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Abstract

Drosophila circadian behavior relies on the network of heterogeneous groups of clock neu-

rons. Short- and long-range signaling within the pacemaker circuit coordinates molecular

and neural rhythms of clock neurons to generate coherent behavioral output. The neuro-

chemistry of circadian behavior is complex and remains incompletely understood. Here we

demonstrate that the gaseous messenger nitric oxide (NO) is a signaling molecule linking

circadian pacemaker to rhythmic locomotor activity. We show that mutants lacking nitric

oxide synthase (NOS) have behavioral arrhythmia in constant darkness, although molecular

clocks in the main pacemaker neurons are unaffected. Behavioral phenotypes of mutants

are due in part to the malformation of neurites of the main pacemaker neurons, s-LNvs.

Using cell-type selective and stage-specific gain- and loss-of-function of NOS, we also dem-

onstrate that NO secreted from diverse cellular clusters affect behavioral rhythms. Further-

more, we identify the perineurial glia, one of the two glial subtypes that form the blood-brain

barrier, as the major source of NO that regulates circadian locomotor output. These results

reveal for the first time the critical role of NO signaling in the Drosophila circadian system

and highlight the importance of neuro-glial interaction in the neural circuit output.

Author summary

Circadian rhythms are daily cycles of physiological and behavioral processes found in

most organisms on our planet from cyanobacteria to humans. Circadian rhythms allow

organisms to anticipate routine daily and annual changes of environmental conditions

and efficiently adapt to them. Fruit fly Drosophila melanogaster is an excellent model to

study this phenomenon, as its versatile toolkit enables the study of genetic, molecular and

neuronal mechanisms of rhythm generation. Here we report for the first time that gaso-

transmitter nitric oxide (NO) has a broad, multi-faceted impact on Drosophila circadian

rhythms, which takes place both during the development and the adulthood. We also

show that one of the important contributors of NO to circadian rhythms are glial cells

that form the blood-brain barrier. The second finding highlights that circadian rhythms

of higher organisms are not simply controlled by the small number of pacemaker neurons

but are generated by the system that consists of many different players, including glia.
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Introduction

Our environment undergoes daily fluctuations in solar illumination, temperature, and other

parameters. Organisms across the phylogenetic tree are equipped with circadian clocks, which

help predict daily environmental changes and create temporal patterns of behavioral and phys-

iological processes in concordance with the environmental cycle. Drosophila melanogaster
remains a powerful model to study this phenomenon ever since Konopka and Benzer identi-

fied the first clock gene, period, in this organism [1].

Drosophila circadian clocks rely on transcriptional-translational feedback loops that operate

using an evolutionarily conserved principle. In the main loop, CLOCK/CYCLE (CLK/CYC)

heterodimers bind to the E-boxes in the promoter regions of the period (per) and timeless (tim)

genes and activate their transcription. PER and TIM proteins undergo post-translational mod-

ifications and enter the nucleus to suppress their own production by inhibiting CLK/CYC

activity. CLK/CYC also activates transcription of the genes encoding the basic-zipper regula-

tors PAR DOMAIN PROTEIN 1 (PDP-1) and VRILLE (VRI), which activates and inhibits Clk
gene expression, respectively. Thus, positive- and negative- feedback loops created by PDP-1

and VRI with CLK/CYC are interlocked with the main negative-feedback loop and ensure the

generation of 24-h rhythms [2, 3].

In the fly brain, molecular clocks are present in ca.150 so-called clock neurons, which form

the pacemaker circuit controlling circadian behavior. Clock neurons are classified into groups

according to their morphological characteristics and location: small and large lateral ventral

neurons (s- and l-LNvs), lateral dorsal neurons (LNds), lateral posterior neurons (LPNs) and

three groups of dorsal neurons (DN1s, DN2s, DN3s) [4, 5]. Although all clock neurons express

a common set of clock genes, they are heterogeneous in terms of neurotransmitter/neuropep-

tide phenotype, function, and composition of the molecular clock. Neuropeptide pigment-dis-

persing factor (PDF) is uniquely secreted from the l-LNvs and 4 out of 5 s-LNvs. Several other

neuropeptides, including small neuropeptide F (sNPF) and ion transport peptide (ITP), and

classical neurotransmitters such as glutamate and glycine, are also expressed across pacemaker

circuit [6, 7]. PDF-positive s-LNvs are designated as the Morning (M) oscillator, whereas LNds

together with the PDF-negative 5th s-LNv consist of the Evening (E) oscillator. Under the

light-dark (LD) experimental conditions, the M and E oscillators drive the morning and even-

ing anticipatory increments of locomotor activity, respectively. The M oscillator is also the

master pacemaker of the free-running locomotor rhythms in constant darkness (DD) [8–11].

Neuropeptide PDF as well as the unique composition and regulatory mechanisms of the

molecular clock underlie the distinct role of the M oscillator. The main negative-feedback loop

of the M oscillator’s molecular clock employs a specific phosphorylation program that regu-

lates the nuclear translocation of PER/TIM complex [12]. The nuclear receptor UNFUL-

FILLED (UNF) is almost uniquely present in the lateral neurons within the circadian circuit

[13, 14]. UNF accumulates rhythmically in the s-LNvs and, in cooperation with another

nuclear receptor E75, enhances CLK-dependent per transcription. Thus, UNF and E75 consist

a positive limb of an additional feedback loop in specific to the s-LNv molecular clock. Because

UNF and E75 also play critical roles in the development of the s-LNvs, knockdown of either

gene during development or adulthood results in low rhythmicity and extended period,

respectively [14, 15].

Nuclear receptors (NRs) are a superfamily of proteins that function as ligand-dependent

transcriptional regulators [16]. The ligands are small lipophilic molecules that can diffuse

across the cell membrane, such as thyroid and steroid hormones. In Drosophila melanogaster,
only two lipophilic hormones, 20-hydroxyecdyson (20E) and the sesquiterpenoid juvenile hor-

mone (JH) are known nuclear receptor ligands, which have critical roles in developmental
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processes, including molting, puparium formation, and neurogenesis [16–18]. Although many

NRs remain orphan without a known ligand, diatomic gases—nitric oxide (NO) and carbon

monoxide (CO)—can bind and regulate the activity of some NRs. Several studies have demon-

strated in vitro and in vivo that NO binds to E75 and regulates its interaction with DHR3 [19],

SMRTER [20], and UNF [21] in different tissues during development. Thus, the binding of

NO to E75 confers an important switching mechanism in various developmental processes.

NO is an unconventional messenger involved in numerous biological functions, including

immune defense, respiration, intracellular signaling and neurotransmission [22, 23]. NO can

act locally near the source of its production. It can diffuse across membranes and also act as a

long-range signaling molecule [22, 24]. NO signaling is broadly classified into the classical

pathway mediated by cGMP and cGMP-independent non-classical one involving diverse

mechanisms such as posttranslational modifications and transcriptional regulations [22, 25].

In mammals, the importance of NO signaling in the light-dependent phase-resetting and

maintenance of rhythmicity [26–28] is established. These effects were largely explained by the

canonical NO/cGMP signaling [29–31]. However, whether NO has a regulatory role in Dro-
sophila circadian behavior has never been addressed.

Here we explore the role of NO in circadian locomotor behavior of Drosophila using multi-

ple genetic approaches. We present evidence that NO signaling is necessary for proper circa-

dian locomotor behavior. NO can act cell-autonomously as well as non-cell-autonomously at

multiple processes required for generating rhythmic behavior, including axonal morphogene-

sis, phasing of molecular clocks and output control. Furthermore, we identify the perineurial

glia, one of the two glial subtypes that form the blood-brain barrier, as a source of NO that con-

trols free-running locomotor output. Our results highlight the complexity of locomotor behav-

ior regulation and oft-neglected importance of glia in the regulation of behavior.

Results

dNOS deletion mutants show arrhythmic circadian behavior

NO is chiefly produced by an enzyme nitric oxide synthase (NOS) through the conversion of

arginine into citrulline using NADPH as a cofactor [32, 33]. Three distinct NOS isoforms

(endothelial e-NOS, inducible i-NOS, and neuronal n-NOS) exist in mammals, whereas Dro-
sophila has a single NOS (dNOS) gene that produces 10 splice variants (S1 Fig) [34]. Since NOS

functions as homodimers, alternatively spliced variants, most of which encode truncated pro-

teins, are proposed to act as dominant negatives [35]. To investigate the possible roles of NO

in fly circadian rhythms, we took advantage of two NOS CRISPR deletion mutants, NOSΔall,
and NOSΔter [21]. The former has a deletion of the entire NOS locus, while the latter is a par-

tial deletion mutant lacking exons 1 to 6 but bears intact two uncharacterized genes within the

NOS locus (Fig 1A). RT-qPCR using the primers targeting the exons commonly included in all

variants (exons 10 and 11) confirmed the absence of the full-length NOS1 mRNA expression

in NOSΔall mutants (Fig 1B) A reduced level of the product was detected in NOSΔter mutants,

consistent with the location of the deletion. Furthermore, we directly measured NO produc-

tion in cultured whole brains using a fluorescent dye DAR4-M [36]. NO was virtually unde-

tectable in both NOSΔall and NOSΔter strains in this assay, confirming that both are complete

loss-of-function mutants (Fig 1C).

Having validated the NOS CRISPR deletion mutants, we next tested their locomotor activi-

ties in LD and DD paradigms. Homozygous mutants had strongly reduced rhythmicity in DD.

Trans-heterozygous of two deletion alleles was equally detrimental to DD rhythmicity, whereas

heterozygous mutations had no effect on rhythmicity (Table 1 and Fig 2). Moreover, morning

activity patterns in LD were strongly impaired in homozygous and trans-heterozygous
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mutants. In particular, the DD-arrhythmic flies lack both anticipatory increments of activity

before lights-on (Fig 2, right). Since two NOS CRISPRΔmutants share a common genetic

background, we also tested locomotor behavior of the well-characterized NOSΔ15 mutant pro-

duced by recombination between two piggyBac transposon insertions [37] (Fig 1A) and

NOSΔ15 heterozygous with a chromosomal deficiency (Df(2L)BSC230) that deletes numerous

genes including NOS. NOS enzymatic activity is completely disrupted in NOSΔ15 mutant [37].

The locomotor behavior of NOSΔ15 homozygous and hemizygous mutants in DD was similar

to those of NOS CRISPR deletion mutants, showing strongly reduced rhythmicity (Table 1 and

Fig 2). LD behavior was also impaired in these mutants. Although the startle response to

lights-on was present, NOSΔ15 homozygous and hemizygous mutants had reduced morning

anticipatory activities. Taken together, these results demonstrate that NOS is required for nor-

mal circadian locomotor activity rhythms.

NOS is a regulator of morphogenesis of the s-LNv axons

NO signaling plays critical roles in various developmental processes in the nervous system,

including neurite patterning of the visual system and axon pruning/regrowth of mushroom

body (MB) neurons [19–21, 38, 39]. Since low rhythmicity in DD and poor morning

Fig 1. NOSΔ mutants do not produce nitric oxide. (A) NOS gene, and regions deleted in NOSΔall, NOSΔter and NOSΔ15 mutants. Two genes reside within the NOS
locus. (B) mRNA levels of NOSd1, a full-length functional isoform of NOS, at ZT2 in the heads of NOSΔall and Δter mutants and w1118 were analyzed using qPCR. Mean

values of three independent experiments ± SD are shown. NOSd1 expression levels were significantly reduced in the mutants compared with w1118. �p<0.05, ���p<0.001

(One-way ANOVA with Dunnett’s multiple comparisons test). (C) NO levels were measured using DAR4-M dye in the brain explants of NOSΔall and Δter mutants and

w1118 for 4 h using timelapse microscopy. Each dot represents the DAR4-M fluorescence intensity of a single brain explant and the line indicate the mean in arbitrary unit

(a.u.). n = 5–11 brains per group. Different time points within the group were compared using two-way ANOVA with Tukey’s multiple comparisons test (��p<0.01).

https://doi.org/10.1371/journal.pgen.1008312.g001
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Table 1. Effects of NOS mutation, NOS knockdown, and macNOS overexpression on free-running locomotor rhythms. The left-most column explains the types of

experiments and where the drivers are expressed. n, number of flies. %R, % of rhythmic flies. CTR, control. Oxp, over-expression. KD, knockdown. OP, optic lobes. Mean

periods and rhythmicity of the test groups were compared with those of control groups using Student’s t-test and chi-square test, respectively. Mutants were compared

with Canton-S and flies for knockdown and overexpression were compared with GAL4-only controls.

Genotype Period ± SEM (hr) Power ± SEM n %R

Mutants and CTR w1118 23.5±0.05 167.5±9.3 124 93.6

Canton-S 24.1±0.35 102.3±18.0 27 84.4

NOSter/+ 23.7±0.04 217.7±10.5 127 91.3

NOSter 23.2±0.2 84.3±29.0 105 21.0���

NOSall/+ 23.7±0.04 245.1±12.1 126 76.9

NOSall 23.6±0.06 149.4±15.5 173 56.1��

NOSall/NOSter 23.5±0.2 79.0±17.4 59 66.1

NOSdelta15 23.6±0.08 70.2±8.00 31 45.2��

NOSdelta15/+ 23.5±0.09 148.3±9.27 31 87.1

Df/+ 23.6±0.07 118.8±9.33 29 89.7

NOSdelta15/Df 24.0±0.05 101.5±9.57 32 65.6�

macNOS oxp macNOS/+ 23.4±0.05 59.4±2.1 89 85.4

LNvs PDF>macNOS 24.5±0.15��� 51.7±6.1 25 76.6

s-LNVs R6>macNOS 23.8±0.09 69.9±5.2 31 65.5��

MB D52H>macNOS 24.2±0.05 145.2±13.9 28 92.9

Clock neurons tim>macNOS 24.7±0.1���� 61.3±6.3 30 36.7����

Clock neurons Clk1982>macNOS 23.9±0.05 85.5±7.6 30 76.7

OL GMR33H10>macNOS 23.7±0.09 85.2±8.7 62 53.2����

OL GMR79D04>macNOS 23.9±0.09 43.3±4.9 63 28.6����

OL GMR85B12>macNOS 23.6±0.1 53.1±7.9 60 61.7���

Glia Repo>macNOS 23.5±0.05 98.2±5.0 28 29.8����

Pan-neuronal GMR57C10>macNOS 25.0±0.4� 65.9±12.9 61 32.8����

Pan-neuronal Elav>macNOS 23.7±0.05 83.5±6.4 59 81.4

NOS KD NOS-RNAi27725/+ 23.7±0.04 110.7±0.04 145 84.0

LNvs Pdf>NOS-RNAi 24.4±0.03 184.1±13.9 26 100

s-LNVs R6>NOS-RNAi 23.6±0.04 113.0±5.5 60 80

MB D52H>NOS-RNAi 23.6±0.4 105.4±10.5 29 65.5�

MB OK107>NOS-RNAi 23.5±0.05 141.2±12.0 32 96.9

Photoreceptors GMR>NOS-RNAi 23.6±0.06 200.1±12.3 60 95.2

Clock neurons tim>NOS-RNAi 24.4±0.2 166.2±10.4 47 38.3����

Clock neurons Clk1982>NOS-RNAi 23.6±0.02 173.3±5.03 62 88.7

OL GMR33H10>NOS-RNAi 23.5±0.03 164±7.1 32 96.9

OL GMR79D04 >NOS-RNAi 25.1±0.2�� 105.2±7.9 59 61.0��

OL GMR85B12 >NOS-RNAi 23.6±0.03 121.3±6.9 44 70.5��

Glia Repo>NOS-RNAi 23.6±0.2 79.4±6.6 63 32.1����

Pan-neuronal GMR57C10>NOS-RNAi 26.2±0.2���� 121.2±8.2 60 55.0��

Pan-neuronal elav>NOS-RNAi 23.5±0.05 122.3±9.1 95 76.8

CTR PDF/+ 24.1±0.04 132.7±6.9 58 96.8

R6/+ 23.4±0.05 105.2±5.7 45 85.1

D52H/+ 23.9±0.04 177.3±8.3 10 90.5

OK107/+ 23.7±0.06 139.6±8.5 30 96.8

GMR/+ 23.6±0.03 187.5±6.1 28 93.3

Tim/+ 24.1±0.05 125.4±6.3 82 90.2

Clk1982/+ 23.6±0.03 150.6±7.4 60 86.7

GMR33H10/+ 23.1±0.05 144.9±6.2 60 85.0

GMR79D04/+ 24.3±0.2 96.6±5.5 64 84.4

(Continued)
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anticipation are indicative of the dysfunction of the s-LNvs, we sought to examine possible

effects of NOS deficiency on the structure and function of the s-LNvs. To this end, we

expressed a membrane-targeted yellow fluorescent protein mCD8::VENUS with the

Table 1. (Continued)

Genotype Period ± SEM (hr) Power ± SEM n %R

GMR85B12/+ 23.5±0.04 128.5±6.9 91 89.0

Repo/+ 23.3±0.05 109.2±6.9 83 82.0

GMR57C10/+ 24.2±0.2 117.9±4.9 60 78.3

Elav/+ 23.7±0.05 143.0±7.8 120 82.8

18˚C ->29˚C Repo>NOS-RNAi 24.1±0.5 47.2±7.3 21 47.6�

Adult-only KD GMR79D04>NOS-RNAi 24.7±0.3 93.1±8.3 28 75.0

GMR57C10>NOS-RNAi 26.8±0.07��� 165.3±11.5 25 96.0

CTR NOS-RNAi/Tub-Gal80ts 25.6±0.3 89.2±6.5 29 79.3

Repo/Tub-Gal80ts 23.5±0.6 114.2±9.3 29 72.4

GMR79D04/Tub-Gal80ts 23.3±0.07 76.0±8.7 28 67.9

GMR57C10/Tub-Gal80ts 23.2±0.06 121.7±9.74 30 86.7

�p< 0.05

��p< 0.01

��� p< 0.001

����p<0.0001.

https://doi.org/10.1371/journal.pgen.1008312.t001

Fig 2. NOS deletion impairs the circadian behavior in constant darkness. The locomotor activity of w1118, Canton-S and NOS homozygous, transheterozygous and

hemizygous mutants in LD and DD. Left, group-average locomotor activity and mean waveforms of rhythmic flies. Right, representative actograms and periodgrams

demonstrating arrhythmic locomotor activity of NOS mutant flies.

https://doi.org/10.1371/journal.pgen.1008312.g002
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gal1118-Gal4 driver and inspected s-LNv axonal morphology at two timepoints in LD. The lev-

els and rhythms of PDF neuropeptide accumulation in the s-LNvs were also analyzed by

immunohistochemically. Surprisingly, branching pattern of terminal neurites of the s-LNvs,

which is normally orderly, was severely disturbed in NOS homozygous mutants (Fig 3A). The

neurites were extended in length and branching pattern was highly disordered and fuzzy,

showing the tendency of axon misrouting. The quantification of the pixels covered by the axo-

nal termini confirmed that s-LNv axonal arbors were overgrown in NOS mutants (Fig 3C).

Furthermore, PDF levels were increased and had no rhythms in the mutants (Fig 3A and 3B).

Of note, no statistical difference in axonal areas was detected between ZT2 and ZT14 both in

the mutants and the control genotype (Fig 3C). Thus, this quantification method was probably

not sensitive enough to detect daily structural changes in this genetic background, although

the same method successfully detected rhythmic changes in axonal structure in our previous

study [40]. Nevertheless, these observations suggest that NOS deficiency leads to defects in the

morphology of s-LNvs dorsal projections and disturbances in the rhythms of PDF accumula-

tion. The latter finding suggests that clocks in the s-LVs are arrhythmic or their downstream

events are impaired.

To assess whether molecular clocks are functional in NOS mutants, we performed around-

the-clock immunostaining of a key clock component PER on the third day of constant dark-

ness (DD3). Surprisingly, neither the phase nor the amplitude of the PER rhythms in the s-

LNvs was altered in NOS mutants (Fig 3D). Molecular clocks of the LNds also maintained

high-amplitude 24-h rhythms in mutants (Fig 3E). Therefore, the arrhythmic behavioral phe-

notype of NOSΔmutants is uncoupled from the state of the molecular clocks and principally

caused by the impaired clock output. The impairments in clock output may be due to the mal-

formation of s-LNvs dorsal projections, which likely disrupt network communication to and

from the s-LNvs, in addition to defects in possibly many other cells involved in locomotor

output.

NO from diverse cellular groups can modulate the state of the molecular

clocks and behavioral output

Whereas NOS is undoubtedly important for developmental processes, the fact that NO contin-

ues to be produced in the brains of adult flies (Fig 1C) suggests that NO may also have an active

role in the regulation of circadian rhythms. It was previously shown using an anti-NOS serum

[41] that NOS is expressed almost everywhere in the brain. However, since the anti-NOS

serum does not distinguish various NOS isoforms, sites of NOS expression may not be identi-

cal to the loci of active NO production. Additionally, classical histochemical studies of

NADPH diaphorase activity of NOS and soluble guanylate cyclase (sGC)/cGMP immunohis-

tochemistry have suggested that NOS is active in sensory pathways including visual system, in

memory circuits including the calyx of the mushroom body, in the central complex, and also

in some glial cells [32, 39, 42–44]. Since these were all indirect assessments of NO production,

we analyzed the localization of NO in the brain using the NO-specific fluorescent probe

DAR4-M. DAR4-M staining showed distinct patterns of cell bodies and neurites in many

areas. The signal intensity was particularly high within and around the central complex and in

the optic lobe, with cell bodies arranged in concentric semicircles, reminiscent of the laminar

and medulla glial cells [45] (Fig 4A). We also detected DAR4-M signal co-localized with sur-

face glia marked by GFP driven with the pan-glial driver Repo-GAL4 (Fig 4B). These patterns

were overall similar to those described for the localization of NADPH diaphorase activity and

cGC/cGMP. In addition, since DAR4-M staining is not sensitive enough to assess daily varia-

tion of NO production, we examined the temporal expression pattern of the functional

PLOS GENETICS Nitric oxide and Drosophila circadian rhythms

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008312 June 29, 2020 7 / 21

https://doi.org/10.1371/journal.pgen.1008312


PLOS GENETICS Nitric oxide and Drosophila circadian rhythms

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008312 June 29, 2020 8 / 21

https://doi.org/10.1371/journal.pgen.1008312


isoform dNOS1 using qPCR. We found that mRNA of the dNOS1 was rhythmically expressed

in the fly head, peaking around ZT10 in LD (Fig 4C), suggesting that overall NO levels in the

brain may exhibit circadian variation at least in LD.

Interestingly, we detected a slight enrichment of DAR4-M fluorescence within the s-LNvs

marked with Pdf>mCD8::GFP (Fig 4D). This was unexpected because previous transcriptome

studies found very little or no NOS expression within the s-LNvs [13, 46, 47]. This finding also

suggests that NO produced elsewhere migrates to the s-LNvs. Within the s-LNvs, transcrip-

tional regulation by E75 and UNF is a unique and important node of the molecular clockwork

[14, 15]. Intriguingly, it was shown that heterodimerization of E75 and UNF is inhibited by

NO in vivo and in vitro [21]. Therefore, we asked whether the state of the molecular clocks can

be modulated by increasing NO within the s-LNvs. To this end, we overexpressed a macro-

phage-derived constitutively active NOS (macNOS) under the UAS control [19] using Pdf-
Gal4 and performed PER staining on DD3 every 4 h (Fig 5A). The increase of NO within the

PDF positive neurons was confirmed by DAR4-M staining (S2 Fig). This manipulation lead to

a delay of the PER induction phase by about 4 h without dampening the amplitude of PER

rhythms. In contrast, PER levels and oscillations in the LNds and DN1s showed no change

with the overexpression of macNOS in the LNvs (Fig 5B).

Pdf>macNOS flies had a slight extension of free-running period. Their circadian rhythmic-

ity appeared slightly reduced but was not significantly different compared with the driver-only

control. Because Pdf-GAL4 is expressed in both s- and l-LNvs, these phenotypes may be a com-

pound effect from both cell types. When we expressed macNOS under the s-LNv-specific

R6-Gal4 driver, we observed a reduction in rhythmicity but no differences in the period length

(Table 1). Morning anticipation was blunted in R6>macNOS but was apparently normal in

Pdf>macNOS flies, suggesting that the genetic background rather than macNOS expression in

the s-LNvs affected the LD behavior (S3 Fig). Therefore, the major behavioral consequence of

forced NO production in the s-LNvs is a reduction in free-running rhythmicity. This is proba-

bly a consequence of the misalignment of molecular phases between the s-LNvs and other

clock neurons (Fig 5A and 5B).

The results of the DAR4-M staining and the finding that NO can regulate the state of the

molecular clocks prompted us to investigate whether NO produced in specific cell types or

brain area is important for normal circadian locomotor activity. Therefore, taking into account

that NO can act both locally and remotely, we selected a set of GAL4 drivers and drove the

expression of macNOS. Locomotor activity of these flies was assayed in standard LD-DD

conditions.

As summarized in Table 1, we used two clock cell-specific drivers Tim-GAL4 and

Clk1982-GAL4; a mushroom body-specific driver DH52-GAL4; three generic optic lobe-spe-

cific drivers GMR33H10-, GMR79D04-, and GMR85B12-GAL4 (S1 Table); a glia-specific

driver Repo-GAL4; and two pan-neuronal drivers elav-GAL4 and R57C10-GAL4. Strikingly, all

of them except elav-GAL4 induced a reduction of rhythmicity when driving UAS-macNOS.

This is probably because pan-neuronal elav-GAL4 is a weaker driver than another pan-

Fig 3. NOS deletion causes the malformation of the axons of the s-LNvs but does not affect their molecular clocks. (A) s-LNv axonal terminal

projections and PDF neuropeptide in NOS mutants were visualized by expressing mCD8::Venus with gal1118-GAL4 and staining with anti-GFP and anti-

PDF antibodies at ZT2 and ZT14. The control is gal1118>mCD8:: Venus in w1118 background. Representative confocal images are shown. For visualization

purposes only, the contrast of ZT14 magenta channel (PDF) is enhanced. Scale bar, 10 μm. (B and C) Quantifications of PDF levels in axonal arbor area (B)

and the area of the terminal branches. Each dot represents the measurement from one hemisphere. Lines represent mean and SD. Differences across all

groups were compared using one-way ANOVA with Brown-Forsythe and Welch test for multiple comparisons. Differences between groups were considered

significant if p<0.05 (�p<0.05, ��p<0.01, and ����p<0.0001). (D and E) PER levels in in the s-LNvs (D) and LNds (E) in the control and NOSΔmutants were

analyzed every 4 h on DD3 by immunostaining using anti-PER antisera. Values represent mean PER immunofluorescence intensity. Error bars, SEM. NOS

deletion does not affect PER rhythms.

https://doi.org/10.1371/journal.pgen.1008312.g003
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neuronal driver R57C10-GAL4 [48]. The reduction of rhythmicity was markedly dramatic

with Repo, tim and optic lobe specific drivers. LD behavior was not obviously affected in any

Fig 4. NO production in the brain. (A) NO staining with DAR4-M showed an accumulation of NO in the medulla neuropil (Me), lobula (Lo), the central complex (CCX)

and its surrounding area. Representative images of the brains of w1118 flies (left) and of Pdf>mCD8::GFP flies (right) are shown. (B) DAR4-M staining colocalizes in the

nuclei of surface glia in the brain marked with Repo-GAL4>GFP. Left, a close-up of a single confocal z-plane focusing on the surface glia is shown. Right, a 3D

reconstruction of 14 z-sections showing a frontal part of a brain, visualized from a ventral-lateral angle. Scale bar: 20 μm. (C) Relative expression of dNOS1 isoform in the

brain was measured by qPCR in 6 timepoints in LD. Data are shown as mean ± SEM. One-way ANOVA with Dunnett’s multiple comparisons test showed significant

differences across timepoints (�p<0.05, ��p<0.01, ���p<0.001). (D) Enrichment of the DAR4-M signal in the cell body of LNvs marked with Pdf>mCD8::GFP.

Arrowheads indicate l-LNvs and an arrow indicates a s-LNv. Scale bar, 20 μm. A representative confocal image taken at ZT0 is shown.

https://doi.org/10.1371/journal.pgen.1008312.g004
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genotype (S3 Fig). Collectively, these results indicate that overproduction of NO is generally

disruptive to locomotor rhythms and suggest that the NO production and clearance should be

tightly regulated.

To find cell types that natively produce and secrete NO and contribute to the control of

locomotor rhythms, we next performed an opposite experiment. We expressed RNAi against

NOS (VDRC #27725) using a similar set of drivers and analyzed its effects on behavioral

rhythms (Table 1). Consistent with the likely absence of NOS within the s-LNvs, NOS RNAi

with Pdf-GAL4 and R6-GAL4 did not show any behavioral phenotype. NOS RNAi driven with

a mushroom body driver DH52-GAL4 caused a reduced rhythmicity, whereas macNOS expres-

sion with the same driver had no effect. Most of the other drivers that disrupted rhythms with

macNOS expression also reduced behavioral rhythmicity with NOS RNAi. These include a

pan-neuronal driver R57C10-Gal4, optic-lobe drivers GMR79D040-Gal4 and

GMR85B12-Gal4. The strongest effect was observed with Repo-GAL4 and tim-Gal4, whereas

there was no effect with Clk1982-Gal4. Since the expression of Clk1982-Gal4 is relatively

restricted to CLK-positive neurons, these results suggest TIM-positive glial cells as an impor-

tant source of NO in the regulation of circadian locomotion. Repo-Gal4 driving a second inde-

pendent RNAi against NOS (TRiP #50675) also reduced free-running rhythmicity (3%

rhythmic, period 24.0 ± 0 h, n = 31). Another VDRC RNAi line (#108433) had no effect on

Fig 5. Hyperproduction of NO delays PER rhythms in the s-LNvs. PER in the brains of PDF>macNOS and control flies carrying

only UAS-macNOS were monitored every 4 h on DD3 by immunostaining with anti-PER and anti-PDF antibodies. (A) Representative

confocal images of the s-LNvs (left) and PER levels in the s-LNvs (right). (B) PER levels in DN1s and LNds. Mean ± SEM. Red and

black arrows in (A) point at the trough of PER rhythms in Pdf>macNOS and control flies, respectively. PER rhythms in the s-LNvs

are delayed by approximately 4 h in PDF>macNOS flies.

https://doi.org/10.1371/journal.pgen.1008312.g005
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behavior with any driver, which is most likely due to an inefficient knockdown compared to

the VDRC #27725 line, judging from the NO staining intensity (S4 Fig). LD behavior was dif-

ferently affected by NOS knockdown with variety of drivers, such as an increase in nighttime

activity and lack of the startle response to lights-off. However, all groups showed bimodal

activity patterns (S3 Fig). Altogether, the results of NOS gain- and loss-of-function mini

screens indicate that NO produced in many different cell types, excluding pacemaker neurons,

contribute to generating normal free-running locomotor rhythms.

NO produced in glia plays an active role in the regulation of locomotor

output

Constitutive NOS knockdown may cause structural abnormalities in the brain that lead to the

reduction of rhythmicity, as evidenced by the phenotypes of NOSΔmutants (Figs 2, 3A and

3B). Therefore, to test if NOS is required for active maintenance of rhythmicity after eclosion,

we performed the adult-specific knockdown of NOS using pan-neuronal, optic lobe specific

and glial GAL4 drivers combined with the temperature-sensitive GAL4 repressor, GAL80ts

[49] (Table 1). Glia-specific NOS knockdown caused a notably strong reduction of rhythmic-

ity. In addition, NOS RNAi driven by the pan-neuronal R57C10-Gal4 extended the free-run-

ning period. These results indicate an indispensable role of NO produced in glia for generating

circadian locomotor output in adult flies, as well as an existence of a neuronal circuit through

which NO signaling regulates the free-running period. PDF levels and rhythms in the s-LNvs

were not altered by NOS knockdown with Repo-GAL4 restricted to adulthood (Fig 6A). The

morphology of axonal arbors of the s-LNvs was also not affected by NOS knockdown in adult

glia, judging from the distribution of PDF (Fig 6A). These results suggest that glial NOS regu-

lates locomotor rhythms by acting on the process downstream of the circadian pacemaker

circuit.

Glia are found throughout the nervous system and play diverse roles, including the mainte-

nance of neurotransmitter and ionic homeostasis, maintenance of the blood-brain barrier, and

serving as immune cells. Generic glial subtypes in Drosophila are identified as astrocyte-like,

cortex, ensheathing, subperineurial and perineurial glia, and can be separately manipulated

using specific GAL4 drivers [45]. To examine whether NO produced in specific subtypes of

glia regulates circadian locomotor behavior, we drove NOS RNAi with glial subtype-specific

drivers and analyzed the locomotor behavior (Table 2). NOS knockdown in perineurial glia

with the GMR85G01 driver markedly reduced locomotor rhythmicity in DD, without affecting

LD behavior (Fig 6B and 6C). This phenotype is comparable to that caused by pan-glial NOS

knockdown. NOS knockdown with four other drivers resulted in a slight change in period

without deteriorating rhythm strength. We therefore conclude that the perineurial glia is the

major site of NOS activity that regulates locomotor output. Our DAR4-M staining of NO in

surface glia supports this finding (Fig 4B). Additionally, a previous transcriptome study has

demonstrated the expression of the NOS gene within surface glia [50], further supporting our

results. The perineurial glia form the outer layer of the blood-brain barrier, the structure cru-

cial for chemoprotection and selective transport of nutrients (Fig 6D) [51]. Since perineurial

glia contain circadian clocks [52], these results are congruent with the arrhythmic behavior

caused by NOS knockdown with Tim-GAL4 (Table 1).

Discussion

Gaseous signaling molecules play important roles in a myriad of biological processes, includ-

ing circadian rhythms in mammals. Here we investigated the possible involvement of NO in
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Fig 6. NO produced in the perineurial glia controls circadian locomotor output. (A) NOS RNAi was driven in glia only during adulthood with Repo-GAL4, tub-
GAL80ts and a temperature shift from 18˚C to 29˚C after eclosion. Immunostaining with anti-PDF antibody performed at ZT2 and ZT14 showed that NOS RNAi in adult
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Drosophila circadian rhythms. Our results overall suggest that NO exerts temporarily and spa-

tially diverse effects on the Drosophila circadian system.

It is rather surprising that the lack of NOS enzyme is not lethal [37] as NO is part of various

developmental processes [19–21, 39, 53]. NOSΔmutants are nonetheless strongly arrhythmic

in DD and have reduced morning anticipation in LD. Our data suggest that both congenital

impairments and lack of NO signaling in adulthood contribute to the behavioral phenotype of

the mutants. Axonal terminals of the master pacemaker, s-LNvs, in NOS mutants are pro-

foundly disordered, suggesting the wrong or absent synaptic connections with the downstream

partners. However, molecular rhythms in the pacemaker neurons are unaffected. During

adulthood, NOS activity in the perineurial glia is required for producing free-running locomo-

tor rhythms but not for maintaining PDF rhythms and structure of the s-LNvs. This finding

glia did not affect PDF levels and morphology of the s-LNvs projection patterns. Left, representative confocal images. For visualization purposes only, the contrast of ZT14

images is enhanced. Scale bar, 10 μm. Right, quantification of PDF signal intensity and the area covered by PDF signal within the axonal arbors. Values represent

mean ± SD. ����p<0.0001 by one-way ANOVA with Brown-Forsythe and Welch test for multiple comparisons. The numbers of samples are shown in the columns. (B)

Average locomotor activity of flies expressing NOS RNAi in perineurial glia (85G01>NOS RNAi) and control flies. (n = 30–32 per group) (C) Group average locomotor

activity in LD, averaged over 3 days. Rhythmic and arrhythmic flies were separately grouped. The percentage of rhythmic flies in each genotype is shown in Table 2. (D)

Diagram of the perineurial glia and subperineurial glia that form the blood-brain barrier in the Drosophila adult brain. The perineurial glia contact and brace neighbors

through fine extensions, covering the nervous system in a dense layer.

https://doi.org/10.1371/journal.pgen.1008312.g006

Table 2. Effect of NOS knockdown in glial subpopulations on free-running locomotor rhythms. The left-most column indicates the expression of drivers are

expressed. n, number of flies. %R, % of rhythmic flies. Mean periods and rhythmicity of the test groups were compared with those of GAL4-only controls using Student’s t-

test and chi-square test, respectively.

Genotype Period ± SEM (hr) Power ± SEM n %R

UAS-Control NOS-RNAi27725/+ 23.6±0.03 168.7±10.72 32 100

Astrocyte-Like GMR55B03/+ 23.2±0.06 124.5±8.00 31 87.1

GMR86E01/+ 23.6±0.14 98.7±6.9 32 84.4

alrm/+ 23.9±0.09 107.2±11.79 23 91.3

GMR55B03>NOS-RNAi 23.4±0.05� 177.0±9.17 31 100

GMR86E01>NOS-RNAi 23.7±0.04 130.1±9.78 31 93.5

alrm>NOS-RNAi 24.3±0.06��� 155.3±10.71 23 100

Ensheathing GMR56F03/+ 23.4±0.05 80.8±8.44 30 80

GMR75H03/+ 23.4±0.05 143.0±10.32 32 90.6

GMR56F03>NOS-RNAi 23.6±0.03�� 116.8±9.92 32 75

GMR75H03>NOS-RNAi 23.5±0.04 175.8±10.73 32 100

Perineurial GMR85G01/+ 23.3±0.06 92.5±10.37 31 83.9

GMR85G01>NOS-RNAi 24.2±0.09���� 58.8±5.47 30 30����

Subperineurial GMR54C07/+ 23.3±0.05 164.2±10.32 31 96.8

GMR54C07>NOS-RNAi 24.0±0.06���� 153.4±11.95 32 96.9

Cortex GMR53B07/+ 23.6±0.06 107.9±5.74 31 80.6

GMR54H02/+ 23.4±0.04 120.3±11.31 29 93.1

GMR46H12/+ 23.6±0.06 172.4±11.52 29 96.6

GMR53B07>NOS-RNAi 23.6±0.04 156.2±11.09 31 90.3

GMR54H02>NOS-RNAi 23.5±0.05 165.2±12.51 30 90.0

GMR46H12>NOS-RNAi 23.7±0.05 240.6±6.76 30 100

�p< 0.05

��p< 0.01

��� p< 0.001

����p<0.0001.

https://doi.org/10.1371/journal.pgen.1008312.t002
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indicates that NO produced in the perineurial glia is necessary for proper the functioning of

circadian locomotor output circuits. Taken together, these results demonstrate that NO signal-

ing is essential for establishing and controlling circadian output circuit.

The functional isoform dNOS1 shows a circadian variation of its RNA levels throughout the

day, which suggest that levels of NO could cycle at least in LD. However, dNOS is likely to be

regulated by its truncated isoforms in a stage- and cell-type-specific manner, which lays an

additional complexity to the regulation of NO production and probably leads to the heteroge-

neous and context-specific variations of NO. Hyperproduction of NO modulates molecular

clockwork, albeit modestly, and is generally detrimental to locomotor rhythms. Therefore, the

level and potentially the rhythms of NO production should be tightly controlled in wild-type

flies.

In our NOS RNAi mini screen, two optic lobe-specific drivers, GMR79D04 and GMR85B12,

reduced locomotor rhythmicity in DD. This phenotype was observed when NOS was downre-

gulated constitutively in these cells but not when knockdown was restricted to adulthood.

These results reinforce the idea that NO is necessary for a proper establishment of neuronal

circuits. A low rhythmicity phenotype caused by NOS knockdown with the pan-neuronal

driver GMR57C10-GAL4 is congruent with the above findings. Intriguingly, however, in addi-

tion to the low rhythmicity, GMR57C10> NOS RNAi in adulthood resulted in an extended

period. What might be the neuronal subsets that produce NO and regulate period length of

locomotor activity? A recent study by the group of Y. Aso and G. Rubin [54], has shown that

NO acts as a co-transmitter in a subset of dopaminergic neurons, specifically in some of the

PAMs, PPL1s and PPL2abs. It is thus possible that dopamine signaling modulated by NO is

involved in the control of the locomotor activity period. It is also noteworthy that NO-medi-

ated signaling has a profound neuromodulatory effect on spinal motor networks and regulates

frequency and amplitude of motor activity in various vertebrate species [55–57]. NO-mediated

regulation of circadian locomotor output in flies might involve a similar mechanism.

Our DAR4-M staining showed an enrichment of NO in glial cells, including the surface

glia. Targeting glial cells leads to the strongest and most persistent phenotype in locomotor

activity both for gain- and loss-of-function of NOS. Among glial subpopulations, the perineur-

ial glia appears to be the major site of NOS activity that regulates locomotor rhythms. The

importance of glia in circadian rhythms have been recognized, especially those containing the

molecular clocks and exert reciprocal communication with the pacemaker neural circuit [58–

60]. It has been shown that the perineurial glial cells harbor molecular clocks, which drive

daily rhythms in the blood-brain barrier permeability but are not required for locomotor activ-

ity rhythms [52]. Our study is the first to identify NO as a signaling molecule produced in glia

and mediates part of the role of glia, independently of their molecular clocks, in Drosophila cir-

cadian rhythms.

It has been shown that in mammals NO mediates light-induced phase-shifts through the

cGMP pathway [29]. It is an interesting parallel to note that forced production of NO in the s-

LNvs caused phase shift rather than amplitude dampening. Since high levels of NO inhibit

E75/UNF dimerization [21] and E75/UNF normally enhances per transcription [15], we spec-

ulate that NO-induced phase-shift may be partly mediated by the inhibition of E75/UNF het-

erodimerization. It will be interesting to test this hypothesis in future studies. Mammalian

clocks contain E75 homologs REV-ERB α/β, which repress Bmal1 transcription. Analogous to

the notion in flies, NO is thought to decrease REV-ERB α/β activity. Consistently, in vitro stud-

ies in mammalian cell culture showed that excessive presence of NO increases the production

of Bmal1 mRNA[61]. These findings altogether point out that NO is an evolutionarily con-

served regulator of circadian rhythms.
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In line with recent studies [7, 62], our research expands the view on the factors that partici-

pate in neuronal and molecular mechanisms of circadian rhythmicity. The finding that gas-

eous messenger NO contributes to the various aspects of circadian rhythmicity emphasizes

that non-cell-autonomous, systemic regulation is integral to the circadian circuit operation.

Our results set a foundation for future studies addressing the mechanism by which NO signal-

ing modulates the state of the pacemaker circuit and its output.

Materials and methods

Fly rearing, crosses, and strains

Drosophila were reared at 25˚C on a corn-meal medium under 12 hr:12 hr light-dark (LD)

cycles. Two CRISPR deletion mutants NOSΔter, NOSΔall were kindly provided by O. Schuldi-

ner [21]. The UAS-macNOS line was originally generated by H. Krause [19] and provided also

by O. Schuldiner. The drivers GMR57C10, GMR79D04, GMR85B12, GMR33H10, GMR55B03,

GMR86E01, alrm-GAL4, GMR56F03, GMR75H03, GMR85G01, GMR54C07, GMR53B07,

GMR54H02, GMR46H12 [63], deficiency stock Df(2L)BSC230, and UAS-NOS-RNAi56675 were

obtained from Bloomington Stock Center (Indiana, US). The UAS lines NOS-RNAi27725 and

NOS-RNAi108433 were obtained from the Vienna Drosophila Resource Centre (VDRC). The

Clk1982-Gal4 line was provided by N.R. Glossop [64]. The lines Pdf-Gal4 [65], Repo-Gal4 [66],

OK107-Gal4 [67], D52H-Gal4 [68], GMR-Gal4 [69], Elav-Gal4 [70], and R6-Gal4 [71] were

described previously. NOSΔ15 was a gift from P. O’Farrell [37].

Behavioral assays

The locomotor behavior assay was performed as described previously [14] and data were ana-

lyzed using FaasX software [72]. Briefly, male flies were first entrained in 12 h/12 h LD cycles

for 4 days and then released in DD for 7–10 days. The flies with power over 20 and width over

2.5h according to the χ2 periodogram analysis were defined as rhythmic. The significance

threshold was set to 5%. The χ2 test was used to compare the rhythmicity of the flies, and the

Student’s t test (2-tailed) was used to compare the free-running period. One to four indepen-

dent experiments were performed for each genotype.

Immunocytochemistry, microscopy and quantification

The brains were imaged using a Leica SP5 confocal microscope. At least 10 brain hemispheres

were subjected to analysis using Image J software (National Institutes of Health). The anti-PER

signal was quantified as previously described [14]. Axonal branching patterns of s-LNvs and

PDF levels were quantified as previously described [40].

Nitric oxide visualization and measurements

NO visualization was performed as described in [21] with minor modifications. Brains were

dissected in PBS and incubated with 10μM Diaminorhodamine-4M AM (DAR-4M, Sigma-

Aldrich) in PBS for 1 h at RT, followed by the fixation for 15 min in PBS containing 4% para-

formaldehyde. Immediately after the fixation brains were mounted and imaged. For NO mea-

surements at different times of the day, the procedure was exactly the same with the omission

of the fixation step. Long-term NO measurement in ex-vivo brain culture was performed as

described in [73]. Briefly, brains were dissected on an ice-cold plate in modified Schneider’s

medium (SMactive) [74] with an addition of 5 mM Bis-Tris (Sigma) and then mounted on a

glass-bottom dish (35 mm MatTek petri dish, 20 mm microwell with 0.16/0.19 mm
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coverglass). The glass-bottom well was filled with the SMactive medium with 10 μM DAR-4M.

Time-lapse imaging was performed at 25˚C and 80%, with images acquired every hour.

RNA analysis

Total RNA was isolated from adult fly heads using Trizol (Invitrogen) following the manufac-

turer’s protocol. The RNA was reverse-transcribed using oligo(dT) primers, and the resulting

cDNAs were quantified using real-time qPCR as previously described [47]. The mRNA levels

of dNOS1 were normalized to those of elongation factor 1 (Ef1).

Supporting information

S1 Fig. NOS splice isoforms. dNOS1 and presumably dNOS8 encode functional complete

enzyme. The rest isoforms lead to a truncated enzyme. Information is taken from [34].

dNOS1-specific primers used are (F) GGC GAG CTT TTC TCC CAG GA, and (R) GAC GAG

CCA ATG CTG GAG TC, indicated in red.

(EPS)

S2 Fig. Upregulation of NO upon macNOS overexpression. DAR4-M staining of brain

expressing macNOS in Pdf-Gal4. Left, Representative confocal images. Right, comparison of

DAR4-M fluorescent levels of a single representative WT and Pdf>macNOS brains within

the region of s-LNvs.

(EPS)

S3 Fig. Manipulation of the NOS gene does not affect LD locomotor behavior. Group aver-

age locomotor activity of macNOS or NOS-RNAi27725 expressed with indicated drivers. 4 days

of LD are shown.

(TIF)

S4 Fig. NOS-RNAi efficiency comparison. NO levels in the brains of flies expressing NOS-R-
NAi27725 or NOS-RNAi108433 with Elav-GAL4 were measured using DAR4-M staining. Fluores-

cence levels were quantified broadly in the region of the central brain, approximately in the

area of the central complex. RNAi line 27725 induces a significant reduction of DAR4-M sig-

nal. ��p<0.01 (Student’s test).

(EPS)

S1 Table. Optic lobe-specific drivers. Distribution and intensity of the tested generic optic

lobe (OL)-specific drivers, taken from Janelia Fly Light project. Original characterization was

based on the GFP expression. Expression of all three OL-specific drivers are enriched in the

OL. Expression outside the OL is weak and occasional.
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