Infectious Disease Modelling 3 (2018) 373—384

KeAi

Contents lists available at ScienceDirect

Infectious
Disease

(*] Modelling
KeAl Infectious Disease Modelling

CHINESE ROOTS
GLOBAL IMPACT

journal homepage: www.keaipublishing.com/idm

Use of routine HIV testing data for early detection of N

Check for

emerging HIV epidemics in high-risk subpopulations: A itz
concept demonstration study

Houssein H. Ayoub * > ¢, Susanne F. Awad ”, Laith J. Abu-Raddad > ¢ ¢~

2 Department of Mathematics, Statistics, and Physics, Qatar University, Doha, Qatar

b Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha,
Qatar

€ Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, USA

d College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar

ARTICLE INFO ABSTRACT

Article history: Introduction: HIV epidemics in hard-to-reach high-risk subpopulations are often discov-
Recewed _22 MarCh 2018 ered years after epidemic emergence in settings with poor surveillance infrastructure.
Received in revised form 11 June 2018 . . . . . . .

Accepted 18 October 2018 Using hypothesis-generation modeling, we aimed to investigate and demonstrate the
Available online 6 November 2018 cgncept of using rout'ine HIV testing data to ider}tify and characterize? hidden epidemics in
Handling Editor: James Koopman high-risk subpopulations. We also compared this approach to surveillance based on AIDS

case notifications.

Keywords: Methods: A deterministic mathematical model was developed to simulate an emerging HIV
HIV epidemic in a high-risk subpopulation. A stochastic Monte Carlo simulation was imple-
High-risk subpopulation mented on the total population to simulate the sampling process of generating routine HIV
Surveillance testing data. Epidemiological measures were estimated on the simulated epidemic and on
Mathematical modeling the generated testing sample. Sensitivity analyses were conducted on the results.

Monte Carlo simulations
Epidemiology
Sexually transmitted infection

Results: In the simulated epidemic, HIV prevalence saturated at 32% in the high-risk
subpopulation and at 0.33% in the total population. The epidemic started its emerging-
epidemic phase 28 years after infection introduction, and saturated 67 years after infec-
tion introduction. In the simulated HIV testing sample, a significant time trend in preva-
lence was identified, and the generated metrics of epidemic emergence and saturation
were similar to those of the simulated epidemic. The epidemic was identified 4.0 (95% CI
3.4—4.6) years after epidemic emergence using routine HIV testing, but 29.7 (95% CI 15.8
—52.1) years after emergence using AIDS case notifications. In the sensitivity analyses,
none of the sampling biases affected the conclusion of an emerging epidemic, but some
affected the estimated epidemic growth rate.
Conclusions: Routine HIV testing data provides a tool to identify and characterize hidden
and emerging epidemics in high-risk subpopulations. This approach can be specially useful
in resource-limited settings, and can be applied alone, or along with other complementary
data, to provide a meaningful characterization of emerging but hidden epidemics.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Weill Cornell Medical College — Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar.
E-mail address: lja2002@qatar-med.cornell.edu (LJ. Abu-Raddad).
Peer review under responsibility of KeAi Communications Co., Ltd.

https://doi.org/10.1016/j.idm.2018.10.001
2468-0427/© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lja2002@qatar-med.cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2018.10.001&domain=pdf
www.sciencedirect.com/science/journal/24680427
www.keaipublishing.com/idm
https://doi.org/10.1016/j.idm.2018.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.idm.2018.10.001
https://doi.org/10.1016/j.idm.2018.10.001

374 H.H. Ayoub et al. / Infectious Disease Modelling 3 (2018) 373—-384
1. Introduction

HIV epidemics emerge first in specific subpopulations whose risk-behavior characteristics expose them to a higher risk of
HIV infection (Anderson & May 1991). In most countries, HIV epidemics remain concentrated in these high-risk sub-
populations including men who have sex with men (MSM), people who inject drugs (PWID), and female sex workers (FSWs)
and their clients (Abu-Raddad et al., 2010a; May, Anderson, & Irwin, 1988; Walker et al., 2004). Due to the generally hidden
nature, social stigma, and legal persecution of these subpopulations, it is difficult to capture emerging HIV epidemics among
them by conventional and passive surveillance systems (Mills et al., 2004). Concentrated HIV epidemics in these high-risk
groups are often detected years after epidemic emergence (Mumtaz et al., 2011, 2014a, 2014b). The delay in detecting epi-
demics as they emerge increases the risk of larger HIV epidemics emerging, and may limit access to HIV prevention services
when needed (Mills et al., 2004).

The Middle East and North Africa (MENA), for instance, is a region characterized by recently emerging HIV epidemics
among MSM and PWID (Mumtaz et al., 2011, 2014a, 2014b), and to a lesser extent among FSWs and clients (Abu-Raddad et al.,
2010a, 2010b). Most of HIV incidence appears to be occurring among these populations or their direct contacts (such as
spouses of PWID or spouses of clients of FSWs) (Kouyoumjian et al., 2018; Mumtaz et al., 2013, 2018). Most epidemics in this
region, extending from Morocco in the west to Pakistan and Afghanistan in the east, were discovered years after they emerged
(Mumtaz et al., 2011, 2014a, 2014b). In Libya, for example, anecdotal evidence suggested the possibility of a large HIV
epidemic among PWID since around 2000 (Abu-Raddad et al., 2010a, 2010b). Nevertheless, the stigma and marginalization of
PWID prevented direct access to this population till recently, when it was discovered that Libya is enduring one of the largest
HIV epidemics ever among PWID, at a prevalence of 87% (Mirzoyan et al., 2013).

Novel surveillance methodologies have been developed to study HIV epidemiology among hidden and hard-to-reach
populations (Berchenko & Frost, 2011; Diaz et al., 2009; Heckathorn, 1997; Mills et al., 2004; Rehle et al., 2004). Repeated
integrated bio-behavioral surveillance surveys incorporating state of the art sampling methodologies for reaching hidden
populations, such as respondent driven sampling, provide the best approach to study these key subpopulations (Magnani
et al., 2005; Joint United Nations Programme on HIV/AIDS, 2000). However, the commitment of national programs to
working with such politically-sensitive populations is a persistent challenge (Abu-Raddad et al., 2010a, 2013; Bozicevic,
Riedner, & Calleja, 2013; Mumtaz et al., 2011). These methodologies can also be costly to implement in resource-limited
settings, and the technical expertise to conduct them may not be available. Even when implemented, in most cases they
are executed infrequently preventing longitudinal inferences about the epidemics, and often applied only in select geographic
areas (Mumtaz et al., 2011, 2014a).

Against this background, we attempt here to answer the following question: Is it possible to identify emerging HIV epi-
demics among hidden and hard-to-reach high-risk subpopulations using routine and readily available HIV testing data such
as those of blood donors among others (which are typically not used for surveillance purposes)? To address this question, we
conducted hypothesis-generation modeling simulations to demonstrate this concept for HIV surveillance (study concept is
illustrated in Fig. 1), thereby offering potentially a rapid and inexpensive methodology for detecting HIV epidemics as they
emerge. If there are other supplementary data available, this approach may also be helpful to provide rough estimates for the
epidemic growth rate and population size of the high-risk group, where the epidemic is expanding.

Based on estimations on routine HIV testing data, we can infer whether
there is an emerging HIV epidemic in a high-risk subpopulation
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Fig. 1. Concept of the study. A schematic diagram of the use of routine HIV testing data to identify an emerging HIV epidemic in a high-risk subpopulation.
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The utility of this approach hinges upon the availability of routine HIV testing data. While HIV testing of blood donors is
available universally, and for different types of blood donation, different countries may have different protocols, and some
may have stringent criteria for accepting blood donations that may exclude high-risk populations (Suligoi et al., 2010). While
we use blood donor data as an example of routine testing data, our approach can generically be applied for any type of routine
HIV testing data.

Indeed, a main strength of the present study is the availability of a large volume of HIV testing data in MENA (Abu-Raddad
et al., 2010a, 2010b; Hermez et al., 2010), the regional focus of our study. Though methodological HIV surveillance continues
to be rather limited in this region (Bozicevic et al., 2013), there is (probably often unnecessarily) high emphasis on HIV testing
of broad general populations (Abu-Raddad et al., 2010a; Hermez et al., 2010). Reviews of current practices have indicated
routine testing in diverse populations such as pregnant women, marriage applicants, university students, public sector
employees, out-migrant (for visa to work abroad), in-migrants (for residency or visa renewal), prisoners, tuberculosis pa-
tients, and sexually transmitted disease clinic attendees (Abu-Raddad et al., 2010a; Hermez et al., 2010). For instance, more
than 53 million HIV tests have been conducted in MENA within a short time horizon (Abu-Raddad et al., 2010a). As a specific
country example, >500,000 tests are routinely conducted in Qatar every year (Ministry of Public Health, 2017), a country of
less than three million inhabitants (Ministry of Development Planning and Statistics, 2015). This volume of testing data in
MENA is yet to be utilized for HIV surveillance or scientific analysis purposes.

2. Methods

2.1. Mathematical model of an emerging HIV epidemic in a high-risk subpopulation

2.1.1. Mathematical model structure

A deterministic dynamical mathematical model, based on extension and adaptation of earlier models (Abu-Raddad,
Patnaik, & Kublin, 2006; Abu-Raddad & Longini, 2008), was constructed to describe HIV transmission in a given popula-
tion. The model consisted of a system of coupled nonlinear differential equations that stratified the population according to
HIV status, stage of infection, and risk group. HIV progression was represented by three stages: acute, latent, and advanced.
The model was parameterized to represent an emerging epidemic in a hidden high-risk subpopulation such as MSM, but it
can be generalized to represent other hidden subpopulations such as FSWs and clients and PWID.

The model describes an HIV epidemic in a population of 100,000 individuals, representative of a population of a
metropolitan area. The population was divided into 20 risk groups, from lower to higher levels of risk behavior. It was
assumed that most individuals belong to the lower risk groups (general populations), and the size of the high-risk sub-
population where the HIV epidemic is emerging (say MSM) did not exceed 1% of the total population.

To describe the mixing between different risk groups, we included a mixing matrix that incorporated both an assortative
component (choosing partners only from within the same risk group), and a proportionate component (choosing partners
with no preferential bias based on the risk group). HIV was introduced in the population in 1985, and the model simulated the
spread of the infection over a period of 100 years.

Further details about the model structure can be found in the Supplementary Material (SM).

2.1.2. Model parameterization

The model was parameterized using quality natural history and epidemiological data for HIV. For example, the durations
of the acute, latent, and advanced stages were assumed to be 49 days (acute), 9 years (latent), and 2 years (advanced). These
choices were based on compilation of data by the Joint United Nations Programme on HIV/AIDS (UNAIDS) (UNAIDS; UNAIDS/
WHO, 2010a,b), and based on the classification in Wawer et al. (Wawer et al., 2005), re-analysis of the Rakai data for acute
infection (Pinkerton, 2008), and measured time from seroconversion to death in cohort studies (UNAIDS/WHO, 2010a,b). The
model's parameter values along with their references are listed in Table S1 in SM. The risk of exposure to HIV infection in each
risk group was parameterized by the effective partnership change rate of each risk group (Awad & Abu-Raddad, 2014; Awad
et al.,, 2015).

To simulate an emerging epidemic in the high-risk subpopulation that is not sustainable in the general population, the per-
risk group effective partnership change rate was set to be large enough to generate a sustainable epidemic only in the four
highest risk groups (risk groups 17—20). These risk groups represent different levels of risk behavior within the high-risk
subpopulation. The remaining risk groups (risk groups 1-16) were considered as lower risk groups (general populations)
in which the effective partnership change rate was not large enough to sustain an epidemic without mixing with the core
high-risk subpopulation.

Further details about parameter assumptions can be found in SM.

2.1.3. Characterizing the actual epidemic using epidemiological summary measures

We estimated key epidemiological measures from the actual epidemic using the mathematical model such as HIV
prevalence in the total population and HIV prevalence in the high-risk subpopulation. The trend of an epidemic is rather
complex; therefore, to characterize the actual epidemic in terms of key epidemiological measures such as the time of
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epidemic emergence, epidemic growth rate, and time of epidemic saturation, we implemented a simple approach by fitting
the actual epidemic to the following segmented linear model (Vickerman et al., 2010):

c t<a
HIV prevalence attimet = f(t—a)+c a<t<b (1)
d t>b

here, ¢ and d are constants, the breakpoint a is the time of epidemic emergence, § is the epidemic growth rate, and the
breakpoint b is the time of epidemic saturation.

2.14. Additional epidemiological measures

Assuming the availability of other supplementary data, the approach proposed here can potentially provide rough esti-
mates regarding additional epidemiological measures such as epidemic growth rate and population size of the high-risk
subpopulation where the epidemic is emerging. To generate these estimations, we used an analytical approximation to
link the epidemic growth rate in the total population with the epidemic growth rate only in the high-risk subpopulation. This
link is expressed by the following equation:

Br =fracyrBur (2)

where (37 is the epidemic growth rate in the total population, Sy is the epidemic growth rate in the high-risk subpopulation,
and fracyg is the fraction of the population that belongs to the high-risk subpopulation. Derivation of this equation can be
found in Section 3 of SM.

From this mathematical expression it is possible to roughly estimate the epidemic growth rate in the high-risk subpop-
ulation, if the fraction of the population that belongs to the high-risk subpopulation is known. Likewise, it is possible to
roughly estimate the population size of the high-risk subpopulation, if the epidemic growth rate in the high-risk subpopu-
lation is known. Of notice that risk group size estimates can often be available, despite the limited availability of HIV data, as
these data could have been generated for other purposes, such as the case for PWID whose estimates are often generated for
drug-related purposes (Mumtaz et al., 2014a). Moreover, even when such data are not available, regional or global estimates
can be used as informed rough estimates of the size of the subpopulation, such as the case for MSM (Caceres et al., 2008;
McFarland & Caceres, 2001; Mercer et al., 2009; Mumtaz et al., 2011; UNAIDS).

2.2. Simulation of routine HIV testing data and AIDS case notifications

2.2.1. Stochastic Monte Carlo simulation of routine HIV testing and AIDS case notifications

We constructed a stochastic Monte Carlo simulation to simulate routine HIV testing data, such as those performed in
different countries in populations including blood and organ donors, pregnant women, and marriage applicants among
others (Abu-Raddad et al., 2010a; Hermez et al., 2010). The simulation consisted of randomly sampling every year 2% (2000
individuals) of the total population, which is a good approximation of the percentage of individuals who donate blood per
year (World Health Organization, 2012). For example, in high income countries such as those in North America and Europe,
the average percentage of the population that donate blood is 3%; whereas in some MENA countries the average is between 1%
and 2% (World Health Organization, 2012).

In the sampling process, it was assumed initially that each individual has the same probability of being sampled, inde-
pendent of their risk group. Subsequently, as part of sensitivity analyses, we studied the effects of biases in the sampling
process.

The sampling process was repeated 1000 times with the results reported as summary measures on these 1000
realizations.

2.2.2. Characterizing the sampled population using epidemiological summary measures

HIV prevalence and its 95% confidence interval (CI) were estimated for each sampled year and compared with the actual
epidemic. The time of epidemic emergence and saturation as well as epidemic growth rate were also estimated from the
sampled population by fitting the segmented linear model described in Equation (1) to HIV prevalence time series.

We conducted, every year, a chi-square trend test on HIV prevalence time series up to that year, as estimated on the
sampled population, to identify the temporal trend of HIV prevalence. We also conducted, every year, a chi-square trend test
on AIDS case notifications time series up to that year, as also estimated on the sampled population, to identify the temporal
trend in AIDS case notifications.

We recorded, for each statistical analysis, the earliest year in which the trend in HIV prevalence was found to be increasing
with statistical significance. We also recorded, for each statistical analysis, the earliest year in which the trend in AIDS case
notifications was found to be increasing with statistical significance. The latter represents passive surveillance of AIDS cases,
as was common in the 1980s and 1990s, as a means to identify an emerging epidemic. This was done for merely comparison
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purposes, to highlight the differences with routine HIV testing surveillance. Of notice that AIDS surveillance refers here
strictly to our ability to detect a statistically-significant trend of an emerging HIV epidemic using only AIDS cases.

2.2.3. Sensitivity analyses

Sensitivity analyses were conducted to evaluate the impact of variation in the routine HIV testing sample size (and AIDS
case notifications), as well as biases in the sampling process, on the representativeness and accuracy of the epidemiological
inferences based on the sampled population.

The biases in routine testing data can arise for different reasons, such as different testing protocols for different pop-
ulations or regions, that may effectively underrepresent or overrepresent specific high-risk subpopulations (Suligoi et al.,
2010). The biases can also arise because of inherent differences in the underlying population, such as the differences be-
tween different blood donors—paid versus family replacement versus voluntary non-remunerated donors (Abdel Messih
et al., 2014; Suligoi et al., 2010).

We conducted simulations with a smaller HIV testing sample size (1% of the total population instead of 2%), and larger
sample size (5% of the total population instead of 2%). The effect of undersampling or oversampling the high-risk subpop-
ulation was assessed by including a probability function in the random sampling process that underweighted, or over-
weighted the probability of randomly choosing an individual from the high-risk subpopulation.

3. Results

3.1. Actual epidemic emerging in the high-risk subpopulation

3.1.1. Epidemiological summary measures from the actual epidemic

HIV infection was introduced in the year 1985 in the high-risk subpopulation. The epidemic reached saturation at an HIV
prevalence of 32% in the high-risk subpopulation (Fig. 2B), and at a prevalence of 0.33% in the total population (Fig. 2A). HIV
prevalence in the four highest risk groups within the high-risk subpopulation ranged from 25% (risk group 17) to 48% (risk
group 20) (Fig. 2C). The fraction of the high-risk subpopulation out of the total population (risk groups 17—20 combined) was
0.97% (Fig. 2D).

We estimated from the segmented linear model fitting of the actual epidemic (using Equation (1), Fig. 2A) that the
epidemic started its rapid epidemic phase 28 (95% CI 27—29) years after the introduction of the infection, and saturated 67
(95% Cl 66—68) years after the introduction of the infection (Fig. 2A). The estimated epidemic growth rate of the actual
epidemic in the total population was 8.4 x 10-3(95% CI 8.2 x 103 — 8.7 x 10~3) per year, and in the high-risk subpopulation
it was 0.84(95% CI 0.82 — 0.87) per year—that is 100 times that in the total population.

3.1.2. Additional epidemiological measures

Assuming that the population size of the high-risk subpopulation is known from some other supplementary data source
(here by design it was set in the model at about 1% of the total population), we can infer using Equation (2) that the growth
rate in this high-risk subpopulation ( is equal to 0.84 per year. Alternatively, assuming that the growth rate in the high-risk
subpopulation (fyg) is what is known from some other supplementary data, then we can infer using Equation (2) that the
population size of the high-risk subpopulation is about 1% of the total population.

3.2. Simulation of routine HIV testing data and AIDS case notifications

3.2.1. Epidemiological summary measures from the sampled population

Fig. 3 shows HIV prevalence and its corresponding 95% CI in the population sample generated by the simulated stochastic
HIV routine testing on the total population (such as blood donation). Fig. 3A demonstrates that the sample-estimated HIV
prevalence was representative of HIV prevalence in the actual epidemic. For the year 2013, when the epidemic started its
rapid epidemic phase, HIV prevalence in the sample was 0.031% (95% CI 0.013%—0.079%), whereas HIV prevalence in the
actual epidemic was 0.039%. Sometime during the rapid growing phase of the epidemic, for example in the year 2032, HIV
prevalence in the sample was 0.16% (95% CI 0.11%—0.24%), whereas HIV prevalence in the actual epidemic was 0.18%. For the
year 2052, the year when the epidemic saturated, HIV prevalence in the sample was 0.32% (95% CI 0.26%—0.41%), whereas HIV
prevalence in the actual epidemic was 0.33%.

The segmented linear model fitting for the population sample is illustrated in Fig. 3B. The time after infection introduction
but before epidemic emergence was estimated at 28 years (95% CI 25—32) (Table 1)—the same year [28 (95% CI 27—29)] as
estimated from fitting the actual epidemic (Fig. 2A and Table 1). Epidemic saturation was reached 66 years (95% CI 62—70)
after infection introduction—close to the year [67 (95% CI 66—68)] as estimated from fitting the actual epidemic (Fig. 2A and
Table 1). The epidemic growth rate in the total population was 8.4 x 10~3(95% C1 7.2 x 1073 — 9.9 x 10-3) per year—similar
to the epidemic growth rate estimated from fitting the actual epidemic [8.4 x 10-3(95% CI 8.2 x 10~3 — 8.7 x 10~3) per year]
(Fig. 2A and Table 1).
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Fig. 2. Epidemiological summary measures for the actual HIV epidemic. A) HIV prevalence in the total population along with the segmented linear model fit.
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Fig. 4 shows the year of epidemic identification (after epidemic emergence) using the HIV prevalence times series
generated using the routine HIV testing, versus the year of epidemic identification using the time series of AIDS case noti-
fications. Using routine HIV testing, the emerging epidemic was identified (with statistical significance) 4.0 (95% CI 3.4—4.6)
years after epidemic emergence. Meanwhile, using AIDS case notifications, the emerging epidemic was identified (with
statistical significance) 29.7 (95% CI 15.8—52.1) years after epidemic emergence. Across the 1000 realizations, routine HIV
testing identified the emerging epidemic 24.3 (95% CI: 11.9—49.8) years before AIDS case notifications.
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Table 1

Estimated measures using the segmented linear model fitting of the actual epidemic and the simulated routine HIV testing sampled population. The Table
includes also the results of the sensitivity analyses.

Number of years to
epidemic emergence after
HIV introduction (95% CI)

Number of years to
epidemic saturation after
HIV introduction (95% CI)

Epidemic growth rate (95% CI)

Actual epidemic in the total
population

Simulated routine HIV testing
sampled population (2% of the total
population)

Sensitivity analysis of smaller sample
size for the simulated routine HIV
testing sampled population (1% of
the total population)

Sensitivity analysis of larger sample
size for the simulated routine HIV
testing sampled population (5% of
the total population)

Sensitivity analysis of undersampling
the high-risk subpopulation in the
simulated routine HIV testing
sampled population

Sensitivity analysis of oversampling
the high-risk subpopulation in the
simulated routine HIV testing
sampled population

28 (27—29)

28 (25-32)

29 (24-34)

28 (26—30)

29 (25-35)

28 (26—30)

67 (66—68)

66 (62—70)

68 (63—72)

67 (66—69)

66 (61—-72)

67 (65-70)

84x 1073(82x 1073 - 8.7 x 1073)

8.4x 1073(7.2x 103 — 9.9x 10-3)

8.6x 1073(6.8 x 1073 - 10.7 x 1073)

8.5x 1073(7.7x 103 — 9.3 x 10-3)

45%103(3.5% 1073 - 5.6 x 10-3)

1.7x 1072(1.5x 1072 — 1.9 x 10-2)
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3.2.2. Sensitivity analyses

None of the sampling biases included in this study affected the conclusion of an emerging epidemic (Table 1). However,
some of the biases, such as undersampling or oversampling, the high-risk subpopulation affected (to some degree or another)
some of the estimated epidemiological measures, in particular (understandably) the epidemic growth rate (Table 1).
Importantly, none of the sampling biases affected appreciably the year of epidemic identification as estimated using the
routine HIV testing, but these biases generally affected the year of epidemic identification as estimated using AIDS case
notifications (Fig. 5).

4. Discussion

The aim of this study was to demonstrate, using mathematical modeling, the concept of using routine HIV testing data
(such as those of blood donors (Hermez et al., 2010)) to identify a hidden HIV epidemic in some hard-to-reach high-risk
subpopulation. We found that simple analyses on HIV testing data (of no methodological complexity) can provide a useful
tool to identify such hidden epidemic, thereby supporting HIV surveillance efforts at a low cost that can be affordable even in
resource-limited settings. We also found that this approach can identify the hidden epidemic rapidly, within at most few
years of epidemic emergence, and much earlier than that of a surveillance based on AIDS case notifications. Use of routine HIV
testing data can demonstrate to policymakers the emergence of an epidemic, thereby supporting advocacy for investment in
HIV surveillance and intervention response.

Despite the limitations of HIV testing data, the presented analyses demonstrate that these data are of utility and can
capture, despite some caveats and limitations, key temporal patterns of a hidden HIV epidemic in a hard-to-reach subpop-
ulation. With availability of other supplementary data sources, such as HIV case notifications (which are routine across
countries) (Bozicevic, Riedner, & Haghdoost, 2014; Kouyoumjian et al., 2013; Mumtaz et al., 2010, 2014b), and data on proxy
biomarkers of risk behavior (such as prevalence of different sexually transmitted infections for sexual high-risk groups, or
prevalence of hepatitis C virus for PWID) (Abu-Raddad et al., 2010c; Akbarzadeh et al., 2016; Mumtaz et al., 2015; Vickerman
et al., 2010), the utility of this approach is enhanced and can be used to identify the specific high-risk subpopulation affected
by the epidemic. It can also provide estimates for a wider set of epidemiological measures, such as high-risk subpopulation
size estimates, growth rate of the epidemic in the high-risk subpopulation, and HIV epidemic potential.

An example to this end is the use of recently-notified HIV cases to identify the population affected by the epidemic, as
suggested for the epidemic among MSM in Oman and Syria, and the epidemic among PWID in Saudi Arabia (Mumtaz et al.,
2014b). Similarly, the presented approach can also supplement other sources of data, such as those of the integrated bio-
behavioral surveillance surveys (Bozicevic et al., 2013), to provide a more comprehensive characterization of the epidemi-
ology of HIV in a given population.

These findings are specially relevant in countries at low HIV prevalence, such as many of the countries in the MENA region
(Abu-Raddad et al.,, 2010a, 2010b; Mumtaz et al., 2011, 2014a, 2014b), where there has been overall limited national
commitment to HIV surveillance (Abu-Raddad, 2010; Abu-Raddad et al., 2010a; Bozicevic et al., 2013; Sawires et al., 2009), in



H.H. Ayoub et al. / Infectious Disease Modelling 3 (2018) 373—384 381

(A) Routine HIV testing sampling 1% (B) Routine HIV testing sampling 5%
80 r of the total population 80 r of the total population
5 5
-0 - e
[ o @
ESe60f £%60f
® @
s S¢
R i S 5 i 23.0 (95% CI: 13.9 - 38.0)
£ 8 M E 5407
5 g 33.2(95% CI: 16.6 - 66.4) - S g
Qo 2o
o E O E
Rl l 58
28 | 40(95%cCl34-47) 28 | 39(95%cCL34-46)
B - o3
0 0
Routine HIV testing AIDS case | Routine HIV testing ‘ AIDS case
led population notification sampled population notification
8 0((_:) Undersampling the high-risk so(l-)) Oversampling the high-risk
. subpopulation 5 subpopulation
Q - —_
k) 0
@ )
£260f EZeo0f
= = =
58 §8
5% wl g %40 | 22.0 (95% CI: 13.1 - 36.9)
£ 2 35.0 (95% C: 17.5-715) K 2 E
S @ S D
T o 2 o
S E o E
F 20 -
0 .
-T—i & 4.1 (95% Cl: 3.5 -4.8) S © 4.0 (95% CI: 3.4 - 4.6)
7Lk L%
0 0
Routine HIV testing AIDS case Routine HIV testing AIDS case
pled population notification sampled population notification

Fig. 5. Sensitivity analyses on the time of detecting the epidemic after epidemic emergence. A) Assuming a smaller sample size for the simulated routine HIV
testing (1% of the total population). B) Assuming a larger sample size for the simulated routine HIV testing (5% of the total population). C) Assuming under-
sampling of the high-risk subpopulation in the simulated routine HIV testing. D) Assuming oversampling of the high-risk subpopulation in the simulated routine
HIV testing.

part because of the high stigma associated with HIV (Abu-Raddad et al., 2010a; Sawires et al., 2009). The HIV epidemics in this
region emerged mostly during the last decade and have not yet reached their peak (Abu-Raddad et al., 2010a, 2010b; Mumtaz
etal., 2011, 20144, 2014b). Existing evidence suggests considerable HIV epidemic potential in high-risk subpopulations in this
region (Abu-Raddad et al., 2010c; Akbarzadeh et al., 2016; Mumtaz et al., 2015). Importantly, many of the epidemics, such as
those among PWID in Libya and Pakistan (Mirzoyan et al., 2013; Mumtaz et al., 2014a), were discovered years after epidemic
emergence (Mumtaz et al.,, 2011, 20144, 2014b). Indeed, there is already anecdotal evidence that suggests ongoing emerging
HIV epidemics in several countries which are yet to be documented, characterized, and tackled (Mumtaz et al., 2014b). With
the approach proposed here, such potential epidemics could be detected early, overcoming some of the complexities and
difficulties of directly monitoring epidemics in hidden and hard-to-reach subpopulations (Abu-Raddad, 2010; Abu-Raddad
et al,, 2010a, 2013).

Our study has limitations. We presented an approach for detecting emerging HIV epidemics, but other approaches could
also be possible and should be investigated, such as using antiretroviral therapy (ART) programs to monitor trends—an
approach that may not yet be feasible given the low ART coverage in MENA, the lowest globally at only 17% in 2015 (UNAIDS,
2016). While our proposed approach can provide qualitative characterization of hidden epidemics, it may only provide rough
quantitative estimates for several of the epidemiologic measures. The provided estimates may not also be sufficient to
establish a meaningful characterization of an emerging epidemic without other supplementary data, such as case notifica-
tions, to identify the affected population. Routine HIV testing data can be subject to multiple biases, and the nature of bias
may vary by time and geographic location, as well as by country, thereby introducing challenges in generating epidemio-
logical inferences.

The model used here was strictly designed to describe HIV sexual transmission, but the essential concept of this study
relies merely on the generic existence of an emerging epidemic. Accordingly, the findings are applicable for epidemics among
PWID. Indeed, the often rapidly-rising epidemics among PWID (Mumtaz et al., 2014a), are even easier to discern with this
approach, as the growth rate of HIV prevalence is faster.
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Epidemic dynamics can be complex whereby several epidemics could be emerging simultaneously in different high-risk
subpopulations, further complicating the generation of epidemiological inferences. We did not factor ART coverage in the
model, but this may not have affected our results, as we focused on emerging epidemics where ART coverage is yet to be
scaled up.

Despite these limitations, our results suggest that this approach can be effective and easy to implement. The sensitivity
analyses we conducted, to explore the impact of several such limitations, also supported the value of this approach.

5. Conclusions

Using hypothesis-generation modeling, we demonstrated the concept of using routine HIV testing data to identify and
characterize hidden and emerging HIV epidemics in high-risk subpopulations. This approach can be easily implemented and
requires limited resources, and can be applied alone, or along with other complementary data sources to provide a mean-
ingful characterization of hidden epidemics. The approach also avoids challenges and difficulties of HIV surveillance among
stigmatized, hidden, and hard-to-reach subpopulations. It would be pertinent as a next step to explore an application of this
approach in a country that has sufficient data on high-risk subpopulations, along with different sources of routine HIV testing
data, to empirically validate this concept and explore strengths and limitations of this approach. Lastly, our study demon-
strates mathematical modeling as a powerful tool to investigate theoretical concepts for the development of programs and
policies towards addressing difficult public health challenges and priorities.
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