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ABSTRACT

RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural
motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction
patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate
identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexity of
these motifs. In this work, we present RNAMotifScanX, a motif search tool based on a base-interaction graph alignment
algorithm. This novel algorithm enables automatic identification of both partially and fully matched motif instances.
RNAMotifScanX considers noncanonical base-pairing interactions, base-stacking interactions, and sequence conservation of
the motifs, which leads to significantly improved sensitivity and specificity as compared with other state-of-the-art search
tools. RNAMotifScanX also adopts a carefully designed branch-and-bound technique, which enables ultra-fast search of large
kink-turn motifs against a 23S rRNA. The software package RNAMotifScanX is implemented using GNU C++, and is freely
available from http://genome.ucf.edu/RNAMotifScanX.
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INTRODUCTION

Noncoding RNAs (ncRNAs) are attracting recent research fo-
cus with their amazing and versatile cellular functions (Eddy
2001; Storz 2002; Amaral et al. 2011; Wan et al. 2011; Rinn
and Chang 2012), and many of them have significantly en-
riched our understanding of the molecular mechanisms.
In many cases, the ncRNA functions are strongly tied to their
specific three-dimensional (3D) structures, making the anal-
ysis of their 3D structure a key step in elucidating their
functions and associating them with their molecular basis.
Decades of analysis of the 3D structures point out that
many of their subcomponents are recurrent. These subcom-
ponents can be found in different locations or even different
RNA structures. The so-called RNA structural motifs, or the
“building blocks” of the RNA architecture (Moore 1999;
Hendrix et al. 2005; Leontis et al. 2006), are highly modulated
components with conserved 3D geometries and molecular
functions. These features make them critically important in
analyzing RNA 3D structures in a well-organized manner.
In this sense, an RNA 3D structure can be considered as a
collection of functional motifs, which are well organized

and positioned by the scaffolding A-form helices (Reinharz
et al. 2012).
However, it remains challenging to automatically identify

all known motif instances within a resolved RNA structure.
Take PDB (Protein Data Bank) 1S72 (Klein et al. 2004)
for example, which was resolved with a high resolution of
2.4 Å and has been released for a decade. Thirteen kink-
turn motif instances have been identified from the 23S
rRNA (chain “0”) subunit of this structure (see Table 1 for
a list of known kink-turn instances in the subunit), either
because they are predicted by at least one of the existing motif
search tools or because they are manually inspected and con-
firmed. However, a sole motif search tool with the best per-
formance can only identify seven out of the 13 instances
perfectly (ranked on the top without including any unrelated
instances). Therefore, a comprehensive motif search pipeline
usually integrates the results of many state-of-the-art search
tools, followed by a manual inspection/confirmation of the
search results. Such a pipeline is tedious and time consuming,
especially since the manual inspection step is infeasible for
large-scale screening of the RNA structures. In this case, de-
veloping a new automated RNA structural motif search tool
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with higher accuracy and sensitivity is of crucial importance
to annotate the fast-accumulating RNA structure repertoire.

Many of the existing motif search tools aim at detecting
structural components with a similar geometry (i.e., the root
mean square deviation) or backbone trajectory with the query
motif. Examples of the 3D geometry-based tools include
NASSAM (Harrison et al. 2003), PRIMOS (Duarte et al.
2003), ARTS (Dror et al. 2005), DIAL (Ferrè et al. 2007),
FR3D (Sarver et al. 2008), and the shape histogram method
(Apostolico et al. 2009) etc. Other tools try to find conserved
base-interaction patterns between the query and motif, such
as MC-Search (Hoffmann et al. 2003), FR3D symbolic search
(Sarver et al. 2008), and RNAMotifScan (Zhong et al. 2010)
etc. Based on the core alignment modules of these tools, there
also exist clustering pipelines for de novomotif discovery, e.g.,
COMPADRES (Wadley and Pyle 2004), LENCS (Djelloul
and Denise 2008), and RNAMSC (Zhong and Zhang 2012).

Despite the success of these tools, how to model the vari-
ations of the RNA structural motifs still remains as a key is-
sue. The variations can happen at either the residue level
(nucleotide insertion/deletion) or at the base-interaction lev-
el (nonisosteric mutation of base pairs). The reason is either
evolutionary adaptation, or simply due to inadequate resolu-
tion of the RNA structure. For example, we discovered that
the loop region of the kink-turn motif is highly variable,
which may contain variation as small as a single nucleotide
deletion (Zhong et al. 2010), to variation as large as a 31-nt
insertion (Zhong and Zhang 2012). Existing search tools try
to account for these variations with different heuristic ap-
proaches, but none of them solve the problem completely and
optimally. For example, a geometry-based method FR3D
(Sarver et al. 2008) requires the user to input the conserved
residues when constructing the query, and only compute

the geometry discrepancy on these conserved residues. Vari-
ations on the nonconserved residues are thus overlooked.
The base-interaction-based method LENCS (Djelloul and
Denise 2008) adopts a similar idea; but it automatically de-
fines the conserved residues as those involved in (or directly
adjacent to) the noncanonical interactions. RNAMotifScan
(Zhong et al. 2010), another base-interaction-based method,
aims at considering all possible variations (residue and base
pair insertion/deletion/substitution) with a secondary struc-
ture alignment style algorithm (Bafna et al. 2006). However,
it uses a heuristic algorithm to handle crossing base inter-
actions due to the intrinsic limitation of its underlying align-
ment algorithm (Jiang et al. 2002). Incomplete consideration
of all types of variations is one of the major reasons for the
low sensitivity of the existing RNA structural motif search
tools.
To solve this issue we introduce RNAMotifScanX, an accu-

rate and efficient RNA structural motif search tool that opti-
mally handles all types of variations. Variations found in
the RNA structural motifs usually disrupt the complete
base-interaction pattern of the motifs, and lead to “partially”
conserved motif instances. To account for these partial mo-
tifs, RNAMotifScanX is designed as a “local” motif search
tool that enables the identification of partially matched mo-
tifs in addition to the perfectly conserved ones. Meanwhile,
to ensure the accuracy of the identified partial motifs,
RNAMotifScanX performs extensive simulation on align-
ment-score distribution with respect to the query model, and
computes the P-values of the partial matches to assess their
statistical significance. Importantly, the search of the partial
motifs is fully automatic, and it does not require a manual re-
finement of the query model based on a priori knowledge re-
garding variations that may present in the motif family.

TABLE 1. The top-ranked RNAMotifScanX results for searching the kink-turn motif against PDB 1S72, chain 0 (23S rRNA)

Ranking Location Score P-value RMS FR LE SH Manual

1 77–82/92–100 151.8 0.006 ∗ ∗ ∗ ∗ ∗

2 936–941/1025–1034 131.0 0.009 ∗ ∗ ∗ ∗ ∗

3 1211–1217/1146–1156 128.9 0.009 ∗ ∗ ∗ ∗

4 1338–1343/1311–1319 125.0 0.010 ∗ ∗ ∗ ∗

5 2911–2914/2667–2669/2820–2829 117.8 0.012 ∗ ∗

6 23–25/639/518–520 99.6 0.018 (∗) ∗

7 1586–1593/1601–1609 93.4 0.022 ∗ (∗) ∗ ∗

8 244–250/259–267 88.1 0.026 ∗ (∗) ∗ ∗

9 2882–2883/1805–1806/2874–2875 76.0 0.039 ∗ ∗

10 795–798/815–818 60.2 0.086 ∗

11 2903–2906/2845–2855 55.7 0.114 ∗ (∗) ∗

12 1068–1075/1084–1088/1045–1046 54.1 0.128 ∗

13 111–113/148–149/42–50 52.3 0.147 ∗ ∗

14 264–274/377/239–243 50.5 0.169 (∗) ∗

15 2256–2259/2133/2242–2245 48.7 0.198 ∗

16 1459/862/1484 47.2 0.228 (∗) ∗

The fifth to the ninth columns indicate whether the instance is identified by the corresponding method. An asterisk indicates yes, and an aster-
isk in parenthesis indicates that the instance is ranked after unrelated motifs. (RMS) RNAMotifScan, (FR) FR3D, (LE) LENCS, (SH) the shape his-
togram method. Manual inspection is performed by the authors based on the best of their knowledge.
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These new features of RNAMotifScanX are rendered by the
novel graph alignment algorithm developed in this work.
Algorithmically, an RNA structural motif is modeled as a
graph, where the vertices represent the residues and the edges
represent base interactions between the corresponding resi-
dues (called an “interaction graph”). The proposed graph
alignment algorithm aligns the two interaction graphs (one
for the query and one for the target) and identifies all statisti-
cally significant matches (either partial or complete) between
these graphs. Along with such an algorithmic improve-
ment, we further introduce base-stacking information into
the alignment, which is ignored by most of the motif search
algorithms but largely affects the 3D structure (folding) of the
structural motif. The resulting tool RNAMotifScanX is both
computationally efficient, and capable of searching motif in-
stances with significantly improved accuracy and sensitivity.
We benchmarked RNAMotifScanX with four state-of-the-

art motif search tools, including RNAMotifScan (Zhong et al.
2010), FR3D (Sarver et al. 2008), LENCS (Djelloul andDenise
2008), and the shape histogram method (Apostolico et al.
2009). We used five well-studied motif families (kink-turn,
C-loop, sarcin–ricin, reverse kink-turn, and the bacterial E-
loop motif) with their complete sets of residues and interac-
tions. The benchmarking results show that RNAMotifScanX
achieves significantly improved overall sensitivity and specif-
icity. We also identified several potential novel kink-turn re-
lated instances from the search results. We further observed
that RNAMotifScanX can achieve the above performance
with extremely fast computation time and low memory con-
sumption. In summary, we anticipate that the accurate, effi-
cient, and lightweight motif search tool RNAMotifScanX will
significantly promote the study of RNA 3D structures and
lead to novel discoveries within the field.

RESULTS

Notations and basic definitions

Let A and B be the two motif instances that are being aligned
(each can be manually defined or automatically extracted
from a large RNA structure). Denote the sequence of A as
SA, and its length as |SA|. Denote the ith character of SA as
SA[i], and a substring that begins with SA[i] and ends with
SA[ j] as SA[i, j], inclusively. Let pA(i, j) denote a base pair
formed between SA[i] and SA[ j]. Define a base-stacking in-
teraction tA(i, j) accordingly. Let PA = {pA} be the set of all
base pairs in A, and let |PA| denote its cardinality. Define
TA and |TA| accordingly for base-stacking interactions.
The objective of the RNAMotifScanX algorithm is to com-

pute the optimal “local alignment” between A and B. A local
alignmentM is defined by two augmented sequencesMA and
MB that are constructed by inserting gaps into substrings
SA[k, l ] and SB[k′, l′], respectively. Both MA and MB have
the same length (however, it is not necessarily true that
SA[k, l ] and SB[k′, l′] have the same length) and characters

within are aligned with one-to-one correspondence. Denote
the original index for MA[i] in SA as iM,A, and further sim-
plify it as iA when M is clear in the context. At least one of
MA[i] and MB[i] corresponds to a nongap character for
any valid alignment, where 1 ≤ i ≤ |MA|. To ensure the
completeness of the identified motifs, it is further required
that the output does not contain any dangling nucleotides.
Formally speaking, for the aligned substring SA[k, l ], it is
ensured that pA(k, x)∈ PA and pA(y, l )∈ PA for some k≤
x, y≤ l, and a similar constraint applies to SB[k′, l′] as well.
The goodness of an alignment M is evaluated by its cor-

responding “alignment score” F(M). With the consideration
of base-pairing, base-stacking, and sequence conservation,
define F(M) as follows:

F(M) =
∑

i,j

{wP · FP(i, j) + wT · FT (i, j)} +
∑

i

{wN · FN (i)}

Here, FP, FT, and FN are functions to compute the matching
scores for base-pairing interactions, base-stacking interac-
tions, and individual nucleotides in the given alignment, re-
spectively. And wP, wT, wN represent weights associated with
each of these categories, respectively. FP(i, j) computes the
score of the base pair matching at the alignment columns i
and j, i.e., between the two potential base pairs pA(iA, jA)
and pB(iB, jB). If pA(iA, jA) � PA and pB(iB, jB) � PB then
FP(i, j) is assigned a score of 0 to indicate that no base pair
exists in either of the structures. For the second case, if
pA(iA, jA) � PA and pB(iB, jB) [ PB, it is taken as a “base
pair insertion” case and corresponding penalty score is ap-
plied (“base pair deletion” defined similarly). Finally, if
pA(iA, jA) [ PA and pB(iB, jB) [ PB, it is taken as a “base
pair matching” or “substitution” case; the corresponding
matching score is retrieved from a two-dimensional look-
up table (defined based on isostericity [Leontis et al. 2002b;
Stombaugh et al. 2009]; see Materials and Methods for de-
tails). Similarly, FT(i, j) computes the score for the base-
stacking matching at the alignment columns i and j, i.e., be-
tween the two potential base-stacking interactions tA(iA, jA)
and tB(iB, jB); and FN(i) computes the score of the nucleotide
matching at the alignment column i, i.e., between the two nu-
cleotides SA[iA] and SB[iB].

The RNAMotifScanX algorithm

The objective of the RNAMotifScanX algorithm is to com-
pute the alignment M that maximizes the alignment score
F(M) under the defined object function. Recall that RNA
structural motif is represented as an interaction graph; thus
optimally aligning RNA structural motifs is equivalent to op-
timally aligning the interaction graphs. It is proven that find-
ing the optimal alignment between two interaction graphs
(which allow arbitrary base interaction crossing patterns) re-
quires exponential time (Jiang et al. 2002). Therefore the
challenge is to find an efficient way to reduce the search space
and maintain a reasonable running time.
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RNAMotifScanX is developed based on a base-interaction
“guided” approach; base-interaction matchings will partition
the alignment into a set of loop regions, whose similarities
can be computed efficiently as pure sequence alignments
(FN) using a dynamic programming algorithm (Needleman
and Wunsch 1970). For example, if the alignment columns
i and j correspond to a base pair matching, the sequence
MA will be partitioned into three subsequences, i.e., MA[1,
i− 1], MA[i + 1, j − 1], and finally MA[ j+ 1, |MA|]. Such a
partition applies toMB as well. What follows is to sum the se-
quence alignment scores of these partitions, i.e.,

∑i−1

k=1

{FN (k)} +
∑j−1

k=i+1

{FN (k)} +
∑|MA|

k=j+1

{FN (k)},

and add it to FP(i, j) and compute the final alignment score.
(Computation of the nucleotide matching between SA[iA],
SB[iB] and between SA[ jA], SB[ jB] is immediate and there-
fore eliminated from the formula for simplicity. The associ-
ated weights are eliminated as well for the same reason.)
This example shows how the alignment score is computed
when only one base pair matching is considered. In real cases,
the RNAMotifScanX algorithm enumerates all combinations
of possible base-interactionmatchings, and computes all cor-
responding alignment scores to guarantee the optimality of
the solutions.

The RNAMotifScanX algorithm is outlined in Figure 1. A
key observation for efficient base-interaction matching enu-
meration is that not all matchings are compatible (based
on our definition of a valid alignment), and therefore the in-
compatible ones can be avoided to speed up the algorithm. A
simple example of two incompatible matchings is when a
base-triple (treated as two individual base pairs that share
one common residue) is aligned with two base pairs (such

that the one-to-one correspondence rule is violated). To
detect such incompatibilities, first concatenate individual
strands in the motif instance if necessary (all possible concat-
enation orders are enumerated to ensure optimality, see
Zhong et al. 2010 for more details). Label each nucleotide in
the concatenated motif with an order from its 5′ end to 3′

end. Base pairs inPA can then be partially orderedwith the fol-
lowing relationship: pA(i, j) is ordered before pA(k, l ) if i < k,
or i = k and j < l (see Fig. 1, “order base interactions”). Based
on such an ordering, six relation groups are defined to detect
incompatibility (see Fig. 2). The base pair matching formed
between pA(i, j) and pB(i′, j′) is consistent with the one formed
between pA(k, l ) and pB(k′, l′), if and only if the relation group
in which pA(i, j) and pA(k, l ) are classified is equivalent to the
relation group in which pB(i′, j′) and pB(k′, l′) are classified.
With the above definition, all base-interaction matchings

can be summarized into a “compatibility graph” (see Fig. 1).
Each vertex in the compatibility graph corresponds to a
base-interaction matching, and each edge indicates that the
corresponding base-interaction matchings are compatible.
Because base-pairing interaction is not allowed to match
with base-stacking interaction, the resulting size of the graph
is thus |PA|∗|PB| + |TA|∗|TB|. Note the distinction between
the interaction graph and the compatibility graph; the sole
compatibility graph is summarized from two interaction
graphs. For any valid alignment, any pair of base-interaction
matchings must be compatible with each other, which im-
plies that the corresponding vertices form a “clique”
(completely connected subgraph) in the compatibility graph.
In this case, enumerating all base-interaction matching is
equivalent to finding all cliques in the compatibility graph.
(The high-level objective of the problem is similar to R3D
Align [Rahrig et al. 2010], but it is solved with a new algo-
rithm that guarantees the optimal solution.)
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FIGURE 1. The RNAMotifScanX’s algorithmic framework demonstrated by aligning two artificial motif instances. The output of the algorithm is the
optimal alignment between the two input motifs in terms of a weighted combination of base-pairing, base-stacking, and primary sequence similarity.
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Finding all possible cliques in a graph can be solved by us-
ing the Bron and Kerbosch algorithm (Bron and Kerbosch
1973). Although many more details and proofs can be found
in the original paper, the major idea is reintroduced here for
completeness. The algorithm maintains two vertex sets,
namelyU and V. The first setU contains all vertices that have
been recruited as a part of the current clique, and V contains
all candidate vertices that can potentially expand the current
clique. Iteratively, each vertex in V is used to expand U. Say
v∈ V is picked for the iteration such that V′ = V− {v} and
U′ =U + {v}. To ensure that V′ still holds valid candidates
to expandU′, all v′ ∈ V′ that are not connected with v are sub-
sequently removed from the set V′. Clique expansion pro-
ceeds with the updated sets U′ and V′. Iteration terminates
when V′ =Ø. Alignment score is evaluated for each valid ver-
tex set U. In this step, all possible cliques are implicitly tra-
versed (see Fig. 1, “all possible cliques with different sizes”).
Finally, a branch-and-bound technique is further integrat-

ed into the algorithm to detect other early termination crite-
ria. Recall that the cliques in the compatibility graph are
expanded iteratively. Intuitively, if the current matching
corresponds to a very low alignment score and future expan-
sions are unlikely to make the amendment, the algorithm
should terminate immediately. Define a “lower bound” to
be the score that can be achieved by an existing set of base-
interaction matchings, and an “upper bound” to be the
score that is computed based on an optimistic forecast of
the future expansion. The lower bound
can be computed by simply taking the
best alignment score seen so far. When
computing the upper bound, note that
if there are k vertices in V to be recruited
into U, there should be at least k(k− 1)/2
edges formed between the vertices in V.
Therefore, through counting the number
of edges in V, the maximum number of
possible matchings can be determined.
The upper bound can then be computed
accordingly. The algorithm terminates
when the upper bound drops below the
lower bound. After traversing all possible

cliques, the recorded best solution (Fig. 1, “the optimal clique
with the best score”) will be used to construct the alignment,
which outputs conserved base interactions and primary se-
quences between the input motifs.

Search results of the kink-turn motif family

Here RNAMotifScanX was used to search the kink-turn mo-
tif (Klein et al. 2001) against the Haloarcula marismortui 23S
rRNA (PDB ID: 1S72, chain “0”). The structure was chosen
for benchmark purpose because it has been well studied
and many of its true motif instances are known. The kink-
turn motif is an asymmetric internal loop that induces a
sharp turn of its two connecting helices, with its longer bulge
showing a kink at the turning point. The search pattern of the
kink-turn motif is shown in Figure 3, which is a consensus
structure summarized by Lescoute et al. (2005). The default
set of RNAMotifScanX parameters were used to conduct
the search (more details in Materials and Methods). The re-
sults of the other tools were used “as is” from the correspond-
ing publications and summarized in Table 1.
In Table 1, motif instances were ranked based on the align-

ment scores computed by RNAMotifScanX. The last column
of the table indicates manual inspection results for the motif
instances; all top predictions made by RNAMotifScanX
are kink-turn related motifs. The majority (13/16, 81%)
of them are consistent with predictions from other tools.
The other three instances that were uniquely identified
by RNAMotifScanX (i.e., the tenth, twelfth, and the fifteenth
instances) correspond to potentially novel motif in-
stances (detailed in the following paragraphs). In compari-
son, RNAMotifScan identified seven, FR3D identified 11,
LENCS identified two (note that it is a de novo clustering ap-
proach that aims for optimized specificity but not sensitivity),
and the shape histogram identified six true instances. All ex-
cept FR3D show significantly lower sensitivity. FR3D, on the
other hand, includes unrelated predictions in its top list. For
example, the eighth instance in the FR3D top list, i.e., 952–
955/1012–1015, does not exhibit a sharp turn between two
connecting helices, and in fact is annotated as part of a sar-
cin–ricin motif (see Table 2). In this case, RNAMotifScanX

juxtaposing

enclosing

juxtaposing with
shared nucleotide

crossing

enclosing with shared
nucleotide (left)

enclosing with shared
nucleotide (right)

FIGURE 2. The six relation groups defined in RNAMotifScanX for
base-interaction matching compatibility evaluation. The horizontal
lines indicate the RNA primary sequences and the arcs represent the cor-
responding base interactions. Solid arc-labeled interactions are partially
ordered before the broken arc-labeled interactions.
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shows higher sensitivity and specificity than the other search
tools for the kink-turn search.

The sixth and ninth instances (Fig. 4A,B) show high simi-
larity to the tenth and fifteenth instances (Fig. 4C,D) in terms
of both geometry and base-interaction patterns. Themost sig-
nificant feature shared among these motif instances is the
sharp turn between their connecting helices (as indicated
by the arrows), a characteristic feature for the kink-turnmotif.
However, unlike a regular kink-turnmotif, all instances lack a
“kink” at the connecting region. Due to the lack of the “kink,”
the sixth and ninth instances were considered (by the FR3D
authors) as “kink-turn related” but not canonical kink-turn
motifs (Sarver et al. 2008). Using RNAMotifScanX, such dis-
covery can be reaffirmed by bringing in additional conserva-
tion of their base-interaction patterns. The tenth and fifteenth
instances were newly discovered by RNAMotifScanX but not
included by FR3D. The identification of conserved base-in-
teraction patterns (see Fig. 4, lower panel) from geometrically
divergent homologous motif instances demonstrates the
power of base interactions in modeling and searching RNA
structural motifs. This class of motif instances, which shows

sharp turns but no kink, should be further studiedwith exper-
imental evidence to confirm their relationship with the kink-
turn motif family.
The twelfth instance predicted by RNAMotifScanX (Fig. 5)

represents a potential new member of the kink-turn motif
family, as supported by three key observations. First, the C
helix (Fig. 5A, blue) contains two canonical G–C base pairs
and the NC helix (Fig. 5A, green) contains two G–A sheared
base pairs, both of which are consistent with the canonical
kink-turn motif. Second, this motif instance is also stabilized
through the cross-strand A–A stacking in the NC helix and
the A-minor interaction in the C helix. Third, the kink region
is formed by two bulged nucleotides (A1070 and G1071)
(Fig. 5A, red). The superimposition of this motif instance,
a typical kink-turn, and a typical reverse kink-turn motif
highlights the turning direction of this motif (Fig. 5B). The
bend induced by this motif is even sharper than those for
the other two motifs, leaving an ∼180° angle between the
two adjacent helices. Finally, the motif instance is interacting
with two ribosomal proteins L30P (1S72, chain W) and L32E
(1S72, chain Y) through majority of its nucleotides in the NC

TABLE 2. The top-ranked RNAMotifScanX results for searching the C-loop motif against PDB 1S72, chain 0 (23S rRNA)

Ranking Location Score P-value RMS FR LE SH Manual

1 1004–1009/957–964 81.5 0.014 (∗) – ∗ – ∗

2 1436–1440/1424–1430 68.0 0.024 ∗ – – ∗

3 2760–2764/2716–2722 63.4 0.030 ∗ – ∗ – ∗

Dashes indicate that the corresponding methods are not used to search the motif.
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helix (Fig. 5C), which is also consistent with kink-turn’s
binding potential that is granted by the flattened minor
groove of its NC helix (Klein et al. 2001).
Finally, one motif instance wasmissed by RNAMotifScanX

due to its higher degree of variation. The instance was iden-
tified by FR3D search, but it was ranked last (twentieth) at the
FR3D prediction list. None of the annotation tools used in
this study (i.e., MC-Annotate and RANVIEW) identifies
any conserved base pairs from this motif instance. The motif
instance is not included in RNAMotifScanX’s top list.

Search results of the C-loop, sarcin–ricin, reverse
kink-turn and the bacterial E-loop motif families

In addition to the kink-turn motif family, four other major
RNA structural motif families, i.e., the C-loop, sarcin–ricin,
reverse kink-turn, and bacterial E-loop motif families, were

also searched using RNAMotifScanX (pattern summarized
in Fig. 3). The detailed search results are listed in Table
2 (C-loop), Table 3 (sarcin–ricin), Table 4 (reverse
kink-turn), and Table 5 (bacterial E-loop). For all searches,
RNAMotifScanX identified the majority of true hits and
ranked them in its top lists. While the kink-turn search has
led to the discovery ofmany potentially new kink-turn related
motif instances, the search of these motif families has shown
significant performance improvements. These improvements
demonstrate advantages of the new RNAMotifScanX algo-
rithmand the incorporation of the base-stacking information.
Table 2 shows the search results for the C-loop motif.

RNAMotifScanX improves the prediction of RNAMotifScan
by ranking all true instances on the very top of the prediction
list. The first instance shown in Table 2 is a true C-loop in-
stance, but was ranked below an unrelated motif instance by
RNAMotifScan (indicated by the parenthesized asterisk in
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Table 2). The first instance and the unrelated instance are
shown in Figure 6A and B, respectively. RNAMotifScanX
identified a conserved crossing noncanonical base-pairing in-
teraction (A1005–C1008) and a conserved base-stacking in-
teraction (C966–C1008) from the motif instance shown in
Figure 6A, but it did not identify their counterparts in the in-
stance shown in Figure 6B. In this case, RNAMotifScanX is ca-
pable of correcting the ranking of these two motif instances.
The identification of the conserved crossing base pair is due
to the improvement of the novel graph alignment algorithm,
which permits any type of crossing base interactions to be op-
timally aligned. Identification of the conserved base-stacking
interaction is due to our consideration of such information in
the new tool RNAMotifScanX. These newly identified inter-
actions by RNAMotifScanX are crucial to form the C-loop
core structure; in the unrelated instance shown in Figure 6B
that lacks such interactions, the corresponding nucleotides
(A1942 and G1944) are distant from each other, thus fail to
extrude the unpaired nucleotide (C1943) between them.
RNAMotifScanX also shows higher sensitivity than LENCS,
as LENCS is a de novo clustering tool that favors higher
specificity.

The search results of the sarcin–ricin motif family are
shown in Table 3. RNAMotifScanX perfectly identified all
11 known sarcin–ricin motif instances. FR3D only identified
seven out of the 11 known instances by using the same 9-nt
sarcin–ricin search model shown in Figure 3. The FR3D au-

thors further showed that based on existing knowledge re-
garding the conserved nucleotides in the sarcin–ricin motif,
they can refine the 9-nt model into a smaller 5-nt model,
and subsequently identify all 11 known instances. Similarly,
the shape histogram identified eight out of 11 known instanc-
es using a 7-nt search model that contains the complete
AUGA bulged strand of the sarcin–ricin motif (although
the query is termed “E-loop motif” by the authors of the
shape histogram method [Apostolico et al. 2009]). The re-
sults indicate that both FR3D and the shape histogrammeth-
od focus on searching perfectly matched motif instances, and
may require careful preparation of the query model in order
to reach the optimal performances. RNAMotifScanX, on the
other hand, can perfectly identify all of the 11 known instanc-
es simply by using the complete 9-nt search model. Such
search results were generated fully automatically and required
no a priori knowledge. This advantage of RNAMotifScanX is
due to the carefully designed graph alignment algorithm that
can automatically detect all high-scoring partial matches.
RNAMotifScanX improves the RNAMotifScan search re-

sults for the sarcin–ricin motif family by correcting rankings
of the true instances (see the seventh and the ninth instances
in Table 3). More importantly, RNAMotifScanX identified
two more true instances (see the tenth and the eleventh in-
stances in Table 3). Take the tenth instance (shown in Fig.
7A) for example, it is missed by RNAMotifScan because it
has a lower score than several unrelated motif instances

TABLE 3. The top-ranked RNAMotifScanX results for searching the sarcin–ricin motif against PDB 1S72, chain 0 (23S rRNA)

Ranking Location Score P-value RMS FR LE SHa Manual

1 1368–1372/2053–2056 161.2 0.004 ∗ ∗ ∗ ∗ ∗

2 2690–2694/2701–2704 160.4 0.005 ∗ ∗ ∗ ∗ ∗

3 211–215/225–228 160.4 0.005 ∗ ∗ ∗ ∗ ∗

4 173–177/159–162 138.8 0.006 ∗ ∗ ∗ ∗

5 461–466/475–478 130.4 0.008 ∗ ∗ ∗ ∗ ∗

6 380–383/406–408 123.0 0.008 ∗ ∗ ∗ ∗

7 585–590/568–572 114.2 0.010 (∗) ∗ ∗ ∗

8 951–955/1012–1016 87.2 0.021 ∗ ∗ ∗

9 355–360/292–296 86.8 0.021 (∗) ∗ ∗ ∗

10 1971–1973/2009–2010 84.4 0.022 ∗

11 1292–1294/911–912 84.0 0.023 ∗ ∗

aThe E-loop search results of the shape histogram method are used here.

TABLE 4. The top-ranked RNAMotifScanX results for searching the reverse kink-turn motif against PDB 1S72, chain 0 (23S rRNA)

Ranking Location Score P-value RMS FR LE SH Manual

1 1531–1533/1658–1660 62.4 0.016 ∗ – ∗ – ∗

2 1622–1624/1572–1574 62.0 0.016 – ∗ – ∗

3 1662–1664/1527–1529 61.6 0.017 ∗ – ∗ – ∗

4 1228–1230/1132–1134 61.2 0.017 – ∗ – ∗

5 1774–1776/1767–1769 60.8 0.017 – ∗ – ∗

6 211–215/225–227 60.8 0.017 – –

7 2389–2391/2397–2399 60.4 0.018 – ∗ – ∗
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(one of these unrelated instances is shown in Fig. 7B).
By considering the base-stacking information, one addi-
tional conserved base-stacking interaction is detected by
RNAMotifScanX from the instance shown in Figure 7A,
which improves its alignment score and leads to the identifi-
cation of this true instance. Lack of such a conserved base-
stacking interaction in the motif instance shown in Figure
7B can lead to structural change of the ad-
jacent residues, and potentially the loss of
its protein binding activity. The dihedral
angle between the same-strand residues
(U1972 andA1973 in Fig. 7A) is increased
from29.7° to 79.4° for those of the second
instance (A1778 and A1779 in Fig. 7B).
Such a variation leads to the different ori-
entations of the bulged guanine residues
(magenta residues in Fig. 7), which is cru-
cial for the recognition of its associated
protein (Gluck and Wool 1996; Munish-
kin and Wool 1997; Yang et al. 2001).
The search results of the reverse kink-

turn motif families are summarized in
Table 4. The top 5 instances predicted
by RNAMotifScanX correspond to true
hits, while the sixth one is an unrelated
motif. This motif instance overlaps
with a well-characterized sarcin–ricin
motif (ranked third in Table 3). The
two noncanonical base pairs shared be-
tween the reversed kink-turn and the
sarcin–ricin motifs (i.e., the trans S/H
and trans H/H pairs, see Fig. 3) are de-
tected for the prediction of this motif.
RNAMotifScanX also misses a true hit
that has been shown by the LENCSmeth-
od, i.e., 2298–2300/2307–2310, because
additional interactions were predicted

for this instance that trigger the base pair deletion penalty.
Nevertheless, RNAMotifScanX is still capable of improving
the performance of RNAMotifScan by predicting five true
hits compared with two at the 100% specificity level.
Finally, the bacterial E-loop search results are shown in

Table 5. RNAMotifScanX predicts 13 instances in its top
list. The first twomotif instances perfectly match the bacterial

TABLE 5. The top-ranked RNAMotifScanX results for searching the bacterial E-loop motif against PDB 1S72, chain 0 (23S rRNA)

Ranking Location Score P-value RMS FR LE SHa Manual

1 1640–1642/1543–1545 62.0 0.008 ∗ – ∗ – ∗

2 720–722/706–708 61.8 0.008 ∗ – ∗ – ∗

3 2053–2055/1369–1372 49.4 0.014 ∗ – – ∗

4 1012–1015/952–955 47.2 0.016 – ∗ – ∗

5 568–571/586–590 47.0 0.016 ∗ – ∗ – ∗

6 292–295/356–360 46.8 0.016 ∗ – ∗ – ∗

7 159–161/174–177 46.2 0.017 ∗ – – ∗

8 2701–2703/2691–2694 46.2 0.017 ∗ – – ∗

9 2009–2010/1972–1973 46.2 0.017 – ∗ – ∗

10 911–912/1293–1294 46.2 0.017 – ∗ – ∗

11 475–477/463–466 46.2 0.017 ∗ – – ∗

12 406–408/380–383 46.2 0.017 ∗ – – ∗

13 225–226/214–215 46.2 0.017 – – ∗

aThe E-loop motif search results of the shape histogram method are summarized in Table 3.
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E-loop search pattern, while the rest (the third to the thir-
teenth) motif instances are partial matches. These partially
matched motifs were also identified by the previous experi-
ment of searching the sarcin–ricin motif, because they share
two conserved noncanonical base pairs (the trans W/H pair
and the trans H/S pair shown in Fig. 3) with the sarcin–ricin
query model. The strong overlap between RNAMotifScanX’s
sarcin–ricin and bacterial E-loop search results is also consis-
tent with their close relationship: Both the sarcin–ricin motif
and the bacterial E-loop motif can be identified from the 5S
rRNA loop-E region, except that the sarcin–ricin motif is
prevalently found in archaeal and eukaryotic 5S rRNAs
loop-E region (Wimberly et al. 1993; Szewczak and Moore
1995) while the bacterial E-loop motif is found in bacterial
5S rRNAs loop-E region. The tool with the second best per-
formance for this motif, RNAMotifScan, outputs 10 (one of
them is missed by RNAMotifScanX and therefore only nine
are shown in the Table 5) true hits without unrelated instanc-
es. RNAMotifScanX again shows significantly improved
sensitivity. RNAMotifScanX missed one motif instance, i.e.,
663–666/680–683, because of the insertion of 2 nt. However,
such an instance is still ranked relatively high with a P-value
of 0.021 (data not shown). In summary, RNAMotifScanX

outperforms the other state-of-the-art
motif search tools in almost all experi-
ments (except that the LENCS method
shows higher performance for the reverse
kink-turn motif).

Estimating family-specific P-value
cutoffs

An important unbiased measure that fa-
cilitates automatic downstream analy-
sis is the P-value for the raw alignment
scores. Generally, the P-value indicates
the possibility that the null hypothesis is
accepted; lower P-value indicates a high-
er structural similarity between the motif
instances. Because motif families have
largely variable sizes and different per-
missiveness for variations, suggesting a
universal P-value cutoff for all families
is difficult (Zhong et al. 2010). For ex-
ample, FR3D and the shape histogram
methods apply different geometric dis-
crepancies for different motif families,
while RNAMotifScan empirically sug-
gests family-specific P-value cutoffs.
Here in RNAMotifScanX, family-

specific P-values for the raw alignment
scores are suggested based on the base-
interaction features of the families. The
raw alignment scores relate strongly
with the number of base pairs in the que-

ry, because base pair matchings are usually assigned with
higher weights. The raw alignment scores also depend on
the number of base-triples in the query, as bonus is assigned
for their matching to honor the rareness. A simple linear
model is used to compute family-specific P-value cutoffs
based on the number of base pairs (canonical and noncanon-
ical) and base triples (see Table 6). Applying the automat-
ically computed cutoff leads to an overall performance of
86.5% F-measure. Note that such performance can be
achieved fully automatically, and the actual performance of
RNAMotifScanX is much higher when manual inspection
is applied (to simply identify the first unrelated instance as
the cutoffs).

Computational efficiency of RNAMotifScanX

Although the running time of the RNAMotifScanX
algorithm, in the worst case scenario, may grow exponentially
with the input size, our carefully designed algorithm with the
compatibility graph and the branch-and-bound technique
makes it practical and run extremely fast for all experiments
presented here. RNAMotifScanX is further empowered by
parallel computing with multithreaded execution mode
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enabled. The running time for all searches is summarized in
Table 7. Note that the relatively longer running time for the
kink-turn search is required because of its larger size and the
consideration of its composite instances (instances that in-
volve up to three strands are allowed). Compared with
FR3D, which requires 58.7 sec to search for the 9-nt sar-
cin–ricin motif query (see Fig. 3), RNAMotifScanX can finish
the search within 11.6 sec (with single thread). The signifi-
cant running time improvement and low memory consump-
tion makes RNAMotifScanX an idea tool for large data set
analysis.

CONCLUSIONS AND DISCUSSION

In this paper, we presented a novel local graph alignment al-
gorithm for RNA structural motif comparison and search.
We applied the algorithm to the RNA structural motif inter-
action graphs and computed their optimal alignments. We
designed the algorithm based on a clique finding algorithm
with a branch-and-bound search technique. We also incor-
porated the base-stacking information in our modeling
of RNA structural motifs, which has been shown to signifi-
cantly improve the performance of the search. We imple-
mented the alignment algorithm into the search tool called
RNAMotifScanX. We observe the following major advantag-
es of RNAMotifScanX:

• “Sensitive and accurate”: RNAMotifScanX shows high sen-
sitivity and specificity, and outperforms other state-of-the-
art search tools for the majority of the search experiments.

• “Automatic”: RNAMotifScanX requires no a priori knowl-
edge regarding the query, and can automatically detect the
conserved regions disregarding whether they are partial or
complete. Also, RNAMotifScanX outputs P-values and
suggests cutoffs for each motif family. Both characteristics
make automatic analysis of a large collection of RNA struc-
tures possible and convenient.

• “Fast and lightweight”: RNAMotifScanX achieves ultra-fast
running time through both algorithmic improvements and
parallel computing. RNAMotifScanX only requires mini-
mum physical memory (<100 Mb) that can be easily satis-
fied by a personal computer.

We note that RNAMotifScanX is an ideal tool to search
new motif families, as it can automatically identify the con-
served local patterns between the query and the target. This
feature is extremely important when the set of conserved nu-
cleotides are unknown because of the lack of comparative
studies. (We expect that RNAMotifScanX can also benefit
from such information, and in the future we will enable pro-
file-based query using either a position-specific scoring func-
tion or a hidden Markov model.) We anticipate another
important use of RNAMotifScanX for large-scale PDB

TABLE 6. Suggested P-value cutoffs for each motif family and their associated overall performance

Motif family # NC # WC # Triples P-value Sensitivity Specificity F-measure

Kink-turn 5 (×0.006) 2 (×0.003) 3 (×0.010) 0.066 0.563 (9/16) 1.000 (9/9) 0.720
C-loop 2 (×0.006) 4 (×0.003) 2 (×0.010) 0.044 1.000 (3/3) 1.000 (3/3) 1.000
Sarcin–ricin 5 (×0.006) 0 (×0.003) 1 (×0.010) 0.040 1.000 (11/11) 1.000 (11/11) 1.000
Rev. kink-turn 2 (×0.006) 2 (×0.003) 0 (×0.010) 0.018 0.667 (6/9) 0.857 (6/7) 0.750
Bac. E-loop 3 (×0.006) 0 (×0.003) 0 (×0.010) 0.018 0.929 (13/14) 0.929 (13/14) 0.929
Overall 0.792 (42/53) 0.954 (42/44) 0.865

(NC) noncanonical base pairs, (WC) Watson–Crick base pairs, (triples) base-triple interactions.
Parenthesized numbers in the second, third, and fourth columns indicate P-values that are multiplied by the number of corresponding interac-
tions. Parenthesized numbers in the sixth column indicate the number of true positive predictions given the corresponding cutoff and the total
number of known true instances, respectively. Parenthesized numbers in the seventh column indicate the number of true positive predictions and
the total number of prediction given the corresponding cutoff, respectively. “Rev. kink-turn” stands for reverse kink-turn. “Bac. E-loop” stands for
bacterial E-loop. Note that for the bacterial E-loop case, although 13 instances are listed in Table 5, RNAMotifScanX identified another unrelated
instance with the corresponding P-value cutoff, i.e., 1484–1485/1457–1459 with a score of 44.9 and a P-value of 0.018. F-measure values
shown in the eighth column are computed using the following formula: F-measure = 2 × sensitivity × specificity/(sensitivity + specificity).

TABLE 7. Running time and memory consumption of RNAMotifScanX

Motif family Size (nt) P-value Time (1) Time (4) Time (8) Memory (Mb)

Kink-turn 13 0.066 8 min 33.64 sec 2 min 56.60 sec 1 min 6.07 sec 82
C-loop 12 0.044 0 min 25.95 sec 0 min 7.96 sec 0 min 5.11 sec 74
Sarcin–ricin 9 0.040 0 min 11.63 sec 0 min 3.58 sec 0 min 1.91 sec 73
Rev. kink-turn 11 0.018 0 min 1.20 sec 0 min 0.39 sec 0 min 0.35 sec 75
Bac. E-loop 6 0.018 0 min 0.27 sec 0 min 0.17 sec 0 min 0.17 sec 73

P-value cutoffs were set based on Table 6. The time reported here corresponds to the wall-clock time, while the numbers in the parentheses
indicate number of threads spawned for the experiments. Memory usages of RNAMotifScanX executed with eight threads are reported.
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survey, which is made possible by RNAMotifScanX’s high
computational efficiency. Last but not least, we have previ-
ously demonstrated a clustering pipeline developed based
on RNAMotifScan, and its application on ribosomal RNAs
led to the discovery of many new instances and a novel motif
family (Zhong and Zhang 2012). We expect to further ex-
pand this work by using RNAMotifScanX as the aligner
and applying it to all RNA structures in the PDB.

During the search of the five RNA structural motif
families, several partially conserved base-interaction patterns
were identified. For example, all the kink-turn instances
shown in Figures 4 and 5 share a core structure of two tandem
sheared pairs connected by a cross-strand outward stacking
interaction. Such a strong correlation suggests that these con-
served interaction patterns can be used to aid RNA 3D mod-
eling. The idea is very similar to the Nucleotide Cycle Motif
(Lemieux andMajor 2006; Parisien et al. 2009; Reinharz et al.
2012). However, the core patterns automatically detected by
RNAMotifScanX are expected to be the maximally conserved
regions, which could be more biologically meaningful and
computationally easier to incorporate. Moreover, these core
structures contain base-stacking interactions that were not
considered for de novo identification of RNA structural mo-
tifs in the multiple sequence alignments (Cruz and Westhof
2011), and the identification of conserved base-stacking in-
teraction will provide additional information for this applica-
tion and lead to more accurate discoveries.

MATERIALS AND METHODS

Data preparation

Five RNA structural motif families were used as the queries. The
query motifs (as shown in Fig. 3) were taken from existing analysis
of their consensus patterns. The five motif families and their corre-
sponding references are listed as the following: kink-turn (Lescoute
et al. 2005), C-loop (Leontis and Westhof 2003), sarcin–ricin
(Leontis et al. 2002a), reverse kink-turn (Leontis et al. 2006), and
the bacterial E-loop motif (Leontis et al. 2002a). Redundant boun-
dary canonical base pairs were removed to simplify the search. Base-
stacking information was then added to the patterns. The resulting
query patterns are summarized in Figure 3.

The target H. marismortui 50S rRNA structure 1S72 was down-
loaded from the PDB (Berman et al. 2000). The structure was anno-
tated by MC-Annotate (Gendron et al. 2001) and RNAVIEW (Yang
et al. 2003) for its base-pairing and base-stacking interactions. The
annotations made by MC-Annotate and RNAVIEW were combined
(union). Conflicting annotations (i.e., two different types of interac-
tions are annotated for the same pair of residues) were resolved by
taking the MC-Annotate predictions.

Individual target motif instances were automatically extracted us-
ing an anchoring approach (in-house script distributed along with
the RNAMotifScanX package). For each noncanonical base pair in
the query, its corresponding isosteric counterparts in the target
structure were used as anchors. For each anchor, its adjacent resi-
dues were teased out to match (two excessive adjacent residues are
included in each strand to account for potential insertions in the tar-

get) the size of the query motif. Only a predefined number of strands
are considered. When more strands are involved, the anchoring
strands (where the anchoring base pair resides) were automatically
accepted, while the remaining ones were selected (to meet the pre-
defined number for maximum allowed strands) based on how
strongly they interact with the anchoring strands (sorted based on
the number of interactions with the anchoring strands). The final-
ized set of nucleotides was further refined by removing the unpaired
flanking residues to make the motif a complete loop. Finally, the ac-
cepted strands were concatenated with all possible orders as de-
scribed in RNAMotifScan (Zhong et al. 2010) to form the final set
of candidate target motifs.

Base-stacking information processing

Base-stacking interaction involves London dispersion intermolecu-
lar interaction (Major and Thibault 2007), and in addition to base-
pairing interaction it also serves as one of the major forces that
contributes to the thermodynamic stability of the RNA/DNA mol-
ecules (Batey et al. 1999; Leontis et al. 2002a, 2006; Leontis and
Westhof 2003; Yakovchuk et al. 2006). Different types of stacking in-
teractions can be classified into four categories, namely “inward,”
“outward,” “upward,” and “downward.” Such information can be
retrieved from MC-Annotate or RNAVIEW annotations. Base-
stacking interactions are further classified as either adjacent or non-
adjacent. By adjacent/nonadjacent we mean that the two residues
that form the base-stacking interaction are directly adjacent/nonad-
jacent to each other in the primary sequence. Nonadjacent base-
stacking interactions matches are also associated with higher weights
because they usually indicate specific 3D geometry (a single weight
for stacking, wT, was shown in the object function for the sake
of simplicity, yet two different weights are actually applied here;
see more details in the “Default Parameters”). Matches of non-
adjacent base-stacking interactions are summarized into the
compatibility graph together with base-pairing matches; and the
RNAMotifScanX algorithm enumerates all possible matches of
base-pairing and nonadjacent stacking interactions between the
two RNA structural motif instances.

Adjacent base-stacking interactions can be aligned together with
loop regions using a modified sequence alignment algorithm (i.e.,
they are not summarized into the compatibility graph). Specifically,
recall that the loop alignment algorithm adopts the traditional
Needleman–Wunsch algorithm (Needleman and Wunsch 1970).
Let SA[k, l ] and SB[k′, l′] be the sequences of the two closed loops
that are being aligned. The dynamic programming algorithm
uses a two-dimensional table D to store the intermediate results.
D[i + 1, i′ + 1] stores the optimal alignment between sequences
SA[k, k + i− 1] and SB[k′, k′ + i′ − 1]. To compute D[i + 1, i′ + 1],
three entries in the table are referred to, i.e., D[i, i′ + 1], D[i + 1,
i′], andD[i, i′]. Besides these three entries, the algorithm is modified
to refer to scores in all entries D[i, i′ − x′], where 0 < x′ < i′ and all
entries D[i− x, i′] where 0 < x < i as well. The idea is to consider
the cases where either SA[k + i− 1] or SB[k′ + i′ − 1] participates
in an adjacent base-stacking interaction (note that the case where
both of them correspond to adjacent base-stacking interaction is
considered when referring to D[i, i′]). While referring to, say, entry
D[i, i′ − x′], the matching score between the adjacent stacking inter-
action tA(k + i− 2, k + i− 1) and the stacking interaction tB(k′ + i′

− x′ − 2, k′ + i′ − 1) (which is either adjacent when we refer to D
[i, i′] or nonadjacent when 0 < x′ < i′) is also evaluated.

Zhong and Zhang

344 RNA, Vol. 21, No. 3



Corresponding base-stacking insertion/deletion penalty is applied
similar to those for the base pairs if either of the above stacking in-
teractions is not formed.

Default parameters

All experiments were run on an Intel Xeon E5-2640 2.5GHz work-
station. Three substitution matrices are used in RNAMotifScanX for
base-pairing, base-stacking, and nucleotide substitution, respective-
ly. For base pairs, all isosteric base pair (see definition in Leontis
et al. 2002b; Stombaugh et al. 2009) matches are scored 12.0, except
the canonical (Watson–Crick) base pair substitutions, which are
only scored 5.0 for their prevalence in RNA structures. Nonisosteric
base pair substitutions are scored 1.5. Deletion of a noncanonical
base pair in the query is penalized with a score of −12.0, and in
the target with a score of −1.2. Canonical base pair deletions are
not penalized. For base-stacking interactions, matches within the
same category are scored 3.0, and 0.0 otherwise. Deletion of a
base-stacking interaction in the query is penalized with a score of
−8.0, and in the target for −0.8. For nucleotides, matches of the
same nucleotides are scored 3.0; if different nucleotides are matched
it is penalized with a score of−1.0. Deletion of a nucleotide is penal-
ized with a score of −1.5 (for both query and target). These scores
are further weighted to account for their different impacts in shap-
ing RNA 3D structures. The weight for base pair scores (wP) is set to
2.0, for nonadjacent base-stacking 1.0 and for adjacent base-stacking
scores 0.2 (both stacking weights were summarized as wT for the
sake of simplicity), and for nucleotide scores (wN) 0.1. Note that nu-
cleotide insertion/deletion is weighted using wP because it might
lead to strong distortion of the local geometry (nucleotide substitu-
tions are still weighted by using wN). A base triple is modeled as two
individual base interactions that share a single residue, and two base
triples are considered conserved if both corresponding base-interac-
tion matches are isosteric (for base pair interactions) or within the
same category (for base-stacking interactions). Matches of con-
served base triples are rare, and strongly indicate motif homology.
In this case, a bonus score of 3.0 (such score is not weighted) is add-
ed for each pair of conserved base triples.

Random structure shuffling for P-value computation

P-values reported in RNAMotifScanX are estimated with a simula-
tion-based approach. A given query motif is randomly shuffled a
large number of times (default 1000). Specifically, each base interac-
tion (including both base-pairing and stacking) is randomly mutat-
ed according to the background frequencies of all observed base
interactions the PDB. Alignment score distribution associated
with the given query is simulated by aligning the query against all
of its shuffled structures. Under such an alignment score distribu-
tion, the P-values for any given alignment scores can be computed
by using the Chebyshev’s inequality.

Software availability

The software package RNAMotifScanX was implemented using
GNU C++ and the BOOST C++ libraries (http://www.boost.org).
The Linux 64-bit executable of RNAMotifScanX is freely available
from http://genome.ucf.edu/RNAMotifScanX. Source code for

cross-platform compilation is also available by contacting the au-
thors.
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