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Sequencing is accepted as the “gold” standard for genetic analysis and continues to be used as a validation and reference tool.
The idea of using sequence analysis directly for sample characterization has been met with skepticism. However, herein, utility
of direct use of sequencing to identify multiple genomes present in samples is presented and reviewed. All samples and “pure”
isolates are populations of genomes. Population-Sequencing is the use of probabilistic matching tools in combination with large
volumes of sequence information to identify genomes present, based on DNA analysis across entire genomes to determine genome
assignments, to calculate confidence scores of major and minor genome content. Accurate genome identification from mixtures
without culture purification steps can achieve phylogenetic classification by direct analysis of millions of DNA fragments. Genome
sequencing data of mixtures can function as biomarkers for use to interrogate genetic content of samples and to establish a sample
profile, inclusive of major and minor genome components, drill down to identify rare SNP and mutation events, compare relatedness
of genetic content between samples, profile-to-profile, and provide a probabilistic or statistical scoring confidence for sample
characterization and attribution. The application of Population-Sequencing will facilitate sample characterization and genome

identification strategies.

1. Background

A paradigm shift in microbial-forensics is emerging due
to the potential of interrogating comprehensive genome
content of samples via direct application of Next-Generation
sequencing. The innovative process of sequencing popula-
tions of entire pathogenic mixtures as opposed to sequencing
isolates, from diverse samples, and comparing to a standard
reference is described. The approach greatly accelerates and
vastly shortens the interval from time/point of contact, to
specific pathogen and strain identification. This abbreviated
timeline is critical to respond to and treat exposure victims.
Moreover, tracing the origins of strains is accentuated, which
facilitates rapid investigation. Population-Sequencing will be
more productive to provide genome information than to
singly clone one genome from the sample population and
then analyze that genome individually cultured from it.
Herein, direct and practical solutions as well as some current
limiting dogmas in this area are presented.

Whole genome sequencing (WGS) analysis has become
feasible for molecular biology and comparative genetics due
in large part to available tools, such as BLAST [1], and Mum-
mer [2]. However, existing tools have recognized limitations
and require refinement for forensics applications to address
data artifacts and pipeline errors, including sequencing errors
and algorithm bias (Figure 1). If artifacts, errors, and limita-
tions are not handled appropriately, no amount of computing
will derive accurate answers [3, 4]. Bioforensics requires
new methods and tools to reconcile errors, determine rela-
tionships between samples, and distinguish between real
signal versus noise, to accurately identify organisms present
in samples and provide confidence identifying major/minor
populations and their concentrations [5, 6]. A process for
Accurate Bioinformatics Calibration (ABC) is needed to
address errors recognized by the community and to resolve
bias and artifacts. In addition, sequencing instruments were
designed to facilitate genome assembly and not intended for
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FIGURE 1: Metagenomic sequencing has its own set of limitations
including system bias and random noise. The general science com-
munity is aware of many of the limitations. A subset of challenges
to accurate genome identification is recognized by those active in
sequencing research, while two factors (artifacts and bias) are rarely
adequately resolved.

population analysis. Comprehensive detection of microor-
ganisms in samples with accurate identification at the strain
level is a challenge in microbiology, particularly when com-
plex indigenous communities or subpopulations varying in
viability, activity, and physiological state are investigated
[7]. Accurate characterization of a sample is dependent on
ascertainment of the genetic variation between microorgan-
isms with resolution down to strain level. Development of
bioinformatics tools to process volumes of sequence data
provides solutions to many challenges, including bacterial
forensics where Population-Sequencing identifies genome
content of samples and differentiates between samples by
creating genetic diversity profiles unique to each sample.

Whole genome analysis: genomic analysis progressed
through comparisons of sequence fragments to genes to
whole genomes [8, 9]. The benefit of whole genome analysis
over a selected panel of signature markers was made evident
in human forensics and analysis of mitochondrial DNA
[10, 11]. These pioneering applications of analysis of entire
genomes used sequence information to measure dynamics of
entire sequences of interest. These examples point us in the
direction of looking at comprehensive sequence information
to characterize samples, rather than analysis of discreet
regions of genomes, intended to describe one genome in the
mixture: the product of consensus sequencing. DNA analysis
of human mitochondria (huMT) showed the resolution of
whole genome analysis for genome identification and dif-
ferentiation, which can be applied to microbes for adoption
of whole genome analysis for identification of individual
genomes from metagenomic mixtures [12]. Instead of clas-
sical methods and instead of DNA methods that consider
small percentages of the genome (PCR, etc.), whole genome
sequencing can be directly applied to microbe identification
[13-15].
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2. Biodiversity Improves the Accuracy of
Population-Sequencing

A wide range of molecular detection technologies are being
developed and used for genomic analysis of pathogens and
their communities [8, 16]. Increasingly it is understood
that pathogens from the environment show variability in
sequence and that any given species contains strains that
are related but not of identical reference sequence [17].
Only recently are microbial communities beginning to be
characterized as metagenomic samples for the purpose of
community profile-to-profile comparisons [18]. Based on
fundamental knowledge of the pan- and core-genomes and
high content/deep sequencing capabilities of sequencing
platforms, it is possible to characterize genetic variation
within and between bacterial pathogens, multiple isolates,
and commensal near neighbor species and establish a profile
of the major, and to some extent, minor genetic content
of samples [19]. Metagenomic approaches based on direct
sequencing represent powerful tools to compare genome
profile of mixtures [20-23]. Alternatively, microbial diversity
in metagenomic samples has been assessed by analysis of
conserved marker genes, for example, 16S rRNA genes [24].
Initial sample analysis investigated the variety of genes
in samples [25]. However, comprehensive descriptions of
genomes and accurate identification at the strain level of
genomes present and statistical measurement about the
confidence on concentrations or relative abundance are
needed. The resultant stain-level profiles are analogous to less
sensitive profiles generated from microbiome studies, which
assign bacteria into genera, often precluding resolution even
to the genus level [17, 26, 27].

Direct sequencing of populations provides a more com-
prehensive analysis of genetic content within the sample [28,
29]. However, evaluation of sequence data output requires
appropriate interpretation without over-fitting (Figure1).
One way to improve accuracy is to develop Bayesian
approaches to compare data between pathogens and their
near neighbors. The models resolve genetic mixtures to
the maximum, information theoretic, justifiable extent to
calculate statistical confidences assigned to both genome
identity and sample population proportions. Still caution
when interpreting sequence raw data is required because
there are also many types of system error and artifacts iden-
tified when sequencing populations of lineages of biothreat
agents. While some system errors can be observed when
using sequencing standards, instead of sequencing standards,
what must be developed are powerful probabilistic methods
that scour data sets to filter-out artifacts, enabling a probable
estimate of accurate assignment of sequence data to genomes:
distinguishing between artifact and sequence data useful
for accurate genome identification. Horizontal gene transfer
events and similar variants may arise repeatedly given an
adequate supply of exogenous DNA, an environmental DNA
pool, and positive selection pressures in the environment
that maintain that variant. This integration of exogenous
DNA may allow optimization of highly adaptable regions
of the genome, thus enhancing the fitness of the genome
for a particular niche similar to the superintegron region
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FIGURE 2: Bacterial strains from a single colony are divided into
12 parallel cultures before passaging occurs in different media
conditions, eight consecutive times. At the end of the experiment,
clones from each “lineage” are selected, sequenced, and analyzed for
genetic drift and relatedness.

[30]. Indeed, enhanced characterization can be exploited by
using incorporating approaches to identify genomic adaptive
signatures of natural selection [31].

To advance metagenomics, new insights on system errors
and artifacts needed to be understood and solutions incor-
porated into bioinformatics approaches. There are efforts
to reconcile sample analysis performed at different levels,
individual genes to population characterization [32]. This is
especially true in the case of organisms modified by envi-
ronmental pressures or selective pressures of host or manip-
ulation in laboratories. Under the Bio-agent Early Warning
Detector program (BEWD) (Bio-agent Early Warning Detec-
tor (BEWD) was a DTRA initiative to evaluate capability of
Population-Sequencing for sample characterization without
sample prep or culture, involving sequencing of extracted
DNAs from mixtures and subsequence probabilistic match-
ing of sequence information to describe the populations
of genomes present in samples from water, soil, air, and
clinical specimens) population-sequencing was applied to
characterize the extent of modification and variation of
biothreat agents cultured in the laboratory and measured,
to a limited degree, expectations on such comparison and
their difference from variation by different natural environ-
ments. When sequencing is used to assess the variation, few
bioinformatics tools, reference free, and reference dependent
bioinformatics strategies are robust enough to account for
genetic diversity in samples and system errors and artifacts.
Sequence variants must be nonarbitrarily confirmed in both
forward and reverse reads at a rate above the background
noise level of sequencer machine error. A similarity distance
metric determines if compared genomes fall within a range
of near relationship. Using sequence data from strains of
Bacillus anthracis and other biothreat agents, comparisons
resulted in successfully attributing known related strains
together, and excluded near relation of known unrelated
strains (Figure 2).

The major strengths of these forensic methods are the
nonarbitrary determinations of data validation and related-
ness metrics, as well as the ability to compare microbial
genomes with or without a reference database of related
genomes and addresses prior assumed challenges; for exam-
ple, the definitions of “pure” and “isolate” are truly more
appropriately described as populations of genome diversity.
While there are many computer programs for sequence

analysis, BEWD overcame prior perceived limitations, for
example, the novelty of how sequence information is divided
into fragments of sequence data for analysis. Variability
across sequencing runs was properly addressed. Prior meth-
ods used a set k-mer size, but computational demands
limit efficiency and accuracy of such approaches [33, 34].
Analysis of population sequencing data revealed that the
fraction of the total probes that provided experimental results
consistent with the predicted results decreased substantially
with increasing divergence of the tester strain from the ref-
erence strain. Comparison of strains across the phylogenetic
tree produced predictable results; that sequences of targeted
genomes compared to a reference that is distant from the
target receive a low probability score and targets compared
to references that are highly related to the target receive the
highest probability score.

Traditional pathogen detection and characterization
approaches limit sample comparisons to matching clonal
isolates against reference libraries to first identify the species
and/or strain of the microbe [35, 36]. After the best matching
reference genome is found, variations from the reference
genome sequences are discovered. Data sets possessing simi-
lar sequence variations are clustered together by phylogenetic
analysis. Such approaches have bias on initial selection of
references. The chosen reference material is assumed to be the
representative genome out of the entire population. Instead,
the genetic content of the entire population should guide
selection of genomes for comparison. This avoids arbitrary
reference selection and results in comprehensive genetic
analysis of samples.

Microbial forensics needs a paradigm shift away from the
clonal isolate versus reference genome approach. Foremost,
real world samples rarely exist as homogeneous populations
of identical clones. Even populations that derive from single
cells acquire mutations that are not equally shared by all
members. Archived cultures contain variations of genome
content and those variants occur significantly even in the-
oretically clonal populations of slowly evolving bacteria.
While genome scale synteny analysis of relative gene-order
conservation between species can provide epidemiology and
evolutionary dynamics, forensics requires further informa-
tion to determine how one sample is associated with one
source. These “metagenomic” population samples require
bioinformatics approaches that deviate away from the clonal
isolate paradigm in order to accommodate potentially hun-
dreds of distinct genomes that may or may not be part of any
database.

3. Introduction to Population-Sequencing

Although nucleotide and aminoacid sequence-based ap-
proaches have been used in the past for inferring micro-
bial evolutionary relationships, over the last 10 years, these
methods have been increasingly used for typing and char-
acterizing their populations [37-39]. New awareness of the
vulnerability of national infrastructure to the intentional
introduction of pathogens or pests has led to the enhance-
ment of programs for prevention and preparedness [40].
A necessary component of a balanced biosecurity plan



is the capability to determine whether an outbreak may
have been deliberate, to trace that outbreak to its source
and to identify those responsible for it. Sequencing meth-
ods provide standardized and unambiguous data that are
portable through web-based databases with direct access to
the information needed to identify and monitor emerging
pathogenic agents [41, 42]. More importantly, sequence data,
unlike many other forms of molecular typing data, provide
direct genealogical information that can be used efficiently
to estimate phylogenetic relationships and parameters asso-
ciated with population dynamics [43]. Biodefense prepar-
edness begins with interpretation of the appropriate data to
detect, respond to bioagents, prevent an outbreak, and attrib-
ute a threat.

Microbial forensics is an emerging discipline that blends
elements of numerous disciplines including microbiology,
forensic science, and agricultural sciences. Sequence map-
ping capabilities which attempt to forensically characterize
microbiological evidence in support of attribution are limited
to detection of pathogens, often in a preselected, not blinded
approach. Forensics analysis requires more than detection
of single genomes in the population mixture, but a detailed
characterization and comparative assessment of the sample
genetic contents. Superficial detection approaches have left
gaps in forensic science; fortunately, analysis of populations
from single sources has developed microbial characterization
tools that fill the knowledge and capability gaps.

With the advent of next-generation sequencing ap-
proaches allowing for metagenomic sampling of microbes
from outbreak scenes [44], data are available to both char-
acterize novel genomic elements of pathogens and trace
those novel elements through evolutionary history for both
identification and tracking purposes. Because these data are
relatively new and constantly evolving, in terms of read
lengths, formats, quality, innovative and flexible pipelines for
data quality control checks, genome assembly, SNP detection,
visualization for comparative genomics, genome annotation,
ortholog assignment, and phylogenetic analysis that account
for artifacts and bias were developed.

3.1. The Advantage of Population-Sequencing. Population-
Sequencing establishes the capability to rapidly detect all
especially dangerous pathogens (EDP) and biothreat agents,
emerging or engineered, through analysis of sequencing
information from one run. Commercial R&D is focused
on personalized medicine applications and not on timeli-
ness. Technology advances, suitable for modification and
adaption to bioagent population detection, have emerged
more rapid than could be anticipated and planned for in a
traditional five-year POM cycle. In fact, cost of sequencing
has continued to decrease, but the cost associated with
handling and processing large volumes of sequence data has
increased dramatically [45-48]. Bioinformatics tools are now
needed to solve two challenges: namely, the challenge of
accurate genome identification of metagenomic samples and
reduction in the burden of sequence data analyses.
Direct-Sequencing of populations is an improvement
for bacterial forensics. On account of diversity of sev-
eral genomes and their variations in samples, probabilistic
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matching of many-to-many is greater than one-to-one; it is
possible to compare genetic population contents of evidence
to populations of source. The comprehensive genetic contents
of a sample represent the plurality of biomarkers for identifi-
cation, even as they evolve, dependent on the diversity of the
sample’s starting population; hence only one source will have
the same comprehensive diversity and thus match evidence to
single source. Understanding the direction of that diversity
is essential to make comparisons of samples with different
genetic content.

3.2. Experimental Design

(1) Observe DNA sequence mutations arising from an
originally clonal isolate of biothreat material, for
example, Bacillus anthracis strain Ames, when cul-
tured under stressful conditions in the laboratory.

(2) Determine the strengths and limitations of whole
genome sequence analysis for characterizing varia-
tion between similar substrains.

(3) Advance methods for determining “relatedness”
between microbial samples.

A single colony of biothreat material, for example, B.
anthracis strain Ames (BEI#NR-411), was passaged into 12 dif-
ferent plates. These twelve bacterial cultures were maintained
separately over the course of seven more passages. Each cul-
ture passage was started with a single clonal colony streaked
out on a petri dish. This created a single genome bottleneck at
each passage step. Mutational variations differentiating each
lineage were thus a result of initial variation in the source
clonally derived culture plus mutations accumulated during
the course of the eight growth and passage steps. A schematic
diagram of the experimental design is shown in Figure 2.
DNA was subjected to Illumina GA II sequencing and 2460
Mbp reads for community DNA samples.

A summary of the raw single ended read data for the
Bacillus anthracis samples (Figure 3).

Testing bioinformatics pipelines for sequence assembly
and analysis of bacterial genomes was done to evaluate
performance of different assembly software selected, based
on popularity and third-party performance comparisons.
All of these methods can perform gapped and ungapped
alignments against a reference genome and manage short
(<200 bp) and long reads (>200 bp).

3.3. General Nucleotide Diversity. Comparison of major
genomic features of B. anthracis (Figure 4). The SNPs and lack
of SNPs are based on genome assembly and alignment of the
clone from the final passage compared to the reference isolate
genome. The isolate was initially divided into 12 independent
lineages that were separately, but in parallel passage, exposed
to the same bottle necks, processed by the same selective
pressure, and extracted and sequenced on an Illumina GIIA.
Each nucleotide variant present in the passaged material
which is visualized has a peak above. Each nucleotide variant
absent is represented as a decrease in signal.
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FIGURE 3: Plots of sequencing reads from B. anthracis.

=

fn

Rz

3

2 04 ;

=)

o 02 ‘ i

e |

2 0.0l ‘ Al ek s

S 02 .

T _04 I

: —VU.

£ [ I I I I I I |

— =) ~ © ) © 0 © )

& S S S S S S S S
+ + + + + + + +
) © © N © © ) N
= S S A S # S Iy
(=] n — — N N o o

Genome position

FIGURE 4: Example of subpopulation genetic diversity of passaged
strains measured against progenitors.

The results show that the passaged genome is one compo-
nent of the population of genomes from the isolate. Although
the initial starting material was characterized by consensus
sequencing to be B. anthracis Ames, there are many variants
of the Ames strain present in the initial population. This
comparison is one of 80 possible variants that represent major
and minor components of the population. All the positions
and types of variants were catalogued and used to build SNP
phylogenies.

3.4. Nonarbitrary Genetic Detection. ldentification of geno-
mes in mixtures is dependent on correct assessment of
sequence data and system errors that manifest in the sequence
data output. For example, the use of Illumina data means that
millions of reads are available to build statistical confidence
of identification but at the same time generates millions of
reads that do not correspond to reference data. This noise is
not novel emerging genome sequence data. The artifacts were
verified through repeatability assays where the same biothreat
agent is measured 20-70 times to determine useable sequence
data.

3.5. Analysis of Sequence Gaps. Analysis of sequence data on
each isolate computed the position and coverage across the
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FIGURE 5: It compares read n-mers to reference genome n-mers
and counts the number of hits per genome n-mer (signal) and
misses (noise). The separation between signal and noise varies with
read depth. The detection threshold that maximizes signal n-mer
retention and noise #-mer rejection is to be used, and will vary with
number of total reads (coverage).

genome. Figure 5 shows a spike at zero which indicates that
there are many, potentially millions, sequence reads without
matching fragments. These reads represent a number of chal-
lenges for direct sequence analysis. The distribution of sizes
in gaps is plotted in Figure 5(b). Such data if used for a single
target and not for comprehensive analysis of populations
which build the statistical confidence to derive matches of
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materials to source, enabling attribution, is not unexpected
but illustrates the required probability of performing multiple
matches of the genomes in the mixture of populations for
adequate characterization of sample genetic content.

Artifacts in sequence data do not follow the trend of the
signal, rather the noise continues to grow; hence the potential
for inappropriate use of such data as meaningful sequence
information resulting in errors increases. As the sequence
coverage increases the confidence in accurate matching
approaches a limit. However, the noise grows linearly. These
generate the signature of the genome, which is the list of all n-
mers in a genome. As the noise increases, there is bleed-in of
strings with high confidence of matching. Figure 6 plots the
signal to noise ratios.

Understanding rare variants is a challenge to metage-
nomic analysis [49, 50]. A calibrant is needed [51]. The
threshold can be calculated for every sequence run and for
each genome. This calibrant can be universally applied for
optimization of the n-mer count threshold. For a selected
sequencing depth, a calculated threshold observation multi-
plicity for each n-mer can be determined with the calibrant
(Figure 6).

3.6. Bacterial Forensics Calibrant. The ABC calibrant deter-
mines the multiplicity. The measurement is based on com-
parison of the sequence vectors. As coverage is built on
the fragment, edges of the string vectors are compared.
Strings that map to the wrong site generate noise along the
edge. The BFAST algorithm compared reads and performed
alignment. SAMToolsMPileUp feature overlapped reads at
their reference genome alignment locations for the purpose of
detecting consensus or variation. Custom processing scripts
searched gaps, specific mutation calls, and other criteria to
assess the continuum of sequence data against the dataset
threshold.

Bioforensics is dependent on matching sequence data
to references. Probability of obtaining matches above the
threshold of established criteria need to be calculated for
each matched position to a reference. Databases of genomes
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are also not necessarily needed, because the comprehensive
genetic content of samples and their genome profiles can be
compared to other sample profiles. The limit is that not all
sequence data is compared because of artifacts and error,
but genome identification via direct analysis of appropriate
sequence data establishes the profile and profiles can be
compared. Sequence information is triaged to determine
the high quality data for comparisons and identification of
known genomes and for clustering of genomes outside of
reference databases.

3.7. Detect Constituent Organisms in Sample. For rapid read
mapping and read assignments against database entries, a
precalculated n-mer database is needed. A tiered database
architecture has the potential to respond fast because of
locality of data with configured match queries routed through
the database. This is accomplished in part by a hybrid direct
memory address array and binary tree. There is a tradeoft
between memory size and the number of comparisons. A
large n-mer value requires too much memory and a small »-
mer value creates loss in match specificity.

Matching is defined as vector space where the sequence
content is compared as a motif against the sequence space of
references. Comparisons can also be made between samples
in the absence of reference(s). Comparisons to determine the
genome content and comparisons to determine if samples
are related or linked by common ancestry, for example,
attribution, the vectors of sequence data are evaluated.

In general there would be 16 million possible combina-
tions if the vector size was constrained to a 12-mer (4'?). All
the vectors are compiled to build an index where each vector
element corresponds to a unique n-mer. The value of each
element is 1, if that element is present in the genome (forward
or reverse) and zero otherwise. This processing is applied to
the collection of assigned sequence reads. Vector space is a
composite of 1 and 0 for reads and the matching genome
compared by a dot product for distances, the direction of the
cosine.

Determining the vector matches and establishing the
threshold via the use of the calibrant enables comparison
of sequence data for identifying sample with source. Proba-
bilistic approaches use Bayesian likelihoods to consider two
important factors to reach an accurate conclusion: (i) P(t;/R)
is the probability that an organism exhibiting test pattern R
belongs to taxon t;, and (ii) P(R/t;) is the probability that
members of taxon ¢; will exhibit test pattern R. The minimal
pattern within a sliding window will assist investigators on
“whether” and “how” genomes vary.

The probability calculation procedure is based on the
average relative position and frequency of lineage terms.
More weight is given to broader, more general terms occur-
ring at the beginning of a lineage (e.g., kingdom, phylum,
and class), and less weight to narrower, more detailed terms
that occur at the end (e.g., family, genus, and species). To
compensate for the fact that some lineages contain more
intermediate terms than others (e.g., including super- and/or
subclasses, orders, or families), the calculation normalizes
for total number of terms and weights each term according
to its average position among all lineages tested, rather
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FIGURE 7: Difference genetic subpopulations. Red arrows indicate
related genomes. The entire population’s genetic content can be used
to match and compare samples.

than an absolute taxonometric rank. The end result is a
very fast, computationally simple technique to assign higher
probability scores to lineages that occur more frequently
and lower scores to lineages that occur only rarely. Groups
of phylogenetically related organisms receive similar lineage
probability scores, even if actual matches to the query genome
are unevenly distributed among individual members of the

group.

4. Error Is More Than Traditional View of
Sequencing Error: Traditional View

Due to inherency of base calling errors in all DNA sequencing
methods, trusting all sequence variants that appear in raw
sequence data is not recommended. Even when data comes
from low error rate platforms under best conditions, error
rates of at least 0.1% will create false SNPs on the average
of once every 1,000 bases [52, 53]. Over the course of a
5Mb genome, which adds up to a total of 5,000 false SNPs
multiplied by the average coverage depth of the genome. Even
worse, a 0.1% error rate is much lower than what is expected
in most sequence data sets at the moment.

4.1. Application to Bacterial Forensics. While millions of
sequence reads can be generated, select reads function as
biomarkers to provide useful information for accurate char-
acterization populations in samples (Figure 7). Analysis of
comprehensive sample content also provides insights about
sample context—the current population at large and how
does that sample or genome fit into the population and can
that information give any merit or accuracy about the answer.

The population data can be used to calculate the degree of
relatedness and how close of a match the samlples are and if
the interpretation aligns with the evidence or a false direction.
Measuring the direction and magnitude of genetic variation
facilitates distinguishing between environment influence on
the populations and lab manipulation: potentially indicat-
ing if an outbreak is natural or intentional. Population
sequencing not only identifies specific genomes, it provides a

confidence indicator helpful for decision-making about how
it is related to others and within the population.

4.2. Microbial Forensics. The main purpose of microbial
forensics is to determine whether or not to attribute a micro-
bial pathogen sample back to a suspected source [54, 55].
Interpreting diversity of complex mixtures and subtle varia-
tions in isolate populations represents a critical need for bio-
forensics. Sample characterization and traceability of genetic
contents back to source are dependent on genome identifi-
cation of specific targets within the sample, comprehensive
analysis of the mixture of populations present, detection of
major and minor variations in the identified genomes, and
comparison of the sample genetic profile against other sample
profiles (Figure 8). Metagenomics is an emerging discipline
for microbial population(s) analysis based on sequence
information obtained directly from samples without culture
purification. “Population-Sequencing” establishes compre-
hensive descriptions of genetic content of samples and creates
a profile of that genetic content specific for each sample.

The profile, unique to each sample, represents specific
target organisms, for example, biothreat agents, as well as
auxiliary genomes, for example, contaminants, related near
neighbors, or commensal organisms indicative of certain
factors either from their environment or the fashion of sample
handling or manipulation. On account of diversity, the popu-
lation, or cloud, of genetic material is unique to each sample.
While specific targets or core genomes might be in common
between samples, the pan-genome or cloud of variation will
be unique dependent on the breadth of genetic diversity
of the starting material and selective pressures. Sequencing
the cloud of diversity establishes accurate sample-to-sample
comparisons.

A wide variety of tools have been developed, but all meth-
ods, except for those that take into account the system errors
in the entire pipeline of sequencing, are flawed and generate
inaccurate genome identification. With appropriate delim-
iters set across sequence information, reorganized databases
to enable accurate searching, and alignment-free coupled
with alignment methods to enable accurate matching.

The sequence data obtained from the device will not
only include sequences from biothreat agents, but also other
“background” sequences from hosts and natural microbial
community, or both. The database used for the comparative
purpose should cover as much as information to take advan-
tage of current advancement in genomics. The calibrant is
part of a bidirectional process to compare database entries
and sequence sample data sets. The calibrant is establish by
calculating the distance between the database entries and the
same genus, species, or strain designation and the distances
for the assigned reads are also calculated to the same genus,
species, or strain designation.

Advantages of Approach. Characterizing biodiversity and
subsequently monitoring it with new sequence detection
technologies require a complimentary approach that includes
both “narrow and deep” sequence interpretation paired with
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FIGURE 8: Tiered population characterization. Metagenomic sequence data is directly analyzed with novel informatics tools, genomes scored
for statistical confidence, and profiles compared for attribution. Each genome is treated differently from the next.

“broad and shallow” sentinel marker scanning for biolog-
ical warfare agent (BWA) identification. This two-pronged
strategy is critical for a comprehensive biothreat assessment
program, given the diversity of threat agents that exist
and is capable of monitoring both broadly across taxa and
deep within a genome. Probabilistic approaches allow fast
processing of large amounts of data and provide statistical
confidence to the final product: positive identification of
bioagents based on signature distributions and patterns [56].
The approach is not dependent on genome assembly nor
contiguous sequence nor on full nucleic acid extraction.

The high-throughput nature of sequencing devices
inevitably produces sequencing errors to some extent. The
errors in standard genome sequencing projects can be readily
reduced, if recognized. Potential sequencing errors can also
be further minimized by posterior computational processes
[57, 58]. A computational method for differentiating target
sequences from background sequences and assembling the
chosen target sequences is required. A similar, albeit much
simpler task has been successfully applied by Salzberg et
al. [59, 60] in which endosymbiotic bacterial genomes were
readily assembled from excess insect host genome sequences.
Technologies involved in assembling microbial genomes
from mixed community have been reviewed [61].

Dramatic advances in DNA sequencing and sequence
analysis in the last decade have opened up vast amounts of
genetic evidence for forensic scientists to investigate. Because
of new insights into biodiversity and sample biocomplexity,
new ways to process and interpret sequence data is required.
Several challenges to use volumes of sequence data have
limited analysis to mapping sequence reads and to assemble
genomes. New tools and pipelines are needed to address gaps
and validate direct sequence analysis of populations. The
first gap is a need for improved methods to validate sample

data analysis in a nonarbitrary fashion. For this challenge,
a calibrant for direct sequence analysis of populations was
developed. Second, is a process to compare sample genomes
without complete dependence on reference databases.
Considering the practically limitless number of microbes in
the world and their ever evolving genetic composition, no
reference database can ever be sufficient to nonarbitrarily
characterize ancestral relationships between samples. In cir-
cumstances where fractions of genomic information are used,
probabilistic scoring is required to achieve accurate genome
identification and a pipeline that accounts for system errors.

Hence analysis of the population, rather than a single
target, enables broad characterization of the sample and deep
resolution to pinpoint the association between materials and
source. Population-Sequencing was performed in blinded
fashion and genome identification was based on probabilistic
values for matching criteria.

Microbial forensics needs a paradigm shift away from
the clonal isolate versus reference genome approach to a
comprehensive analysis of genetic content. Foremost, real
world samples rarely exist as homogeneous populations of
identical clones. Even populations that derive from single
cells/viruses acquire mutations that are not equally shared by
all members. Metagenomic populations in samples require
bioinformatics approaches that deviate away from the clonal
isolate paradigm to accommodate potentially hundreds of
distinct genomes that may or may not be part of any database.
The challenge for bacterial forensics is how to account for the
diversity of sample material from a reference. Traditionally,
this has been interpreted as how to compare the genetic
variation of a single target out of many from a mixture.
Comprehensive characterization of the populations would
improve the confidence of matching sample to source and
define the range of variation from a composite, but finite
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genetic content of source. As material is manipulated and
the ancestry of the material to source increases, variation will
become part of the population, but the extent of variation will
be constrained by the diversity within the source. Hence the
future of bioforensics is in population comparison, namely,
Population-Sequencing.

4.3. Population-Sequencing. Not only are specific threats of
interest identified, without prior knowledge of the sample,
but contaminants, related strains, and other genomes of the
population are detected, their variation cataloged and prob-
abilities for confident genome identification are indicated.
These advantages would potentially be used for attribution,
for example, linking materials to their source or to track theft
of bacterial strains or manipulation of strain or ones that have
been engineered. It also could be used to enhance the security
of bacteria being studied in labs and discourage misuse of
biological pathogens.

Sequence reads are matched according to stringent bioin-
formatics criteria and based on the genetic relatedness of
neighbor microorganisms. Related organisms share portions
of their core genomes, which is an advantage for Population-
Sequencing approach because it builds the statistics of assign-
ment to the correct genus and species. Resolution down to the
strain level is possible because many pan-genome fragments
unique to that strain are also detected. This is referred to as
the “cloud” of genetic relationships. The definition of genus
or species or other taxonomic categories is made in relation
to the core and pangenomes. The diversity of genetic content
that defines the species can be considered to be a cloud of
possibilities, hence cloud sequencing.

Bioinformatics  tools, like Population-Sequencing
approaches, handle deep sequencing and population wide
comparison for accurate population identification. Bioinfor-
matics tools need to be evaluated to measure genetic
change of populations to assess (1) accurate identification
of sequence of biothreats, (2) capability to compare genetic
content in samples, (3) measurement of relatedness between
samples, and (4) calculated distance based on sequence
information and finally to establish sound interpretation of
comparisons, indicating the strength of the link between
evidence and potential sources.

Hence a flexible, on-the-fly, system is needed to measure
the comprehensive spread of genomes in samples, rather than
looking for one or two key threat agents. Comprehensive
analysis of sample populations is required to obtain broad
and narrow characterization: broad across the populations
representative of different genus, species, and so forth, and
narrow down the phylogenetic tree to pinpoint the strain and
SNP variants thereof. The aspect of confidence also needs to
be considered, ignored by PCR and provided that there are no
degeneracies, amplifies a single target. However, there will be
endless design and redesign of PCR assay as sequence space
knowledge increases every week.

4.4. Population-Sequencing Utility for Forensics. The sample
itself becomes the database for comparison. Comprehensive
analysis of the genetic constituents establishes the sample

profile. Profiles can be compared to determine the relatedness
of the populations in the samples, not just one or two
selected targets. Comprehensive analysis also strengthens the
probability of the match and increases the confidence to
include and exclude samples as matches.

Assuming that the background detection is real variants,
single colonies produce bacterial populations that persist and
proliferate with growth/time. Direct sequencing was applied
and sequence data was assembled via classical sequenc-
ing techniques and evaluated with novel alignment-free
bioinformatics tools. Confidence thresholds and probabilistic
matching provide bacterial strain name and a confidence
score of the identification, in addition to providing the genus
and species identification. From the sequence comparison, a
sequence profile of the sample can be established. Population-
Sequencing transcends the limits of classical sequencing of
single clones, because the process avoids genome assembly to
cluster and compare sequence information between samples.
Sequence information is weighted and strings are assigned
probabilistic value. This process is not static, although DNA
signatures or other specific sequence information, for exam-
ple, MLST sites, can be incorporated into the measurements.
Profiles of samples can be compared and hence, traceability
can be determined, whereby attributing evidence to source.
Profiles can be compared to assess relatedness at a genome-
scale rather than using single gene phylogenies. This is not
based on trying to develop one thousand targets for a PCR
assay of a panel of favorite genes and it avoids sample culture.
Instead of sequencing clones one-at-a-time, the entire sample
is sequenced and genomes identified. This is not about
preselection of certain targets, but rather any and all sequence
fragments can be used to determine the answer.

While metagenomic analysis enables characterization of
the genetic content of the sample and hence the establishment
of a sample profile, which can be used to compare other
sample profiles to determine attribution, the strains identified
may have mutations from the reference. In addition, each
sample becomes a unique database of genetic content. Other
samples can be compared to that profile, even in the absence
of reference sequence databases to name every genome. If
the intent is to compare genetic content, then methods that
provide a comprehensive description that can be compared
to other samples, will establish the approach to distinguish
between intentional and natural events, because the direc-
tions of genetic variation of sample population genomes
will be different. Also comprehensive characterization will
provide the boundaries of sample variations, creating quanti-
tative values for sample-to-sample comparisons, to determine
when two samples are the same but (slightly) different.

5. Summary

This paper outlines salient features of types of artifacts and
errors that need to be addressed and challenges for sequence
analysis of populations as a method to characterize samples
beyond one target microorganism to characterization of pop-
ulations to achieve comprehensive sample content-multiple
genomes, pathogenic and commensal. Data-rich sequence
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information means that multiple genomes can be identified
[57]. However, multiple target analytics tools are needed to
improve statistical confidence to trace ancestry of samples
and attribute samples to source with probabilistic certainties
on many targets instead of a single genome or a single
arbitrary target. Population-Sequencing creates a profile of
the sample. It interrogates all sequence read data, compares
these to sequence fragments, and identifies genomes to which
they belong: ranking and scoring major and minor genome
constituents of samples. The evidence is now convincing
that strain to strain variation in genomic sequence renders
probabilistic identification from direct sequence the method
of choice for first responders to determine agent identifica-
tion. The development and testing of selective bioinformatics
tools that account for sequencing artifacts and interpret
biodiversity are essential for a strong national defense. Direct
“Population-Sequencing” has dual benefits for national secu-
rity and for environmental/clinical health.

Development of a calibrant to normalize across different
experiments was also introduced. Collectively, our results
demonstrate that the performance of direct sequence analysis
of population(s) is acceptable for bacteria strains identifica-
tion to reference strains and provide useful guidelines for
using Population-Sequencing for forensic applications as well
as in environmental genome detection with strains other than
the reference strain.

6. The Way Forward

Microbial forensics recommendations leverage biodiversity
and the effects of evolutionary pressures on DNA to focus
on innovative and effective approaches to identify, com-
pare, match, and exclude bacterial samples. Recommended
research to improve bioforensics includes the following.

(a) Development of Direct Sequencing techniques for
heterogeneous samples.

(b) Development of algorithms adapted to meet the needs
of the forensics community.

(c) Informatics tools which handle genome-scale data for
comparisons.

(d) Informatics tools which analyze population-based
genomic elements and mutation clues from evidence
samples routinely ignored by static marker analyses.

At the heart of Population-Sequencing is a revolutionary
set of technologies that enable accurate identification and
traceability of biological samples/species in a forensic envi-
ronment was reviewed. Direct and comprehensive genome
analysis is dependent on key goals of comparative population
analysis, direct sequencing, genome modeling, and database
design to create an end-to-end identification system designed
for forensic use.

The future of biodetection will likely characterize all
microbes in a sample, enabling use of all of the genome
regions, which are under different evolutionary pressure, to
improve traceability to source. This is important because of
gaps in capability of phylogenetic analyses produce different
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measures of relatedness depending on what single genes
are compared. Experimental evidence has shown that direct
sequence analysis of environmental samples links sample to
source.

(i) New algorithms based on species biodiversity and
sequence signatures.

(ii) Subspecies organism identification in a metagenomic
background.

(iii) Fast, accurate probabilistic matching that gives user %
confidence of match.

(iv) Filter-in key processes of the culture conditions, for
example, the type of medium that may further limit
the field of possible biothreat sources.

(v) Validating “knowledge” pipeline, and moving away
from “static” marker molecular signatures, which are
limited by erosion.

(vi) Using deep-sequencing to characterize “slow” and
“fast” evolved sequence regions.

(vii) Comprehensive analysis of select agent population
dynamics and host-environmentpathogen interac-
tion to serve as critical background knowledge.

(viii) Verification that our approach, algorithms/reformat-
ted Database are sufficient.

Because every sample will have a different genetic content
(or available pan-genome potential), every sample will be
distinguishable from the next. Related samples or samples of
common origin will have a probabilistically high similarity of
events. Direct Population-Sequencing will further our under-
standing of community genetics and provide analytical tools
to balance abundance of potential knowledge obtained from
high-content sequencing to enable insights into the context
of the dynamics and relationships of genome populations.
Application of Population-Sequencing culture independent
methods to clinical samples from patients with a multitude
of diseases will lead to an unprecedented rate of detection
of pathogens, establishing the link between microorganism
populations and human disease and provide comprehensive
contextual characterization of emerging and novel agents.
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