of voltage thresholds, and a fuzzy inference
system is implemented to establish the relationship between
the EOG signal and the workspace of an assistance robot. The
classification using fuzzy logic requires a working threshold to
generate points in the Cartesian space; these data represent the
desired position to which a manipulating robot must arrive.

The other is for calibration of the fuzzy inference system.
The proposed method is to obtain a mathematical model that
describes the behavior of the EOG signal for each individual,
and an algorithm that detects the optimal thresholds with
which the classifier can be modified and adapted to any user.
Customizing the control of the assistance system reduces time
training necessary for mastering it. Thus, the objective function
for each individual is obtained by optimizing the range of
signal variability. These data are the input to the fuzzy classifier,
adapting the interface to the personal properties of each user.

The proposed methodology for the development of the
HMI consists of parallel processing, while acquisition digital
processing and classification by means of fuzzy inference is
carried out with a time from the generation of the eye movement
to the articular movement of the robot of 1.1 s. Calibration
consisting of modeling and optimization of the EOG signal is
carried out every 3min.When the optimal range data is obtained,
it is transmitted through a virtual port, communicating the
optimization results with the fuzzy classifier. So the range of the
classifier is constantly updating, adapting to changes in either the
signal, due to user changes, or in the variability of the voltage
threshold due to fatigue and clinical alterations.

EOG Acquisition
By generating an eye movement through the direct central
position toward the periphery, the retina approaches an electrode
while the cornea approaches the electrode on the opposite
side. This change in the orientation of the dipole is reflected
as a change in the amplitude and polarity of the EOG signal
(Figure 2) so that by registering these changes the movement
of the eyeball can be determined. EOG signals have been
determined to show amplitudes ranging from 5 to 20 µV per

degree of displacement, with a bandwidth between 0 and 50Hz
(Lu et al., 2018).

The EOG signal is obtained using two pairs of electrodes
connected near the eyes, plus a reference electrode on the
forehead and another to eliminate muscle noise in the earlobe,
thus generating two channels that record horizontal movement
and vertical of the eyeball. In total, six silver/silver chloride
electrodes are connected (Ag/AgCl), as presented in Figure 3A.

For the acquisition of the reliable EOG signal, an analog
processing stage was designed, which includes amplification,
isolation, and filtering for each channel (horizontal and vertical)
and was complemented by a digital filtering module. The pre-
amplification and amplification stage has a 100-dB CMRR,
an analog low-pass filter in Butterworth configuration of 40
dB/decade, and a capacitive isolation system for user safety. The
designed acquisition system is embedded on a PCB board placed
in portable glasses (Figure 3B), to provide security and comfort
to the user.

To remove the D.C. level, an integrator circuit is used for
feedback of the EOG signal at the reference terminal of the
instrumentation amplifier. It acts as a high-pass filter preventing
instrumentation amplifiers from being saturated. The muscle
signal is considered as noise, and it does not allow obtaining a
good interpretation of the EOG signal. To eliminate it, the output
of the common-mode circuit of the instrumentation amplifier is
connected to the earlobe through an electrode for return noise of
the muscle signal at the input of the amplifier, thus subtracting
the noise signal of the EOG signal affected by noise. Additionally,
the electrode placed on the user’s forehead is connected to the
isolated ground of the circuit. Through these connections, the
D.C. component, generated by involuntary movements and poor
electrode connection, is eliminated.

In summary, each type of noise is eliminated and the additive
noise is eliminated by means of an integrating circuit that works
as a 0.1-Hz high-pass filter that eliminates the DC component
that is added to the EOG signal. Impulsive noise caused bymuscle
movement is eliminated by a common rejection mode circuit
connected to the earlobe that is fed back to the instrumentation
amplifier in its differential configuration. Due to this property,
this noise is subtracted and eliminated. The multiplicative noise
is eliminated by means of a second-order digital Notch filter
tunable in real time on the device’s test platform.

For digital processing of the obtained EOG signal, the
horizontal and vertical channels were connected to the
differential voltage input of a DAQ6009 acquisition card that
communicates with a PC through a USB port of a 25-s sample.
The DAQ6009 card is used for the acquisition of the EOG
signal because it has a maximum input frequency of 5 MHz; the
electrooculography has a bandwidth of DC at 50Hz, so for the
purposes of this work the sample frequency is ideal, complying
with the Nyquist sampling theorem. This theorem indicates that
the exact reconstruction of a continuous periodic signal from its
samples is mathematically possible if the signal is band-limited
and the sampling rate is more than double its bandwidth.

In Figure 4A, the waveform of the EOG signal of a user
is observed when the movement of the gaze to the right
and left is performed. This acquisition is done in 25-s time
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FIGURE 1 | HMI system.

windows generating 48 discrete samples. This signal is digitized
by convolution as a function of time with a Dirac pulse train
at a frequency of 100Hz (Equation 1), and the result of signal
sampling is presented in Figure 4B.

xp (t) =
∑

x[nT]δ(t − nT) (1)

The EOG signal (Figure 4A) is the input to the fuzzy classifier
to generate points according to the workspace of an assistance

system that can be a mobile robot, a robotic arm, or a cursor on
the screen.

The nature of the EOG signal behavior is non-linear, there is
no pattern, and thresholds vary from one individual to another;
if this signal is used as input to an HMI system, the classification
system must be calibrated for each user or recalibrated if there
is a disturbance in the environment. Assistive systems controlled
by physiological signals regularly use a database for the system
to generate a response to a particular signal; in this type of case,
the user must have a training that makes their eye movements
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FIGURE 2 | Retina–cornea action potential (Ding and Lv, 2020).

FIGURE 3 | (A) Placement of the electrodes. (B) Portable EOG signal acquisition and instrumentation system.

generate a signal similar to those stored in the database, thus
generating a longer response time in the system. In this case, a
database or previous training will not be necessary, because a
process of the discrete samples (Figure 4B) of the EOG signal
is performed in parallel, which are the input to the MNN
designed to perform the interpolation of the discrete data in
order to calibrate the system. The objective is to obtain the
maximum and minimum values of the voltage threshold; this
range is important because it delimits the operation of the fuzzy
inference system.

In the next section, the design of the intelligent calibration
system is explained first, followed by the operation of the fuzzy
inference system.

Intelligent Calibration System
Due to the need to determine the working threshold of the fuzzy
classifier for each person in this section, the modeling of the
EOG signal is presented, which allows obtaining the required
values of the optimal operating range of the fuzzy inference
system. First, the mathematical model of the signal is obtained by
means of an MNN; the result of this stage provides an objective
function. Then, using genetic algorithms, the voltage thresholds
were calculated which, without falling into local values, represent
the maximum and minimum values of the signal amplitude
when the user guides the gaze. Finally, the custom EOG signal
is classified based on its optimal range. This data is sent as the
user’s optimal thresholds.
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FIGURE 4 | (A) Signal waveform. (B) Discrete samples.

Multilayer Neural Network
The Widrow–Hoff learning is a training algorithm for an MNN,
with the objective of determining synaptic weights; polarization
for the classification of data is not linearly separable (An et al.,
2020). Given these characteristics, this algorithm was selected
for the training of the neural network developed to model the
EOG signal.

In Figure 5, a monolayer neural network is represented, where
the vector of the R inputs is p =

[

pT
]

, W =
[

WSR
T
]

is the

synaptic weight matrix, b =
[

bT
]

represents the polarization of

the S neurons, n =
[

nT
]

represents the net inputs of each of the

S neurons, and a =
[

aT
]

is the vector of the S outputs of the
neurons (An et al., 2020).

The output of the monolayer neural network is represented in
Equation (2):

a = f
(

Wp+ b
)

(2)
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FIGURE 5 | Representation of a monolayer neural network.

FIGURE 6 | MNN for the calculation of the objective function that describes the behavior of the EOG signal.

The neural network employs activation functions, using a least
squares method for its training. The weights are adjusted using
the Widrow–Hoff rule to minimize the difference between
the output and the objective. This algorithm is an iterative
implementation of linear regression, reducing the square error
of a linear fit.

A pattern pq is presented as the input to a network; it responds
with an output aq. Due to this, an error vector eq is formed,
which is the subtraction of the desired answer tq, and the neuron’s
response aq so that eq = tq − aq. Square error is defined as the

dot product eTq eq of the error vector that provides the sum of the
square errors of each neuron. In order to minimize the square
error, the gradient descent is used, whose objective problem
is to find x0 which minimizes function F(x). In Equation (3),
the descending gradient equation is presented to minimize the
square error.

x0 = x0 − α
dF

dx

∣

∣

∣

∣

x=x0

(3)

The value of F(x) is defined as eTq eq whose objective is tominimize
the square error by means of an iterative Widrow–Hoff learning.
There is a set of test patterns

(

pQ, tQ
)

, and with these data, the
synaptic weights and polarization are found so that themultilayer
network responds as desired.

The neural network multilayer is implemented to calculate the
function that describes the behavior of the EOG signals. It is a
neural network that has three layers; it is represented in Figure 6.

The multilayer neural network is used for linear regression;
the structure is made up as follows: The input layer has a sigmoid
activation function, the hidden layer has a sigmoid activation
function, and the output layer has an activation function linear.
This is the reason why using non-linear activation functions at
the input corresponds to the smooth transition between one
sampling point and another, while a linear output activation
function allows obtaining numerical values that correspond to
the exact value of the sample. In this way, a smooth transition
is achieved, and all the sampling points are covered for a correct
modeling. The output of the multilayer network takes values that
the EOG signal registers which vary according to each person;
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using a sigmoid function in layer 3 does not allow to reach
these values.

The recursive equation that describes the output of the
multilayer neural network represented by aM with input patterns
p through q, for a neural network with M layers, is presented in
Equation (4), where XM represents the polarization and synaptic
weights of neuronM. The solution ismore complex because these
parameters must be calculated for each of the neurons that make
up the multilayer.

aM = fM
(

WMfM−1 (

WM−1 · · · f 2
(

W2f 1
(

W1p+ b1
)

+ b2
)

· · · + bM−1) + bM
)

⇒

am = fm
(

Wmam−1 + bm
)

(4)

The objective is to minimize the square error, which is a function
of XM arrays (Equation 5).

F
(

X1, · · · ,XM
)

= eTq eq whereXm =
[

Wm bm
]T

(5)

The function obtained F
(

X1, · · · ,XM
)

= eTq eq; the gradient
descent method is used to find synaptic weights and polarizations
that minimize square error. An optimization method has been
obtained that is found when defining the error gradient and is
minimized with respect to the parameters of the neural network,
as indicated in Equation (6).

Xm = Xm − α
dF

dXm

∣

∣

∣

∣

xm=xm0

(6)

Xm =
[

Wm bm
]T

The variation of the mean square error with respect to the
synaptic weights and the polarization of the corresponding
neuron is described in Equation (7).

dF

dXm
=

[

dF

dxm1
. . .

dF

dxmSm

]

(7)

To calculate the gradient dF
dXm , the function can be decomposed

using the chain rule as the variation of F with respect to net input
ni, and the product of the variation of the net input with respect
to the variation of the neuron’s polarization and synaptic weights
i is represented by Xi. The net input is represented as the product
of the vectors ni = xTi z; the results is seen in Equation (8).

dF

dxi
=

dni

dxi

dF

dni
= zsi (8)

There is variation of function F, which is the square error
with respect to any net input; in any layer of the neuron, it is
represented with an s and is called sensitivity. In the sensitivity
gradients in Equation (8), the vector z is factored and is replaced
by the input augmented with 1 in the last element; the input of

layer n is the output of the previous layer, so zm =

[

am−1

1

]

and

applying the transposed operator the Equation (9) is obtained.

dF

dXm
= [zsi . . . zssm ]

m = zm
(

sm
)T

=

[

am−1

1

]

(

sm
)T

=

[

am−1 (sm)T

(sm)T

]

dFT

dXm
=

[

sm
(

am−1)T sm
]

(9)

If Equation (9) in the formula for the descending gradient of
Equation (3) and the vector Xm is replaced in terms of synaptic
weights W and polarization b, Equations (10) and (11) are
obtained which determine the iterative method for learning a
multilayer neural network by Widrow–Hoff.

(

Xm
)T

=
(

Xm
)T

− α
dFT

dXm
(10)

Wm = Wm − αsm
(

am−1)T

bm = bm − αsm

For ∀m ∈ [1, . . . , M] (11)

Now the calculation of the sensitivities must be carried out,
which is the basis of the backpropagation algorithm. Sensitivity
is defined as the derivative of the function, which is the square
error, with respect to the net input of the neuron (Equation 12).

dF

dnm−1
=

dnm

dnm−1

dF

dnm
(12)

In Equation (12) applying the chain rule, we have the variation
of F with respect to the net input of the layer m, as well as
the variation of the net input of the layer m with respect to the
net input of the previous layer nm−1. If the nomenclature of
sensitivities is used, Equation (13) is obtained.

sm−1 =
dnm

dnm−1
sm (13)

Equation (13) indicates the sensitivity of the previous layer sm−1

which is calculated from the sensitivity of the back layer sm. This
relationship is what gives it the name of backpropagation because
the sensitivity will be propagated from the last layer to the first
layer of the neural network to calculate the sensitivity in each one.
The net inputs of two consecutive neural networks are related by
Equation (14).

nm = Wmfm−1 (

nm−1) + bm (14)

There is an equation where the net input nm depends on f ,
which is the activation function of the net input nm−1 from the
previous layer. Using the chain rule, the result is expressed in
Equation (14), where the derivative of the activation function
fm−1 with respect to the net input of the previous layer nm−1

is expressed as Ḟm−1
(

nm−1
)

. The second derivative of the net
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input nm in relation to the activation function fm−1 is obtained by
deriving Equation (13) which results in the transposed vector of
the synaptic weights of layerm using the equation (Wm)T , where
Equation (15) is obtained.

dnm

dnm−1
=

dfm−1

dnm−1

dnm

dfm−1
= Ḟm−1 (

nm−1) (

Wm
)T

sm−1 = Ḟm−1 (

nm−1) (

Wm
)T

sm

For∀m ∈ [M, . . . , 2] (15)

Equation (15) calculates each of the sensitivities; in order to carry
out this process, it is necessary to calculate the sensitivity of
the last layer M (where sm = sM). Applying the chain rule to
deduce the sensitivity sM , the last layer of the sensitivity definition
is known to be the derivative of the objective function to be
minimized with respect to the net input of the last layer nm, F
is the square error F = eTq eq, and the error is the difference of the
desired response tq and the response of the last layer, defined as
the activation function fM

(

nM
)

, that is, eq = tq − fM
(

nM
)

; the
result of the said process is observed in Equation (16).

sM =
dF

dnM
=

dfM

dnM
deq

dfM
dF

deq
=

dfM

dnM
(−1)

(

2eq
)

= −2ḞM
(

nM
)

eq (16)

sM = −2ḞM
(

nM
)

eq (17)

The definition of ḞM
(

nM
)

which is the derivative of the
activation functions with respect to the net input; this process is
represented in Equation (17). The derivative generates a matrix
containing the gradients of each of the activation functions of the
neural network with respect to its net input, and so on, until it
reaches the last neuron.

ḞM
(

nM
)

= Ḟm
(

nm
) dfm

dnm
=

[

dfm1
dnm

. . .
dfmsm

dnm

]

(18)

=

















dfm1
dnm1

0 · · · 0

0
dfm2
dnm2

· · · 0

...
0

...
0

. . .
...

· · ·
dfm
sm

dnm
sm

















= diag

(

dfm1
dnm1

)

The derivative must exist for any value of the net input that is
a continuous function, and there are three activation functions
to which the operation ḞM

(

nM
)

must be calculated. The MNN
is made up of three neurons, but two activation functions are
used: the sigmoidal and the linear. The result of implementing
Equation (17) in the activation functions of the neural network
is presented in Equation (18) for the sigmoid activation function
and in Equation (19) for the linear activation function.

• Logistics sigmoid.

ai = fi (ni) =
1

1+ e−ni
→

dfi

dni
= (1− ai) ai

If all neurons have the same function:

Ḟm
(

nm
)

= diag
((

1− ami
)

ami
)

(19)

• Lineal function.

ai = fi (ni) = ni →
dfi

dni
= 1

If all neurons have the same function:

Ḟm
(

nm
)

= 1 (20)

The descending backpropagation algorithm for calculating an
objective function that models the behavior of the EOG signal
by discrete samples is presented in Listing 1.

Listings 1 | Backpropagation algorithm for interpolation of an EOG signal using a

multilayer neural network, through discrete samples.

Pseudocode: algorithm for interpolation of an EOG
Random initialization of Wm and bm for ∀m

Since epochs = 1 to Nepochs repeat
Since q = 1 to Q repeat

(

Q = Sample vector size
)

1. Forward propagation.
am = fm

(

Wmam−1 + bm
)

for ∀m

2. Backpropagation.
eq = tq − aM0
sM = −2ḞM

(

nM
)

eq
sm−1 = Ḟm−1

(

nm−1
)

(Wm)T sm for ∀m ∈ [M, . . . , 2]
3. Update for ∀ m

Wm = Wm − αsm
(

am−1
)T

bm = bm − αsm

End
End

From the acquisition of the EOG signal, 48 discrete samples
are obtained that are stored as a data vector Q; the non-linear
regression is applied on these data. The algorithm calculates a
function that passes through all the discrete points. Figure 7
shows a trend line resulting from the neural network when
interpolating the signal samples, this being the output of the
last layer.

The function f (x) = am = fm
(

Wmxm−1 + bm
)

describes
the behavior of the EOG signal of each individual, depending
on the variability of the value of the synaptic weights Wm and
polarization bm. Through this method, the analytical description
of the physiological signal is obtained.

By having a mathematical function that describes the
individual characteristics of each user, information is obtained
that allows a classification system to adapt to the variability that
physiological signals present. As can be seen in Figure 7, this
signal has several positive and negative data on a threshold; in
order to determine the operating range of a system, it is necessary
to know the amplitude in which the signal varies for each user.
The objective is to record the maximum and the minimum value
of the signal threshold to calibrate the fuzzy inference system.
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FIGURE 7 | Interpolation using a multilayer neural network, to calculate an objective function to be optimized.

Genetic Algorithm
An optimization problem can be formulated as a process where
the optimal value x which minimizes or maximizes the objective
function is found. In this case, the objective function is the result
from interpolation performed with a multilayer neural network
and it is determined by Equation (20). Considering that Wm

represents the value of the synaptic weights, bm is the value of
polarization of each layer, m is the maximum number of layers,
andX represents the vector of decision variables.X represents the
candidate solution set, also known as the search space or solution
space, such that x ∈ X. The search space is limited by the lower
(

l
)

or upper (u) limits of each of the d variables, as indicated in
Equation (20).

f (x) = fm
(

Wmxm−1 + bm
)

∈ R, (21)

X =
{

x ∈ R | li ≤ xi ≤ ui, d = 1
}

The objective function obtained is a complex problem to
solve using classical optimization methods, because it contains
a set of local optimums. Therefore, an evolutionary method
like genetic algorithms is a good alternative for its solution.
When the mathematical model of the EOG signal is obtained
as a result of the processing of the neural network, it is
represented as a mathematical function with local positive and
negative thresholds; using classical optimization techniques, it
is not possible to determine the range of the signal because
it presents different ridges and valleys of different amplitudes,
so the two objectives sought are to obtain the maximum and
minimum optima regardless of the variable characteristic of
the signal. For the maximum optimal value, the 15 iterations

of the genetic algorithm are applied, and to obtain the
minimum optimal value, a negative sign multiplies the objective
function and the 15 iterations of the genetic algorithm are
performed again.

For genetic algorithms (GA), each candidate solution is
considered an individual that belongs to a population, and its
level of “adaptation” is the value obtained when evaluating each
of the candidate solutions with the objective function (Leardi,
2003). Basically, a GA is an algorithm that generates a random
population of parents; during each generation, it selects pairs of
parents considering their value f (x) and exchanges of genetic
material or crosses are made to generate pairs of children;
such children will be mutated with a certain probability and
will ultimately compete to survive the next generation with the
parents, a process known as elitism.

The algorithm corresponding to a GA is indicated below:
Number of dimensions d= 1
Search space limits l= 0 y u= 25
Number of iterations Niter= 15
Population size Np= 48
Number of bits per dimension Nb= 11
Initialization by the equation: xn = l+ rand (.)∗

(

u− l
)

Selection of parents (Roulette Method): Each individual is
evaluated considering the objective function.

The cumulative of the objective function is calculated as E, as
indicated in Equation (21).

E =

Nb
∑

i=1

f (xi) (22)
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FIGURE 8 | (A) Genetic algorithm at optimal maximum. (B) Genetic algorithm at optimal minimum.

The possibility of selection of each individual is calculated, as
shown in Equation (22).

pi =
f (xi)

E
(23)

The cumulative probability of each individual is calculated,
represented in Equation (23).

qi =

i
∑

j=1

pj (24)
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Then, the selection of the parents is made:
A uniformly distributed random number is generated.
The parent that satisfies the condition qi > r is selected, where

r is a random value between 0 and 1.
In a GA, it is necessary to determine certain parameters for its

design; these are as follows.

Cross: It consists of randomly generating a location within
each individual whichwill serve as a reference for the exchange
of genetic information, previously converting to binary values.
We consider a parent pair of 11 binary data and an initial cross
point with a value of 7 generated randomly. Each individual
is divided into two parts: one of 5 bits and the other of 6
bits; later, the complementary parts of each individual will be
united, to form the descendants.
Mutation: The individuals in the population are made up
of binary chains; the mutation is carried out by changing
with some probability the bits of each descendant individual,
generating a population of mutated children, although it is
also necessary to convert the said population to real numbers
in order to evaluate them in the objective function.
Selection of the fittest: It is necessary to select the fittest
individuals who will survive the next generation. This is
achieved through the competition of the parents with the
children that were generated after applying the cross and
mutation operators; in the case of the binary AG, the original
populations of parents are simply mixed, and that of the
children generated.

In Figure 8A, the data is observed in each period of the genetic
algorithm cycle in the case of obtaining the optimal maximum,
while in Figure 8B the data is observed in the same period of the
genetic algorithm, but calculating the optimal minimum.

Table 1 records the data in each period in which the
optimization algorithm is evaluated. As an example for a specific
user, the data in Table 1 are obtained.

Fuzzy Inference System
To characterize the EOG signal and to be able to use it to
generate Cartesian coordinates, a classification system with fuzzy
logic was implemented. This method uses a set of mathematical
principles based on degrees of belonging and is performed based
on linguistic rules that approximate a mathematical function.
The input is the signals of the two previously calibrated EOG
horizontal and vertical channels, and the output of the system are
Cartesian coordinates within the working space of an assistance
system, in this case an anthropomorphic manipulator robot.

The Mamdani-type inference method was implemented
to design the fuzzy classifier because it allows the intuitive
relationship through syntactic rules between the workspace and
the voltage thresholds; this feature is very useful when generating
a point in Cartesian space in real time.

In the mathematical interpretation of Mamdani’s fuzzy
controller, there are two fuzzy antecedents expressed by
membership functions of the linguistic variables A′ and B′, with a
first premise or a valid fact: If x isA′ and y is B′, then we have a set
of fuzzy rules expressed in the form; if x is Ai and y is Bi then z is
Ci. Where x is the voltage range of the calibrated EOG signal for

TABLE 1 | Values delivered by the genetic algorithm in each period.

Iteration number Maximum

optimum

Minimum

optimum

1 0.7328 0.6983

2 0.8102 0.6452

3 0.8392 0.6012

4 0.8583 0.5932

5 0.8873 0.5874

6 0.8921 0.5320

7 0.9012 0.4943

8 0.9058 0.4832

8 0.9134 0.48032

10 0.9239 0.4786

11 0.9323 0.4632

12 0.9532 0.4324

13 0.9832 0.4132

14 1.0983 0.3932

15 1.1193 0.3172

The values highlighted in gray in Table 1 provide the range to which the EOG classifier

should be calibrated for this user, thus assigning to each voltage threshold a coordinate

in Cartesian space using fuzzy logic.

the input or the robot workspace for the output, A′ and B′ are the
antecedents of the linguistic variables expressed by membership
functions and Ci is the consequent of a fuzzy set z. In the end,
when evaluating all the fuzzy rules, we have a conclusion set z
which is C′; this approach is represented in Equation (24) using
the Mamdani inference model.

x is A′ and y is B′ True Premise
If x is A1 and y is B1, then z is C1 Fuzzy rule 1
If x is A2 and y is B2, then z is C2 Fuzzy rule 2

...
If x is Ai and y is Bi, then z is Ci Fuzzy rule i

z is C′ Set Conclusion.
(25)

By classifying the EOG signal by thresholds from positive
to negative, leaving an inactivation zone as indicated in
Figure 9, the response relationship is performed in the
Cartesian space of the anthropomorphic robot. The entire
workspace is mapped according to the threshold registered in
the classifier.

The membership function used to verify the performance
of the fuzzy classifier is a Gaussian-type function, such as
that presented in Equation (25). The implemented membership
functions are Gaussian, because the transition between one
membership function to another is smooth; it also helps to
generate trajectories from one point to another without using
cubic polynomials like the Spline technique.

Gaussian :f
(

x; a, b
)

=

{

e
(

x−a
b

)2

(26)

Frontiers in Neurorobotics | www.frontiersin.org 12 September 2020 | Volume 14 | Article 578834

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Perez Reynoso et al. HMI Using Neural Network Modeling

FIGURE 9 | Classification using thresholds of the EOG signal.

FIGURE 10 | (A) Relation of the robot workspace and the EOG signals. (B) Robot workspace and dimensions.

where a defines the mean value of the Gaussian bell, while b
determines how narrow the bell is.

The output is the work space of the anthropomorphic robot,
which is represented as a hollow sphere; previously, studies of
direct and inverse kinematics were performed to calculate its
work space, as well as robot dynamics to apply control algorithms
for monitoring of the paths generated by the fuzzy classifier. The

robot with which experimental tests were carried out is presented
in Figure 10B.

According to the voltage level that each linguistic variable
represents, the inputs are defined, x = EOG vertical/EOG
horizontal, for fuzzy classifier inputs that use Gaussian
membership functions T (x); the names of these functions are
presented in Algorithm 1.
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Algorithm 1: Name of each of the Classifier input Functions.

T (x) =
Negative Vertical/Horizontal High (NAV/NAH),
Vertical/Horizontal Medium Negative (NMV/NMH)
Vertical/Horizontal Low Negative (NBV/NBH)
Vertical/Horizontal Zero (ZV/ZH),
Positive Vertical/Horizontal Low (PBV/PBH),
Positive Vertical/Horizontal Medium (PMV/PMH),
Vertical/Horizontal High Positive (PAV/PAH).

According to the voltage level represented by each linguistic
variable, the workspace is defined with y = Position X/Y/Z, for
the outputs of the fuzzy classifier, using the Gaussianmembership
functions T

(

y
)

. The name of the functions is indicated in
Algorithm 2.

Algorithm 2: Name of each of the Output Functions of
the Classifier.

T
(

y
)

=

Negative High X/Y/Z (NAX/NAY/NAZ)
Negative Medium X/Y/Z (NMX/NMY/NMZ)
Negative Low X/Y/Z (NBX/NBY/NBZ)
Zero X/Y/Z (X0/Y0/Z0)
Positive Low X/Y/Z (PBX/PBY/PBZ)
Positive Medium X/Y/Z (PMX/PMY/PMZ)
Positive High X/Y/Z (PAX/PAY/PAZ).

Algorithm 3 establishes the range of the membership
functions of the optimization of the modeling of the EOG
signal from the results obtained in Table 1, corresponding to
each vertical and horizontal channel modeled by Gaussian
membership functions.

Algorithm 4 establishes the range of the membership
functions of the fuzzy classifier outputs for each of the Cartesian
coordinates in f (px, py, pz); the Gaussian membership functions
are used depending on the workspace of any assistance system,
whose positions are expressed in Cartesian coordinates, in this
case that of an anthropomorphic robot with three degrees
of freedom.

The relationship between the voltage thresholds and the robot
workspace is indicated by 113 inference rules. The workspace is
classified on dividing surfaces by slices from the positive to the
negative threshold; the horizontal EOG is related to the positions
on the x-axis, while the vertical EOG is related to the positions
on the z-axis and y-axis. By having the membership functions
for the inputs and outputs of the fuzzy classifier, syntactic rules
are implemented that indicate the points that form the trajectory
to be followed by the manipulator robot. Figure 10A represents
the relationship of the workspace in the XY plane by means of
a Cartesian axis; the horizontal EOG channel is represented by
the abscissa, and the vertical EOG channel is represented by the
ordinates. Each of the concentric circles represents a layer of the
plane that encompasses the position correlation in the XY plane
and the EOG signal voltage threshold value from positive values

above the baseline and values below this reference which take
negative values. Figure 10B represents the relationship of the
workspace on the z-axis with respect to the vertical EOG channel
and the three degrees of freedom robot

(

q1, q2 and q3
)

.
All fuzzy syntactic rules for generating positions through

eye movement interaction were introduced into the LabVIEW
Design Manager (see Figure 11A) V2019. The horizontal EOG
signal corresponds to the x-axis or abscissa, while the vertical
EOG corresponds to the y-axis or ordered y for the z coordinates,
generating a trajectory in the Cartesian space using a function
f
(

x, y, z
)

. The LabVIEW V.2019 Design Manager presents the
control surfaces for each X, Y , and Z position output relative
to the horizontal and vertical channel input data. In each trend
of the surfaces, it is observed that while the voltage value in the
horizontal/vertical EOG is positive, the graph has a blue color.
The direction of position in each of the axes is explained; the
graph indicates the positions in X to the right (see Figure 11A),
in Y it indicates the position upward on the XY plane (see
Figure 11B), and in Z the robot’s position is higher than the XY
plane (see Figure 11C). In contrast, if the graph tends toward
negative values, it has a red color tone; the position values in
X are to the left (see Figure 11A), in Y it indicates the position
down on the XY plane (see Figure 11B), and in Z the robot
position is lower than the XY plane (see Figure 11C), covering
the entire workspace.

The classifier has the property of being variable in the input
membership functions to be adaptive to any user, while the
output membership functions are variable in order to adjust
the classifier to any navigation system with coordinates in the
Cartesian space. This system can be adapted to the generation
of trajectories for autonomous aerial vehicles, a pointer for
a personal computer in order to write letterforms and for
home automation systems; however, for the purposes of this
work the fuzzy output classifier adapts to the workspace of an
anthropomorphic robot. Table 2 describes the relationship of the
horizontal and vertical EOG signals and the robot workspace
represented as a hollow sphere. The position is determined by
the membership functions of the semantic rules

(

px, py, and pz
)

.
The coordinates of the manipulator robot are previously defined
for each value of the acquisition potential of the EOG signal,
covering the entire workspace of the robot. For example, the
horizontal EOG input is defined in the membership function ZH,
the vertical EOG input is defined in the membership function
ZV, and the output values are in Cartesian coordinates; they are
delimited by the membership functions X0, Y0, and Z0 set as the
robot home position.

Robot Position Control Scheme
The result of the classifier provides the position of the
robot in Cartesian coordinates (X, Y ,Z); to convert these
results into desired joint coordinates

(

q1d, q2d, q3d
)

, the inverse
kinematics of the robot are used. These values are the input
of the control PD+ algorithm that orders the robot to
path tracking.
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Algorithm 3: Input membership functions.

x=EOG Vertical x=EOG Horizontal

EOG input signal:
[

0.3172
(

optimal minimum
)

to 1.1923
(

optimal maximum
)]

Volts. Peak-to-peak voltage of an EOG signal
(Optimized Variable Rating Range).
M (NAV) = Gaussian (x, [0.31 0.31 0.4 0.49])
M (NMV) = Gaussian (x, [0.4 0.49 0.58 0.67])
M (NBV) = Gaussian (x, [0.49 0.58 0.67 0.76])
M (ZV) = Gaussian (x, [0.67 0.76 0.85 0.94])
M (PBV) = Gaussian (x, [0.76 0.85 0.94 1.03])
M (PMV) = Gaussian (x, [0.85 0, 94 1.03 1.10])
M (PAV) = Gaussian (x.[1.03 1.10 1. 19 1.19])

M (NAH) = Gaussian (x, [0.31 0.31 0.4 0.49])
M (NMH) = Gaussian (x, [0.4 0.49 0.58 0.67])
M (NBH) = Gaussian (x, [0.49 0.58 0.67 0.76])
M (ZH) = Gaussian (x, [0.67 0.76 0.85 0.94])
M (PBH) = Gaussian (x, [0.76 0.85 0.94 1.03])
M (PMH) = Gaussian (x, [0.85 0, 94 1.03 1.10])
M (PAH) = Gaussian (x.[1.03 1.10 1. 19 1.19])

Algorithm 4: Output membership functions.

x=Position px x=Position py x=Position pz

Robot workspace: [−30 a 30] cm Distance in centimeters within the workspace (this range may vary depending on the device
workspace).
M (NAX) =

Gaussian (x, [−30− 30− 22.5 − 15])
M (NMX) =

Gaussian (x, [−22.5−18.7 −11.2 −7.5])
M (NBX) =

Gaussian (x, [−15 − 11.2 − 3.7 0])
M (X0) =
Gaussian (x, [−7.5 − 3.7 3.7 7.5])
M (PBX) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMX) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAX) =

Gaussian (x, [15 22.5 30 30])

M (NAY) =

Gaussian (x, [−30− 30− 22.5 − 15])
M (NMY) =

Gaussian (x, [−22.5−18.7 −11.2 −7.5])
M (NBY) =

Gaussian (x, [−15 − 11.2 − 3.7 0])
M (Y0) =
Gaussian (x, [−7.5 − 3.7 3.7 7.5])
M (PBY) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMY) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAY) =

Gaussian (x, [15 22.5 30 30])

M (NAZ) = Gaussian (x, [−30 − 30 −

22.5 − 15])
M (NMZ) = Gaussian (x, [−22.5 −

18.7 − 11.2 − 7.5])
M (NBZ) = Gaussian (x, [−15 −11.2 −

3.7 0])
M (Z0) = Gaussian (x, [−7.5 −

3.7 3.7 7.5])
M (PBZ) =

Gaussian (x, [0 3.7 11.2 1.5])
M (PMZ) =

Gaussian (x, [7.5 11.2 18.7 22.5]
M (PAZ) =

Gaussian (x, [15 22.5 30 30])

The control law is expressed in Equation (26).

τPD+ = Kpq̃+ Kv
˙̃q+M

(

q
)

q̈d + C
(

q, q̇
)

q̇d + Bq̇d + g
(

q
)

(27)

This algorithm requires the dynamic robot model, so M
(

q
)

is
a positive defined symmetric matrix n x n which corresponds
to the robot’s inertia matrix, C(q, q̇) is an array of n x n which
corresponds to the matrix of centrifugal forces or Coriolis, B is
a vector n x 1 which determines the viscous friction coefficients,
g
(

q
)

is a vector n x 1 representing the effect of gravitational force,
τ is a vector n x 1 indicating torque applied to joint actuators,
Kp and Kv are the proportional and derivative constants of

the controller, q̃ is joint position error, ˙̃q is the joint speed
error, q̈d is the desired joint acceleration, and q̇d is the desired
joint speed.

EXPERIMENTS AND RESULTS ANALYSIS

To perform different experiments to validate the operation of the
designed HMI system, a graphical interface was developed that

allows the operator to visualize the EOG signals of both channels,
the movement of a virtual robot that emulates the movements
generated by the interaction of the gaze, a graph showing
the position in Cartesian coordinates of the data generated by
the fuzzy classifier, and a visual feedback of the object to be
taken by means of the image acquired by an external camera
placed on the end effector. In addition, the response of the
control algorithm, the position error, and the torque graph in
each of the robot’s joints are presented in the graphic interface
(see Figure 12).

The characteristics of the robot used in the experiments are
shown in Table 3.

To evaluate the performance of the HMI system, experiments
were conducted with 60 individuals inexperienced in the use of
this type of system. The purpose was to demonstrate that a system
that adapts to the user allows a learning curve that requires fewer
repetitions and therefore less time to perform a defined task, with
the advantage of reducing the training time of a user to become
an expert.

The performance of the HMI is verified by obtaining the
time it takes the user, using the orientation of his eyeball (see
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FIGURE 11 | (A) Fuzzy classifier of the EOG signal using the 113 inference rules previously calibrated with genetic algorithms. (B) X-axis control surface. (C) Y-axis

control surface. (D) Z-axis control surface.
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TABLE 2 | Correspondence of the ocular displacement and the workspace of an anthropomorphic robot with three degrees of freedom.

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PBV X0, PBY, PAZ PAV Vertical EOG

ZV X0, Y0, PAZ

NBV X0, NBY, PAZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PMV X0, PMY, PMZ PMV Vertical EOG

PBV NBX, PBY, PMZ X0, PBY, PMZ PBX, PBY, PMZ

ZV NBX, Y0, PMZ X0, Y0, PMZ PBX, Y0, PMZ

NBV NBX, NBY, PMZ X0, NBY, PMZ PBX, NBY, PMZ

NMV X0, NMY, PMZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV X0, PAY, PBZ PBV Vertical EOG

PMV NBX, PMY, PBZ X0, PMY, PBZ PBX, PMY, PBZ

PBV NMX, PBY, PBZ NBX, PBY, PBZ X0, PBY, PBZ PBX, PBY, PBZ PBX, PBY, PBZ

ZV NMX, Y0, PBZ NBX, Y0, PBZ X0, Y0, PBZ PBX, Y0, PBZ PMX, Y0, PBZ

NBV NMX, NBY, PBZ NBX, NBY, PBZ X0, NBY, PBZ PBX, NBY, PBZ PMX, NBY, PBZ

NMV NBX, NMY, PBZ X0, NMY, PBZ PBX, NMY, PBZ

NAV X0, NAY, PBZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV NBX, PAY, Z0 X0, PAY, Z0 PBX, PAY, Z0 ZV Vertical EOG

PMV NMX, PMY, Z0 NBX, PMY, Z0 X0, PMY, Z0 PBX, PMY, Z0 PMX, PMY, Z0

PBV NAX, PBY, Z0 NMX, PBY, Z0 NBX, PBY, Z0 X0, PBY, Z0 PBX, PBY, Z0 PBX, PBY, Z0 PAX, PBY, Z0

ZV NAX, Y0, Z0 NMX, Y0, Z0 NBX, Y0, Z0 X0, Y0, Z0 PBX, Y0, Z0 PMX, Y0, Z0 PAX, Y0, Z0

NBV NAX, NBY, Z0 NMX, NBY, Z0 NBX, NBY, Z0 X0, NBY, Z0 PBX, NBY, Z0 PMX, NBY, Z0 PAX, NBY, Z0

NMV NMX, NMY, Z0 NBX, NMY, Z0 X0, NMY, Z0 PBX, NMY, Z0 PMX, NMY, Z0

NAV NBX, NAY, Z0 X0, NAY, Z0 PBX, NAY, Z0

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PAV X0, PAY, NBZ NBV Vertical EOG

PMV NBX, PMY, NBZ X0, PMY, NBZ PBX, PMY, NBZ

PBV NMX, PBY, NBZ NBX, PBY, NBZ X0, PBY, NBZ PBX, PBY, NBZ PBX, PBY, NBZ

ZV NMX, Y0, NBZ NBX, Y0, NBZ X0, Y0, NBZ PBX, Y0, NBZ PMX, Y0, NBZ

NBV NMX, NBY, NBZ NBX, NBY, NBZ X0, NBY, NBZ PBX, NBY, NBZ PMX, NBY, NBZ

NMV NBX, NMY, NBZ X0, NMY, NBZ PBX, NMY, NBZ

NAV X0, NAY, NBZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PMV X0, PMY, NMZ NMV Vertical EOG

PBV NBX, PBY, NMZ X0, PBY, NMZ PBX, PBY, NMZ

ZV NBX, Y0, NMZ X0, Y0, NMZ PBX, Y0, NMZ

NBV NBX, NBY, NMZ X0, NBY, NMZ PBX, NBY, NMZ

NMV X0, NMY, NMZ

Vertical EOG NAH NMH NBH ZH PBH PMH PAH Horizontal EOG

PBV X0, PBY, NAZ NAV Vertical EOG

ZV X0, Y0, NAZ

NBV X0, NBY, NAZ

Figure 13A), to control the robot to follow a trajectory defined by
5 points (Figure 13B). Each user performs twenty repetitions. A
camera is placed on the end effector, and a program for detecting
red color is added to the interface in real time. Each point has
an internal number that defines the order that the robot must
follow to indicate them; when the first red color point is detected,
a timer is activated to take the time of the execution of the task.

For evaluating adaptability of the classifier, it was necessary to
compare the time of the execution of the twenty repetitions of
the 30 users, in each experiment.

In the first experiment, the glasses are placed on each user
and a sample of the EOG signal is taken for 25 s to generate a
database with the 30 users, and the average voltage of the EOG
signals is calculated for the maximum and minimum threshold
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FIGURE 12 | Graphical interface that provides system information to the user.

FIGURE 13 | (A) Control of the physical manipulator robot by EOG. (B) Proposed trajectory for the validation of the system by following the gaze.

values. The system is calibrated once, and all users need to do
a workout to reach the required thresholds. In other words, in
this first experiment, the user must adapt to the HMI in order to
operate the assistance system.

In the second experiment, the system, by optimizing the signal
thresholds, is automatically calibrated every 3min, adapting
the fuzzy classifier to the parameters of the EOG signal of
each individual. The optimal range data becomes the input
of the classifier; the calibration process is imperceptible to

the user and does not affect the operation control of the
assistance system since it only lasts 0.53 s. In this second
experiment, the HMI adapts to each user and the variability of its
EOG signal.

A third experiment was realized with the users of the
second experiment, who had previous training to analyze the
performance of users with experience in executing the task and
evaluate if with only 20 training tests the execution time of this is
considerably reduced.
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FIGURE 14 | (A) Response time trend without optimization of the fuzzy classifier. (B) Response time trend with fuzzy classifier optimization. (C) Response time trend

with fuzzy classifier optimization and expert users.
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TABLE 3 | Physical characteristics of the robot.

Physical robot

dimensions

Position range of

robot joints

Robot

implemented

l1 = 0.18 m q1 = 20− 70◦

l2 = 0.28 m q2 = 30− 230◦

l3 = 0. 15 m q3 = 20− 270◦

Experiment 1: Standard Calibration With
Inexpert and Expert Users
In this experiment, 30 different EOG signals were obtained.
The average of the maximum and minimum thresholds of the
user voltage was calculated; the result gave a value of 1.123
volts for the maximum threshold and 0.3212 volts for the
minimum threshold. The fuzzy classifier was calibrated with
these databases, and the same 30 users were asked to perform
the test. When making the first attempts, the users were unable
to control the operation of the robot and complete the trajectory;
it was necessary to do prior training in the use of the HMI and
to manually adjust the thresholds of the fuzzy classifier for each
user on the average value obtained for get them to complete the
test. When they had the necessary training, time was taken in 20
repetitive tests.

As seen in Figure 14A when starting the experiment, the
average execution time of the task was 322.22 s; after 20
repetitions, the average was 175.7 s. In Figure 14A, the tendency
to decrease the execution time to realize the path tracking is
observed. Task execution time average was reduced by 45.5% after
twenty tests. The standard deviation of the recorded time is 55.56,
which indicates that there is considerable variation in relation
to the average. This is because each user tries to adapt to the
thresholds already preestablished in the system.

Table 4 shows the response time of a sample of 7 users out
of 30 users who carried out the experiment. The time it takes
to perform the 5-point tracking experiment is represented in the
rows for each user. While in the column, the number z test is
indicated.

In the analysis of the results, it is observed that there is
a decrease in the response time resulting after test number
6, but a dispersion in the trend is observed, that is, the user
did not achieve a good control of the operation of the robot
until the repetition number 16. In test 16, it is observed
how this dispersion decreases. This variability explains why
the system does not respond adequately until the user reaches
the voltage thresholds at which the classifier is calibrated.
Most HMIs work on this principle; they are calibrated using
information stored in a database, even if the user has different
parameters from those stored, the system responds with close
values, increasing the time in which a control command is T
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generated because a search must be made for the closest
parameter and then generate a response by activating the
actuators of the system to be controlled. In addition, extensive
user training is required to adapt as quickly as possible to the
HMI calibration parameters.

Experiment 2: Customized Calibration With
Inexpert Users
For the second experiment, the times it took to perform the test
for 30 new users were obtained, but in this case, the intelligent
calibration system developed from the modeling of the voltage
thresholds was used. The fuzzy inference system is automatically
calibrated for each user every 3min, from the first EOG signal
acquisition until the test ends. This is a parallel process, and
interrupting the control routine for a period of 0.53 s, the genetic
algorithm obtains the thresholds and the optimal range is the
new fuzzy classifier input, customizing the system and adapting
the control to individual parameters, including when there are
disturbances in the EOG signal due to external interference. The
interruption time for calibration is imperceptible by the user
and negligible, compared to the response time of the controlled
device. The user does not require prior training to generate
some skill in controlling the device, because the classifier is
constantly calibrating.

In this experiment, the average time it took the 30 users
to follow the path when starting the test was 215.53 s; after a
series of 20 repetitions, the average execution time was 48.51 s.
In Table 5, a summary of the response time of Experiment 2
is presented and it can be observed that the execution time is
much less than the average obtained in the first experiment.
As seen in Figure 14B, from the first test there was a tendency
to decrease the average time by 77.55%, a value considerably
higher than that observed in the first experiment. The standard
deviation of the recorded time is 41.3, which indicates less
variability in the response of different users using the optimal
calibration for the classifier. In Figure 14B, can be see that
the standard deviation is reduced after of test number 18,
this indicates that the dispersion of the data is decreased,
which suggests that all the users adapted to the system at
the end of the Experiment 3: Customized calibration with
expert users.

A third experiment was carried out with the 30 users who
carried out the second experiment, and very significant results
were obtained. In Table 6, a summary of the response time of
Experiment 3 is presented. The average response time when
starting the test of the 30 users is 224.15 s, after a series of
20 repetitions, it is verified that the tendency to decrease the
execution time has an average of 24.09 s. With previous training,
the average time to follow a new path decreased the response
time of the robot by 89.26%, it can be observed in the graphs in
Figure 14C. When analyzing the results presented, a significant
improvement in the dispersion of the response is observed due to
the decrease in the standard deviation of 29.8, which indicates a
greater domain in the control of the system by users, especially
after test 16. In Figure 14C, in the last two tests in the 30 T
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users, a significant decrease in the execution time of the task
is observed.

With this HMI, the user does not have to worry about reaching
the required voltage levels or need prior training to control
the robot, on the contrary, the HMI adapts to the operating
thresholds of each user, generating a response from the robot
throughout its workspace.

CONCLUSION

In this work, an intelligent calibration system is presented
by means of which an HMI interface whose control input
is the EOG signal adapts to the characteristics of the signals
of different users and generates trajectories in the workspace
of an anthropomorphic robot manipulator in real time. The
difference from other HMIs is that the proposed system does
not need a database for its calibration. The innovation is
the intelligent system capable of calibrating the HMI from
the use of fast neural networks to model the physiological
signal and its optimization with genetic algorithms to obtain
amplitude thresholds that allow easy adaptation of the HMI
to the EOG signal of the user. It is verified that the use of
artificial intelligence to generate trajectories from signals with
high variability, such as EOG results in a decrease in the
execution time of a task and the sensation of real-time control of
the robot. It was shown, from the observation of data obtained by
experimentation, that the adaptive calibration system generates
response times in the robotic system to be controlled less than
when the user is trained to use standard calibrated systems.
When comparing Figure 14C with Figure 14A, the decrease in
task execution time is observed. For the first experiment (users
with manual calibration experience), the average decrease in
task execution time is 44%, and for the third experiment (users
with adaptive calibration experience) it is 82%. In addition,
using an intelligent system reduces training time, since the
user does not have to adapt to the HMI if not the HMI
adapting to the user. In Figure 14A, a large dispersion of
data is observed (standard deviation), indicating that each user
tries to adapt differently to the HMI. In contrast, Figure 14C
shows a significant reduction in data dispersion (standard
deviation), since each user manages to control the system
adequately, since the HMI adapts to the characteristics of its
EOG signal.

In the graphs of Figure 14, it is observed how the adaptability
of the system improves; in the first experiment, the calibration
was done manually, although it presents a decrease in response
time, where it takes the user more time to reach the objective
set; however, the fuzzy logic allows adaptability to personal
characteristics. The second experiment has been worked with
inexperienced users who had no control over the system, but
calibrating the system from modeling the signal and optimizing
the range of signal variability, it is observed that the response
time is less and the level of adaptability is verified by decreasing
the measure of dispersion of each of the responses. The system
tends to standardize the learning curve to the same pattern
regardless of the individual who uses the HMI; this property T
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of the modeling of the EOG signal to customizing the fuzzy
classifier can be seen in the results of Experiment 3, in the
graph of Figure 14C where the response time decreases to
an average value of 24 s and the standard deviation measure
is reduced.

The experiment was performed using an anthropomorphic
robot to validate the HMI response, but since the fuzzy classifier
generates coordinates in a Cartesian space (in three dimensions),
it can be adapted to any navigation system by modifying
only the mapping in the workspace, generating trajectories
for example for autonomous vehicles or intelligent spatial
location systems for the control of wheelchairs or any type of
mobile robot.

In a future work, this HMI would be implemented in
assistance systems for people with severe disabilities, by
implementing an eye joystick system in order to accomplish
everyday tasks, such as taking objects.
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