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While not affecting electrochemical performance of energy storage devices,

integrating multi-functional properties such as electrochromic functions into

energy storage devices can effectively promote the development of

multifunctional devices. Compared with inorganic electrochromic materials,

organic materials possess the significant advantages of facile preparation, low

cost, and large color contrast. Specifically, most polymer materials show

excellent electrochemical properties, which can be widely used in the

design and development of energy storage devices. In this article, we focus

on the application of organic electrochromic materials in energy storage

devices. The working mechanisms, electrochemical performance of different

types of organics as well as the shortcomings of organic electrochromic

materials in related devices are discussed in detail.
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Introduction

Electrochromism refers to the phenomenon of REDOX reaction accompanied by color

change or transmittance change, when the material is changed by external voltage or current

(Davy et al., 2017; Zhang et al., 2019a; Cai et al., 2020a; Jang et al., 2021). It is very similar to the

energy conversion process of energy storage devices, so more and more people are applying

electrochromic materials in the field of multifunctional energy storage, which can not only

achieve excellent electrochemical performance, but also monitor the status of energy storage

devices (Yang et al., 2019; Zhai et al., 2019; Dewan et al., 2022; Wang et al., 2022). There are

many functional materials that can achieve electrochromism, such as WO3, NiO, TiO2, V2O5

and other metal oxides (Zhang et al., 2019b; Kim et al., 2020a; Lee et al., 2020; Shi et al., 2020;

Zhang et al., 2020; Zhou et al., 2020). However, most inorganic materials are faced with

problems including poor conductivity, low color conversion sensitivity, low color contrast and

poor electrochemical performance when applied in energy storage devices (Yun et al., 2017; Li

et al., 2019a; Liu et al., 2019; Liu et al., 2020a; Chen et al., 2020; Guo et al., 2021; Lei et al., 2021;
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Poh et al., 2021; Cai et al., 2022). Moreover, electrochromic color

changes of inorganic materials are relatively simplex (Elool Dov

et al., 2017; Cai et al., 2020b), and it is difficult to realize the

advantages of high capacity, good cycling stability and high energy

density of energy storage devices (Laschuk et al., 2020; Li et al., 2021).

In contrast, most of the polymer materials show excellent

electrochemical performance (Guo et al., 2017; Poh et al., 2021),

and the color contrast is large after electrochromic, so the materials

used in organic discoloration (Li et al., 2019b; Wang et al., 2021),

have gainedmuch attention in energy storage field because it can not

only establish intelligent energy storage device (Cai et al., 2016; Li

et al., 2020), but also promote the use of consumer experience and

the development of artificial intelligence equipment and progress

(Sassi et al., 2016; An et al., 2018). In electrochromic energy storage

devices, the color changes of materials need to be clearly observed all

the time (Kim et al., 2018; Kim et al., 2020b; In et al., 2020).

Therefore, their packaging method is different from traditional

energy storage devices (Huang et al., 2018; Liu et al., 2020b; Pei

et al., 2020). Electrochromic devices generally adopt multi-layer

structure including double electrode layer, electrolyte layer and

collector layer, and the typical collector layer is transparent

indium tin oxide (ITO) conductive glass (Huang et al., 2016;

Zhang et al., 2017; Qin et al., 2018; Li et al., 2019c). When

constructing multifunctional energy storage devices, it is

necessary to select appropriate electrode materials and ensure the

materials can maintain good energy conversion and electrochromic

reversibility and stability (Salles et al., 2019; Jia et al., 2021). Hence,

we have to consider the influence of electrolyte on the performance

of electrochromicmaterials when ions are removed from or released

into electrolyte.

In this article, we first briefly summarize the types of organic

electrochromic materials, the basic working mechanism and

applications in various fields of energy storage including

batteries, supercapacitors and solar cells. Secondly,

electrochemical and electrochromic properties of organic

electrochromic materials in different energy storage devices

are summarized and analyzed, in order to obtain

multifunctional energy storage devices with both excellent

electrochemical energy conversion performance and stable

electrochromic properties, so as to promote the development

of organic electrochromic materials in energy storage. Finally,

constructive viewpoints are put forward in order to promote the

mass production application of organic electrochromic materials

in the field of energy storage.

Electrochromic materials and
mechanisms

Polyaniline (PANI) is one of the most commonly used

organic electrochromic material (Tong et al., 2022). Different

from general inorganic materials, PANI has a stabilizing effect on

electrically induced discoloration and shows excellent

electrochemical performance simultaneously (Zhang et al.,

2018). PANI has been widely used in electrode materials of

batteries and supercapacitors due to its facile synthesis and

low cost (Tong et al., 2021). As shown in Figure 1A, when the

voltage is applied, the REDOX reaction of PANI is induced, and

the material changes gradually from yellow reducing state to

green oxidation state (Xu et al., 2016). It may show a distinct

color differentiation from blue or black when electrolyte is

changed. Similarly, polypyrrole (PPy) is also widely used in

the field of organic electrochromic energy storage materials.

When the charging voltage reaches 1.2 V, PPy will show a

black state. With the decrease of voltage and capacity, the

black area continuously decreases and the yellow area

gradually increases. The material completely changes to the

yellow state at 0 V. It is worth noting that the black state

could be reversibly recovered when the voltage is recharged to

1.2 V (Figure 1B). During charging and discharging, ions in the

electrolyte will be inserted into and released from PPy, leading to

REDOX reaction of the material (Wang et al., 2018). In addition,

PPy also shows self-charging performance, which can use O2 in

air to return to black oxidation state and restore the specific

capacity of the device (Yang et al., 2019). Some conjugated

polymers such as polymer poly (4,7- bis(5-(2,3-dihydrothieno

[3,4-b] [1,4] dioxin-5-yl)-3,4-bis(hexyloxy)thiophen-2-yl) benzo

[c] [1,2,5] thiadiazole) (poly (BT-Th-EDOT)) can also achieve

electrochromism. These polymers are oxidized and their colour

changes from green to blue when the voltage is changed (Ming

et al., 2020). This is due to π-π* transitions in conjugated blocks

and charge transfer between donor and acceptor units. Moreover,

when the voltage increases from -0.2 to 0.2 V, the original double

absorption peak becomes weaker and a new absorption peak is

formed, which corresponds to the emergence of new conjugated

polymer polaron. Due to the polaron to bipolaron

transformation, the intensity of the emerging absorption peak

decreases until the polymer completely turns blue at 1 V.

Similarly, viologens (1,1′-Disubstituted-4,4′-bipyridinium
salt) is also a common polymer in the field of

electrochromism. When the applied current or voltage

changes, a two-step reduction reaction (RV2+ + e−↔ RV+, RV+

+ e−↔RV) occurs, accompanied by obvious color change.

However, when it is applied to electrochemical energy storage

devices, it is difficult to show satisfactory electrochemical and

electrochromic performance. However, its properties can be

effectively improved by doping with other elements. As shown

in Figure 1C, poly (chalcogenoviologen)s is prepared by

copolymerization of sulfur element atoms with violet based

polymer. It starts to discharge from 2.6 V, and gradually

changes from bright red to dark purple with the continuous

decrease of voltage, which suggests that electrochromic materials

can act as intelligent monitoring of the state of storage device (Li

et al., 2019d). Polycyclic aromatic hydrocarbons (PAHs) are also

considered as organic electrochromism materials, which can

change from colorless state to colored state when charged. For
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example, the electrochromic devices made by Naomi et al. based

on PAHs possess the characteristics of reversible switching

between multiple colors, namely colorless (0 V), olive (+4 V)

and royal blue (-3.5 V), and can reversibly transform for more

than 100 times (Figure 1D). The reversible color switching is

attributed to the movement of electrons or holes under the

applied potential, which excites plasma plasmons and changes

the material properties accordingly. When the applied potential

is removed, the PAHs return to colorless state with excellent

reversibility (Stec et al., 2017). There are also some polymers that

can undergo multi-electron REDOX reactions when the applied

voltage changes, accompanied by visual color changes, such as

hexaza trinaphthalene polymers. When the voltage is applied, the

cation in the electrolyte will be adsorbed by the N and N lone

electron pairs in the polymer, forming new chemical bonds,

thereby resulting in the phenomenon of red shift in the

absorption spectrum of the polymer. A reverse and reversible

process occurs during discharging, which leads to the recovery of

the material to its original properties (Chen et al., 2021). The

electrochromic properties of polymers can be further stabilized

by combining multiple polymers to prepare new materials. For

example, Li et al. (Li et al., 2018a) combined the heteropolyacid

H6P2W18O62 with the water-immiscible amino acid 3-(2-

naphthyl)-L-alanine (NA) to prepare a reddish-brown NA/

H6P2W18O62 composite. The material was able to

spontaneously switch to a dark blue color and return to its

original reddish-brown color when oxidized by H2O2. This

reversible process is attributed to the reduction of W6+ in

H6P2W18O62 to W5+, corresponding to the color change from

reddish-brown to dark blue. H2O2 has strong oxidizing property

and can re-oxidize W5+ to W6+, which also indicates the excellent

self-powering property of NA/H6P2W18O62 composite

(Figure 1E). In addition, hydrogen-bonded organic skeletons

(HOFs) can also achieve reversible electrochromic effects.

Feng et al. prepared highly porous HOFs films with

electrochromic multifunctional function by electrophoretic

deposition, which can achieve reversible switching between

yellow and blue-violet, resulting in a transition between

75 and 25% light transmittance of smart glass originated from

the REDOX transformation of the pyrene part of the materials

ligands (Feng et al., 2020).

Electrochromic energy storage
devices

The occurrence of electrochromic materials is

accompanied by redox reactions and intercalation/

deintercalation of ions, and the state of energy storage

devices can be visually monitored according to the color

of the material. Therefore, electrochromic materials show

great potential and application prospects in energy

conversion devices (Li et al., 2018b; Liang et al., 2018).

Among different kinds of electrochromic materials,

FIGURE 1
(A) chemical structures of reduced and oxidized forms of PANI. (Xu et al., 2016) with permission from Springer. (B) Photos of PPy at different
voltages. (Wang et al., 2018) with permission from Royal Society of Chemistry. (C) Color change of poly (chalcogenoviologen)s when discharged
from 2.6 to 2.0 V. (Li et al., 2019d) with permission from Wiley-VCH. (D) The PAHs-based material enables reversible switching of multiple colors
when applied voltages of -3.5, 0, and +4 V. (Stec et al., 2017) with permission from American Chemical Society. (E) Photo of NA/H6P2W18O62-
based device electrochromic. (Li et al., 2018a) with permission from Wiley-VCH.
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organic electrochromic materials are widely used as

electrode materials for multifunctional energy storage

devices due to their excellent characteristics of easy

synthesis, low cost, stable performance, and large color

contrast (Zhu et al., 2018). The Zn-based and Al-based

energy storage devices can perform electrochemical energy

storage conversion in air, and most of the Zn-based and Al-

based electrolytes are colorless and do not cause color

interference (Ji et al., 2020; Liu et al., 2022). Hence,

organic electrochromic materials have attracted much

attention in Zn-based and Al-based energy storage devices

(Huang et al., 2015; Mo et al., 2019; Eh et al., 2021). More

importantly, when electrochromic materials are applied to

energy storage, their electrochromic and electrochemical

performance stability will be affected. During the

conversion of electrochemical energy storage, the current

and the composition of electrolyte will affect the

characteristics of the material itself. Therefore, we are

committed to developing a multifunctional energy storage

device with excellent electrochromic and electrochemical

performance stability at the same time.

Electrochromic battery

Wang et al. (Wang et al., 2018) used PPy as the cathode of

electrochromic Zinc ion battery (ECZIB) to construct Zn//PPy

electrochromic battery with polyvinyl alcohol-based gel

electrolyte and zinc anode electrode (Figure 2A). The

rechargeable battery has wearable features and short-circuit

warning capabilities. When the voltage of the wearable energy

storage device goes to be 0 V in the process of wearing, that is, in

the short-circuit state, the PPy electrode can respond quickly and

immediately by turning yellow to provide visual energy storage

FIGURE 2
(A) Schematic diagram of Zn//PPy battery with short-circuit warning function. (B) GCD curves of Zn//PPy battery at different current densities.
(Wang et al., 2018) with permission from Royal Society of Chemistry. (C) Flexible ECLIB based on Poly (chalcogenoviologen). (Li G. et al., 2019) with
permission fromWiley-VCH. (D) Schematic diagram of the fabrication of stretchable ECSCs. (Chen et al., 2014) with permission fromWiley-VCH. (E)
Schematic diagram of the electrochromic device driven by PSC. (F) The photos of PSC-powered electrochromic device under different light
intensities. (Ling et al., 2021) with permission from Springer.
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information. Moreover, the battery persists to show excellent

electrochemical performance in different bending states, and can

stably power the device. The transparent state of the device will

not be affected in the process of electrochromism. ECZIB delivers

a high capacity of 123 mAh g−1 at the current density of 1.9 A g−1,

and has rapid charging characteristics (Figure 2B). Thanks to its

excellent electrochromic performance and stable electrochemical

performance, polyaniline has been studied and modified by more

and more people, and great progress has been made. For

example, Wang et al. (Wang et al., 2020) used aniline and

aniline-2, 5-disulfonic acid co-polymerization to prepare self-

doped polyaniline electrode. The self-doped polyaniline electrode

material has superior electrochemical performance than PANI. It

exhibits a specific capacity of 180.5 mAh g−1 at a current density

of 0.5 A g−1 as well as good rate performance. Even when the

current density is increased to 10 A g−1, it still has 136 mAh g−1,

which is 75.3% of the capacity obtained at 0.5 A g−1. Moreover,

the capacity retention is as high as 80% after 1,000 cycles at

5 A g−1, indicating superior stability. The battery assembled with

self-doped polyaniline electrode owns remarkable energy storage

condition monitoring performance. It shows obvious color

transformation between light yellow, green and dark green in

the voltage range of 0.51.6 V. Yellow color manifests the poor

state of ECZIB, while dark green indicates full charge state. These

studies could promote the development of multifunctional

energy storage devices.

In addition to zinc ion batteries, electrochromic

aluminum ion batteries (ECAIB) also show great potential

in the field of multifunctional energy storage. However, when

the REDOX reaction occurs on the surface of Al, a

passivation layer is easily formed, which will hinder the

subsequent chemical reaction. Therefore, the cycle

stability of aluminum ion battery is very poor (Sun et al.,

2020a). Lv et al. (2021) assembled stream ECAIB using high

concentration organic aluminum salt (5 MAl(TOF)3 and 1 M

H3PO4) as mixed electrolyte, PANI as cathode and

aluminum as anode, which shows effective inhibition

effect on the formation of aluminum passivation. This

phenomenon is attributed to the formation of complex

ions between Al3+, H2PO4
−, TOF− in the electrolyte, which

accelerates the reaction kinetics and improves the cyclic

stability and rate performance of ECAIB. The ECAIB still

gives a specific capacity of 51 mAh g−1 after 3,850 cycles at

2 A g−1, corresponding to a capacity retention of 58%.

Moreover, the ECAIB has excellent rate performance, with

specific capacity of 167 mAh g−1 and 61 mAh g−1 at 0.5 A g−1

and 2.5 A g−1 respectively, and with specific capacity of

225 mAh g−1 when the current is restored to 0.5 A g−1

again due to the activation process of the material.

Notably, the ECAIB exhibits a high coloring efficiency of

84 cm2 C−1 at 630 nm and has an open circuit voltage of 1.2 V

in the coloring state, which can power an electronic clock. It

will change to transparent state when discharging to 0.6 V or

short circuit, reflecting the great potential and application

prospect of multi-functional energy storage devices.

In addition to polyvalent ion batteries, monovalent lithium

ion battery electrode materials can also achieve electrochromism.

Li et al. (2019d) constructed electrochromic lithium ion battery

(ECLIB) using poly (chalcogenoviologen)s doped with S, Se and

other elements as anode (Figure 2C). ECLIB shows a specific

capacity of 799 mAh g−1 at 0.05 A g−1, and it transforms from red

to purple during discharge. Hence, it also owns the function of

monitoring the state of battery storage. Chen et al. (2021) used

hexaazatrinaphthylene-based polymer as cathode for ECLIB. It

exhibits stable electrochromic properties during charge and

discharge, with the ability to switch from orange to pink and

then to green. Surface area of the cathode material is increased

due to the polymer’s multi-pore structure, which not only

achieves a high voltage discharge platform of 3.75 V, but also

enables a high discharge specific capacity of 168 mAh g−1 and

stable rate performance. It is noteworthy that the traditional

electrochromic inorganic and organic materials can be

copolymerized into composite materials, which can achieve

stable electrochromic performance and excellent

electrochemical properties concurrently. For example, Zhang

et al. (2018) used the composite material composed of WO3

and PANI as cathode for ECLIB. WO3 and PANI could realize

color complementarity during charging and discharging, thus

achieving diversified color changes (reversible switching between

purple, green, yellow, gray and blue) and stable cyclic

discoloration over 1,200 times. The composite electrode

material also has a fast response speed and can switch

between coloring and bleaching in less than 2 s.

Electrochromic supercapacitors

Compared with battery devices, supercapacitors possess

(Chen et al., 2014; Cai et al., 2015) the significant advantages

of short charging time and long cycle time (Guo et al., 2019; Kim

et al., 2020c). Integrating electrochromic functions into

supercapacitor energy storage devices can also realize the

intelligent characteristics of visual monitoring of energy

storage status while converting electrical energy (Sun et al.,

2020b; Liu et al., 2021). As shown in Figure 2D, Chen et al.

(Chen et al., 2014) used PANI as the cathode for stretchable

electrochromic supercapacitors (ECSCs), which was able to

deliver a specific capacitance of 308.4 F g−1, and excellent

electrochemical performance is maintained even after being

stretched or bent for 1,000 times. Graphene oxide (GO) and

PANI can be combined into composite nanoflakes as cathode for

ECSC, which exhibits excellent electrochromic and stable

supercapacitor performance (Zhang et al., 2019c). Compared

with PANI, GO/PANI composite material shows more agile

switching speed and greater coloring efficiency. Meanwhile, it

exhibits a surface capacitance of 137 mF cm−2, which is much
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higher than that of pure PANI of 36 mF cm−2. Furthermore, the

GO/PANI-based ECSCs also show a high areal capacitance of

75 mF cm−2 at 0.075 mA cm−2, which is much higher than the

40 mF cm−2 of pure PANI. This significant improvement in

performance is attributed to the nanostructure of the

composite, which not only enlarges the reaction area for

charge transfer and increases the redox reaction sites, but also

facilitates the diffusion of ions and improves the utilization of

active species (Zhou et al., 2016; Yun et al., 2017; Zhong et al.,

2017; Kim et al., 2022). ECSCs appear to be dark blue after

charging to 0.8 V, and gradually turn to be light yellow during

discharge. The color change is reversible during charge/

discharge. Therefore, the color of ECSCs can be also used as a

judgment indicator for the storage state of capacitor capacitance.

Electrochromic solar cells devices

In addition to monitoring the energy storage state of energy

devices, electrochromicmaterials also have the ability tomonitor the

intensity of sunlight, and change color or transmittance at the same

time (Ahn et al., 2007; Ling et al., 2022). This is because

electrochromic devices can make visual changes with the change

of applied voltage or current, and solar cells can change the output

voltage of the device according to the light intensity, so the

combination of thees two devices is used to control indoor

temperature smart glass design (Balan et al., 2010; Qiang et al.,

2013; Jena andChoudhury., 2022). As shown in Figure 2E, Ling et al.

(Ling et al., 2021) combined viologens-based electrochromic device

and perovskite solar cell (PSC) into a multifunctional device. A

voltage is applied to the electrochromic device by the solar cell, so as

to realize the multi-function of regulating the transmittance or color

of the electrochromic device by altering the intensity of sunlight, and

realize the dynamic regulation of the indoor temperature. When the

sunlight intensity is high, the solar cell has a high output voltage, and

the electrochromic smart glass shows a strong color, which can

effectively isolate the penetration of sunlight and reduce the indoor

temperature. When the sunlight intensity is weakened, the output

voltage of the solar cell decreases, the color of the smart glass begins

to fade, the sunlight can enter the room and raise the room

temperature. While in the dark condition, the output voltage of

the solar cell is not enough to change the color of the smart window,

that is, it returns to a transparent state, which realizes the dynamic

and intelligent adjustment of the room temperature (Figure 2F).

Conclusion and outlook

In the era of rapid development of energy storage devices,

integrating electrochromic multifunction into energy storage

devices is a very promising design strategy. Organic materials

have attracted much attention due to their advantages of obvious

color difference at different states of charge, fast response speed,

and easy preparation. The type andmatching scheme of electrode

materials and electrolytes have a great influence on the

electrochemical performance of the device, as well as the

stability and response speed of electrochromic. Therefore, the

correct selection of materials that meet the application conditions

is very important to stabilize the performance of the device. First,

selecting electrode materials and electrolytes with high

adaptability can not only stabilize or improve electrochemical

performance, but also enable electrochromic properties with fast

response, stable discoloration, and high color contrast when

applied to energy storage devices. In general, most inorganic

materials are better than organic materials in terms of cycle

stability, so combining organic electrochromic materials and

inorganic electrochromic materials to prepare composite

materials, which can achieve excellent electrochromic and

electrochemical performance while enriching color changes.

Besides, Nano-sized materials can effectively increase the

reaction area of the materials, increase the REDOX reaction

sites, promote the diffusion of ions, and improve the utilization

rate of active substances, thereby effectively improving the overall

performance of the system. Equally importantly, we need enrich

the application scope and application scenarios of organic

electrochromic materials, and realize the multi-functional

application of organic electrochromic materials.
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