
[14:07 23/7/2009 Bioinformatics-btp276.tex] Page: 2118 2118–2125

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 16 2009, pages 2118–2125
doi:10.1093/bioinformatics/btp276

Gene expression

Utilizing gene pair orientations for HMM-based analysis of
promoter array ChIP-chip data
Michael Seifert1,∗, Jens Keilwagen1, Marc Strickert1 and Ivo Grosse2

1Leibniz Institute of Plant Genetics and Crop Plant Research, Data Inspection Group, Corrensstrasse 3,
06466 Gatersleben, and 2Martin Luther University, Institute of Computer Science,
Von-Seckendorff-Platz 1, 06120 Halle, Germany

Received on October 29, 2009; Revised on February 27, 2009; Accepted on April 21, 2009

Advance Access publication April 28, 2009

Associate Editor: Trey Ideker

ABSTRACT

Motivation: Array-based analysis of chromatin immunoprecipitation
(ChIP-chip) data is a powerful technique for identifying DNA target
regions of individual transcription factors. The identification of these
target regions from comprehensive promoter array ChIP-chip data
is challenging. Here, three approaches for the identification of
transcription factor target genes from promoter array ChIP-chip data
are presented. We compare (i) a standard log-fold-change analysis
(LFC); (ii) a basic method based on a Hidden Markov Model (HMM);
and (iii) a new extension of the HMM approach to an HMM with scaled
transition matrices (SHMM) that incorporates information about the
relative orientation of adjacent gene pairs on DNA.
Results: All three methods are applied to different promoter array
ChIP-chip datasets of the yeast Saccharomyces cerevisiae and the
important model plant Arabidopsis thaliana to compare the prediction
of transcription factor target genes. In the context of the yeast cell
cycle, common target genes bound by the transcription factors ACE2
and SWI5, and ACE2 and FKH2 are identified and evaluated using
the Saccharomyces Genome Database. Regarding A.thaliana, target
genes of the seed-specific transcription factor ABI3 are predicted
and evaluate based on publicly available gene expression profiles
and transient assays performed in the wet laboratory experiments.
The application of the novel SHMM to these two different promoter
array ChIP-chip datasets leads to an improved identification of
transcription factor target genes in comparison to the two standard
approaches LFC and HMM.
Availability: The software of LFC, HMM and SHMM, the ABI3 ChIP–
chip dataset, and Supplementary Material can be downloaded from
http://dig.ipk-gatersleben.de/SHMMs/ChIPchip/ChIPchip.html.
Contact: seifert@ipk-gatersleben.de

1 INTRODUCTION
In recent years, array-based analysis of chromatin immuno-
precipitation (ChIP-chip) data has become a powerful technique
to identify DNA target regions of individual transcription factors.
ChIP-chip was first applied to yeast by Ren et al. (2000) and
Iyer et al. (2001) based on promoter arrays. Nowadays, with the
availability of sequenced genomes, ChIP-chip is predominantly
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Fig. 1. Pearson correlations of promoter array ChIP-chip measurements of
the transcription factor ABI3 in the context of the four gene pair orientations
head–head, tail–tail, tail–head, and head–tail of two directly adjacent genes
on DNA in distances of 3 Kbp up to 10 Kbp in steps of 250 bp. Genes
are represented by triangles, and the orientation of the tip of a triangle
defines the reading direction of a gene. The promoter fragment of a gene
in the ABI3 dataset is always located in 3’ direction of the gene. The ChIP-
chip measurement of a gene is the log2-ratio of immunoprecipitated DNA
for ABI3 to input control DNA that is measured for the corresponding
promoter of the gene. The intergenic region between two genes in head–
head orientation is represented by two promoter fragments, one for each
gene. Depending on the distance between these two genes the extracted DNA
segments in the immunoprecipitated sample and in the input DNA sample
can bind to both promoter fragments of these two head–head genes leading
to significantly higher correlations for genes in head–head orientation in
comparison to all other gene pair orientations.

based on tiling arrays (Johnson et al., 2008). The analysis of ChIP-
chip data is challenging, because of the huge datasets containing
thousands of hybridization signals. Most available methods focus
on the analysis of tiling array ChIP-chip data to predict the DNA-
binding targets of DNA-binding proteins like transcription factors
or histones. Examples include a moving average method by Keles
et al. (2004), a Hidden Markov Model (HMM) approach by Li et al.
(2005), TileMap by Ji and Wong (2005) using moving averages or
an HMM to account for information of adjacent probes, or PMT
by Chung et al. (2007) that integrates a physical model to correct
for probe-specific behavior. Recently, a new HMM approach was
developed by Humburg et al. (2008), outperforming TileMap in the
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Table 1. Pearson correlations of promoter array ChIP-chip measurements
of transcription factors ACE2, SWI5 and FKH2 for the four gene pair
orientations head–head, tail–tail, tail–head and head–tail based on all pairs
of two directly adjacent genes in the data set by Lee et al. (2002).

transcription factor head–head tail–tail tail–head head–tail

ACE2 0.76 0.37 0.13 0.26
SWI5 0.80 0.26 0.12 0.20
FKH2 0.89 0.29 0.27 0.22

The correlations of ChIP-chip measurements of gene pairs in head–head orientation are
significantly higher than in the three other categories.

context of the prediction of histone modifications from tiling array
ChIP-chip data. Also ChIPmix (Martin-Magniette et al., 2008) based
on a linear regression mixture model can be applied to this kind of
analysis.

Here, we study three methods for the prediction of transcription
factor target genes from promoter array ChIP-chip data. We consider
(i) a standard log-fold change (LFC) analysis that does not integrate
dependencies between adjacent genes on DNA; (ii) a two-state
HMM that models dependencies between adjacent genes on DNA;
and (iii) an extension of the two-state HMM to an HMM with
scaled transition matrices (SHMM) that specifically models directly
adjacent genes on DNA that are in head–head orientation to each
other. The three methods are applied to two datasets, one of the
yeast Saccharomyces cerevisiae and another one of the model plant
Arabidopsis thaliana, to directly compare their predicted target
genes. Regarding the HMM approach, the two-state architecture
follows the proposal of Li et al. (2005). Our approach is extended
in that way that all HMM parameters are directly learned from
the ChIP-chip data using a Bayesian version of the Baum–Welch
algorithm described in Seifert et al. (2009). The concept of SHMMs
is based on the key assumption that promoters of directly adjacent
genes in head–head orientation on DNA tend to have more similar
ChIP-chip measurements then directly adjacent genes in tail–
tail, tail–head or head–tail orientations. That gene pair orientation
specific correlations of ChIP-chip measurements exist is clearly
shown in Table 1 for the three transcription factors ACE2, SWI5
and FKH2 studied in Saccharomyces cerevisiae, and in Figure 1 for
the seed-specific transcription factor ABI3 analyzed in Arabidopsis
thaliana. The high correlations of ChIP-chip measurements of
promoters belonging to adjacent genes in head–head orientation
are expected due to the design of the promoter array that contains
spotted promoter fragments of each gene. Thus, depending on the
distance between two genes in head–head orientation and the length
of the hybridized DNA segments, one expects these correlations.
The SHMM approach makes use of this observation by modeling
that genes in head–head orientation have a higher probability that
either both are targets of the transcription factor or both are non-
targets of this transcription factor with respect to all other gene
pair orientations. In general, good introductions to HMMs are given
by Rabiner (1989) or Durbin et al. (1998). Extensions of standard
HMMs with one transition matrix to HMMs with more than one
transition matrix are described in Knab et al. (2003). Some more
details to SHMMs can be found in Seifert (2006), and a concept
similar to SHMMs has been developed by Meyer and Durbin (2004)
with an application to gene prediction.

In this article, we focus on the analysis of two promoter array
ChIP-chip datasets. We start with an initial study in the context
of the cell cycle of S.cerevisiae. The three methods LFC, HMM
and SHMM are used to predict common target genes bound by
the transcription factors ACE2 and SWI5, and ACE2 and FKH2.
We evaluate the common target genes using the Saccharomyces
Genome Database by Cherry et al. (1997). Regarding A.thaliana,
ChIP-chip based on promoter arrays was established for the seed-
specific transcription factor ABI3 (ARABIDO-SEED, 2008). ABI3
is one of the fundamental regulators of seed development involved in
controlling chlorophyll degradation, storage product accumulation,
and desiccation tolerance (Mönke et al., 2004; Suzuki et al., 2003;
To et al., 2006; Vicente-Carbajosa and Carbonero, 2005). In an in-
depth study, we use the three methods LFC, HMM and SHMM to
identify putative ABI3 target genes, and we evaluate these genes
using (i) publicly available expression data from Genevestigator
(Hruz et al., 2008; Zimmermann et al., 2004) and (ii) transient
assays, as described in Reidt et al. (2000), have been performed in
wet laboratory experiments to test whether a promoter of a putative
target gene is regulated by ABI3 or not.

2 METHODS

2.1 Yeast dataset
Publicly available promoter array ChIP-chip data from Lee et al. (2002) are
used to identify common target genes of the cell cycle specific transcription
factors ACE2 and SWI5, and ACE2 and FKH2. We downloaded the
gene specific file from http ://web.wi.mit.edu/young/regulator_network
including the measured ratio rt of immunoprecipitated DNA to input
DNA for each promoter mapped to its corresponding gene t. For
the transcription factors ACE2, SWI5 and FKH2, we extracted the
measured gene specific ratios rt for all genes t and transformed them
into log-ratios ot = log2(rt) for each of these three transcription factors.
In addition to this, we mapped these log-ratios to their corresponding
positions in the yeast genome using the Saccharomyces Genome
Database (Cherry et al., 1997). This leads to one ChIP-chip profile o=
o1,...,oT per chromosome for each of the three transcription factors.
The genome of the yeast S.cerevisiae consists of sixteen chromosomes,
and due to that we obtain 16 ChIP-chip profiles for each transcription
factor.

2.2 Arabidopsis dataset
The ChIP-chip technique by Ren et al. (2000) and Iyer et al. (2001) was
applied to A.thaliana wild-type seeds to determine target genes of the ABI3
transcription factor. Isolated DNA fragments bound by ABI3 were amplified,
radio-labeled, and hybridized to a macroarray containing 11904 promoters
of A.thaliana. The corresponding control sample was obtained from the
input chromatin of the wild-type seeds by fragmentation, amplification,
labeling and hybridization to another promoter macroarray. In total, each
of these two experiments was repeated five times. In a first normalization
step, we center the median of each experiment to zero and perform a
quantile normalization (Bolstad et al., 2003) separately for the ABI3 ChIP-
chip experiments and the input chromatin control experiments. In a second
step, we combine each normalized ABI3 ChIP-chip experiment with its
corresponding input chromatin control experiment by calculating the log-
ratio ot = log2(IABI3(t)/IINPUT(t)) of immunoprecipitated DNA to input DNA
for all genes t that are represented in the ABI3 ChIP-chip experiment by
their promoter fragments on the macroarray. Here, IABI3(t) is the normalized
signal intensity of the promoter fragment of gene t in the ABI3 ChIP-
chip experiment, and in analogy, IINPUT(t) represents the normalized signal
intensity of the promoter fragment of gene t in the input chromatin control

2119



[14:07 23/7/2009 Bioinformatics-btp276.tex] Page: 2120 2118–2125

M.Seifert et al.

experiment. We map all log-ratios of such an experiment combination to
their corresponding positions in the genome of A.thaliana based on the
TAIR7 genome annotation, resulting in one ChIP-chip profile o=o1,...,oT

per chromosome. We obtain 25 ChIP-chip profiles, one for each of the five
chromosomes for each of the five replicates.

2.3 Standard LFC analysis for target gene detection
The log-ratio of immunoprecipitated DNA to input DNA that is measured
for a promoter characterizes the potential of the corresponding gene to be a
target gene of the analyzed transcription factor. Thus, we expect that putative
target genes have log-ratios that are significantly greater than zero. For each
experiment an initial list is created that contains all gene identifiers of the
ChIP-chip profiles in decreasing order of their log-ratios. That is, genes with
log-ratios significantly greater than zero are at the top of this list. Considering
the replicates of an experiment, we use the resulting lists to determine the
intersection of the top k candidate genes in each list. This allows to assess the
degree of reproducibility between the replicates of an experiment. All genes
in the intersection are interpreted as putative target genes of the analyzed
transcription factor.

2.4 HMM for target gene detection
2.4.1 HMM description We use a two-state HMM λ= (S,π,A,E) with
Gaussian emission densities for the genome-wide detection of putative target
genes of a transcription factor. The basis of this HMM is the set of states
S ={−,+}. State ‘−’ corresponds to a gene that is not a target of the analyzed
transcription factor, and state ‘+’ corresponds to a gene that is a target
of this transcription factor. We denote the state of gene t by qt ∈S, and
we assume that a state sequence q=q1,...,qT belonging to a ChIP-chip
profile o is generated by a homogeneous Markov model of order 1 with
start distribution π = (π−,π+) and stochastic transition matrix A= (aij)i,j∈S ,
where π−,a−−,a++ ∈ (0,1), π+ =1−π−, a−+ =1−a−− and a+− =1−
a++. The state sequence is assumed to be not observable, i.e. hidden, and
the log-ratio ot of gene t is assumed to be drawn from a Gaussian emission
density with mean and standard deviation depending on state qt . We denote
the vector of emission parameters by E = (µ−,µ+,σ−,σ+) with means µ−
and µ+, and standard deviation σ− and σ+ for the Gaussian emission
density bi(ot)=1/(

√
2πσi)exp(−0.5(ot −µi)2/σ 2

i ) of log-ratio ot given
state i∈S.

2.4.2 HMM initialization In general, an initial HMM should distinguish
putative target genes of the analyzed transcription factor from non-target
genes with respect to their log-ratios in the ChIP-chip profile. Hence, a
histogram of log-ratios helps to find good initial HMM parameters. The
choice of initial parameters addresses the presumptions that the proportion
of non-target genes is much higher than that of target genes, and that the
number of successive non-target genes is also much higher than the number
of successive target genes. In our case studies, we use π− =0.9 resulting in
an initial start distribution π = (0.9,0.1). Thus, we choose an initial transition
matrix A with equilibrium distribution π . That is, we set a−− =1−s/π− and
a++ =1−s/π+ with respect to the scale parameter s=0.05 to control the
state durations. We characterize the states by specific means and standard
deviations using initial emission parameters µ− =0, µ+ =2, σ− =1, and
σ+ =0.5. We refer to the initial HMM by λ1.

2.4.3 HMM training We train the initial HMM λ1 based on all ChIP-chip
profiles using a maximum a posteriori (MAP) variant of the standard Baum–
Welch algorithm (Baum, 1972; Durbin et al., 1998; Rabiner, 1989). This
algorithm is part of the class of Expectation Maximization (EM) algorithms
(Dempster et al., 1977) which iteratively maximize their optimization
function. With respect to the underlying biological question, the choice of
the prior influences the quality of the trained HMM. We include biological
a priori knowledge into the MAP training using a Dirichlet prior with hyper-
parameters ϑ− =ϑ+ =2 for start distribution π , a product of Dirichlet priors

with hyper-parameters ϑab =1 with a,b∈S for transition matrix A, and a
product of Normal-Inverted-Gamma priors for emission parameters E with
hyper-parameters η− =0 and η+ =2 (a priori means), ε− =ε+ =103 (scale
of a priori means), r− =1 and r+ =100 (shape of standard deviations) and
α− =α+ =10−4 (scale of standard deviations). The choice of these prior
parameters ensures a good characterization of both HMM states. In the
case of data with mean log-ratio of about zero, the choice of these prior
parameters can be simplified by using the a priori mean η− =0 for the non-
target gene state in combination with a user-defined a priori mean η+ ∈R

+
for the target gene state. However, to provide the full flexibility the user
can also make own settings of the prior parameters with respect to their
influences on the HMM parameters during the MAP training, which can be
derived from Seifert et al. (2009). On that basis, we iteratively maximize
the posterior of the HMM λh given all ChIP-chip profiles resulting in new
HMM parameters λh+1. We stop the MAP training if the increase of the
log-posterior of two successive MAP iterations is <10−9. More details
to the MAP training and the incorporated prior are given in Seifert et al.
(2009).

2.4.4 HMM target gene detection The state ‘+’ of the trained HMM λ

models the potential of genes to be targets of the analyzed transcription
factor. To quantify this potential, we calculate the probability γt(+)=P[Qt =
+|O=o,λ] of being a target gene for each gene t within a ChIP-chip
profile o. This state posterior of state ‘+’ is computed using the Forward–
Backward procedures of HMMs (Durbin et al., 1998; Rabiner, 1989).
For each experiment, we create a list that contains all gene identifiers of
the ChIP-chip profiles in decreasing order of their state posteriors γt(+).
Considering the replicates of an experiment, we use these lists to determine
the intersection of the top k candidate genes of each list. In analogy to the
standard LFC approach, we interpret all genes in the intersection as putative
target genes of the analyzed transcription factor.

2.5 SHMM for target gene detection
2.5.1 SHMM description The general concept of SHMMs allows to
analyze ChIP-chip profiles in the context of orientations of adjacent genes on
the DNA. Two directly adjacent genes occur either in head–head, tail–tail,
tail–head, or head–tail orientation to each other. Among these orientations,
the head–head orientation is of special importance for the analysis of
promoter array ChIP-chip data. In this orientation, the two corresponding
genes have the potential to share a common promoter region depending
on the distance between these genes (Fig. 1). This fact in combination
with the observation that the log-ratios of promoters of genes in head–head
orientation show significantly higher correlations, as shown in Figure 1 and
in Table 1, compared with all other orientations is the basis to design a
specific SHMM. We assume that it is more likely for two genes in head–head
orientation to exhibit the same status based on the log-ratios measured for
their promoter fragments. In comparison to tail–tail, tail–head and head–tail
orientations, it is more likely that both genes of a head–head orientation
are either target genes or non-target genes of the analyzed transcription
factor. For this reason, we assign to each pair of successive genes t and
t+1 on a chromosome one gene pair orientation class c(dt) depending on the
orientation of both genes to each other in combination with the chromosomal
distance dt of theses two genes. The gene pair orientation class of successive
genes t and t+1 is

c(dt)=
{

2, t and t+1 are head–head and dt ≤b
1, otherwise

using a pre-defined distance threshold b∈N. We incorporate this information
into a two-state SHMM λ= (S,π,A,�f ,E) with two gene pair orientation
classes to detect putative target genes of the analyzed transcription
factor. The parameters S, π and E are defined as described in the
previous section of the HMM approach. In contrast to the standard
HMM approach, we now assume that the state sequence q of a ChIP-
chip profile o is generated by an inhomogeneous Markov model of
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order 1 with start distribution π and two scaled stochastic transition
matrices A= (A1,A2). These two transition matrices distinguish head–head
gene pairs from others by scaling the basic transition probabilities aii ∈
(0,1) and aij =1−aii for i,j∈S with i �= j using the vector of scaling
factors �f = (f1 :=1,f2) with f2 ∈R

+ and f2 > f1. This results in transition
matrix

Al = 1

fl

(
a−− −1+fl a−+

a+− a++ −1+fl

)

for gene pair orientation class l∈{1,2}. The expected state duration
of state i∈S in A1 is scaled from 1/(1−aii) to f2/(1−aii) in A2. A
transition from state qt to state qt+1 is achieved by using the corresponding
transition matrix Ac(dt ) based on the integrated gene pair orientation class
c(dt). The self-transition probability of each state i∈S increases strictly
from matrix A1 to A2, and thus, for a head–head gene pair modeled
by A2 it is more likely that both genes are targets or non-targets of
the analyzed transcription factor compared to other gene pairs modeled
by A1. The log-ratios of genes are modeled as described in the HMM
approach.

2.5.2 SHMM initialization The basic initialization of the SHMM is
identical to that of the HMM. In addition to that, we must choose a distance
threshold b for the gene pair orientation classes and a scaling factor f2
to specify the degree of differentiation between head–head orientations
modeled by A2 and all other orientations modeled by A1. For the initial
study in yeast, we neglect b by setting it to ∞, because most of the genes
have distances less than 2 Kb to its next adjacent gene on DNA, and because
the correlations of ChIP-chip measurements of head–head gene pairs shown
in Table 1 are generally high for all transcription factors. Additionally, we
consider the scaling factor f2 =4.0. In the in-depth ABI3 case study, we
always use b=9 Kb motivated by Figure 1, because at greater chromosomal
distance the correlations of ChIP-chip measurements of head–head gene pairs
do not significantly differ from other gene pairs. In addition to this, we assess
all values of f2 in the interval 1.1 to 10 in steps of 0.1.

2.5.3 SHMM training The SHMM is trained like the HMM using the
MAP variant of the Baum-Welch algorithm with identical prior hyper-
parameters. The only difference between both models occurs for the
estimation of their transition matrices. Details of the parameter estimation
are described in Seifert (2006).

2.5.4 SHMM target gene detection The putative target genes of the
analyzed transcription factor are determined in analogy to the HMM
approach. The calculation of the state posterior γt(+) is now done with
respect to the gene pair orientation classes using the Forward–Backward
procedures of HMMs.

3 RESULTS AND DISCUSSION
In this section, we first make an initial study to compare the three
approaches LFC, HMM and SHMM based on their prediction of
common target genes of the yeast cell cycle transcription factors
ACE2 and SWI5, and ACE2 and FKH2. Subsequent to this, we focus
on an in-depth study of LFC, HMM and SHMM for predicting target
genes of the seed-specific transcription factor ABI3 in A.thaliana.

3.1 Yeast dataset
3.1.1 Common target genes of yeast cell cycle regulators The
publicly available promoter array ChIP-chip dataset by Lee et al.
(2002) provides the opportunity to predict common target genes
of the yeast cell cycle transcription factors ACE2 and SWI5, and
ACE2 and FKH2 by the three methods LFC, HMM and SHMM. The
transcription factorsACE2 and SWI5 are known to regulate common

genes expressed at the boundary of the M/G1 phase of the cell cycle
(Lee et al., 2002; Mc Bride et al., 1999), and the transcription factors
ACE2 and FKH2 control the regulation of a common set of genes
in the G1 phase of the cell cycle (Lee et al., 2002). We use the LFC
method to score the putative target genes of ACE2, SWI5 and FKH2
separately based on the log-ratios of the genes in the corresponding
ChIP-chip profiles of the three transcription factors. Subsequent to
this, we determine the intersection of the top 75 scoring genes for
ACE2 and SWI5, and of the top 130 scoring genes for ACE2 and
FKH2. This ensures that all putative common target genes have
mean log-ratios greater than one. To motivate the application of the
HMM and the SHMM approach, the Pearson correlations of the
ChIP-chip measurements for the four gene pair orientations head–
head, tail–tail, tail–head and head–tail are shown in Table 1 for
the three transcription factors ACE2, SWI5 and FKH2. We observe
positive correlations in all four categories, which motivates the usage
of the HMM for predicting common target genes. Additionally, the
correlations in the head–head category are significantly higher in
comparison to the three other categories. This observation provides
the basics for using the SHMM to specifically model the head–head
orientations for the prediction of common transcription factor target
genes. For the comparison to the LFC method, we separately train
an HMM and a SHMM with scaling factor f2 =4.0 on all ChIP-
chip profiles of ACE2 and SWI5. Separately for the HMM and the
SHMM, we determine putative common target genes by computing
the intersection of the top 75 scoring genes. In analogy to this, we
determine putative common target genes of ACE2 and FKH2 at the
level of the top 130 target genes. The results for the comparison
of LFC, HMM and SHMM are shown in Figure 2. In both cases,
all common target genes predicted by LFC and HMM have also
been predicted by the SHMM. Additionally, the SHMM predicted
two putative target genes that have not been identified by LFC and
HMM. To investigate whether the putative common target genes
that have only been predicted by the SHMM, or together by the
HMM and the SHMM are involved in the regulation of the yeast cell
cycle we used the Saccharomyces Genome Database (Cherry et al.,
1997). Regarding the common target genes of ACE2 and SWI5, the
gene YJL160C has only been predicted by the SHMM. This gene
is a member of the PIR family of cell wall proteins with functions
in sporulation, and its gene expression level is weakly cell cycle
regulated peaking in the M phase of the cell cycle (de Lichtenberg
et al., 2005; Enyenihi and Saunders, 2003; Giaver et al., 2002;
Jung and Levin, 1999). Currently, no function is known for gene
YBR157C, which has been predicted by the SHMM and the HMM.
Considering the common target genes of ACE2 and FKH2, the
gene YER127W has only been predicted by the SHMM. This gene
encodes a protein which is essential for the maturation of the 18S
rRNA. Repression of the gene expression of this gene leads to an
abnormal progression of the G1 phase of the cell cycle (Yu et al.,
2006). The genes YER126C, YFL021W and YFL022C have been
identified as putative common target genes of ACE2 and FKH2 by
the HMM and by the SHMM. The protein of gene YER126C is part
of the 66S pre-ribosomal particles and contributes to the processing
of the 27S pre-rRNA. The overexpression of this gene leads to
a decrease in the vegetative growth of the yeast (Horsey et al.,
2004), which has consequences for the G1 phase of the cell cycle
where the cell grows. The gene YFL021W encodes a transcription
factor that activates genes involved in nitrogen catabolite repression.
The gene YFL022C encodes the alpha subunit of the cytoplasmic
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Fig. 2. Venn diagrams for comparing the prediction of common target genes
of the S.cerevisiae cell cycle transcription factors ACE2 and SWI5, and
ACE2 and FKH2 by the three methods LFC, HMM and the SHMM(4.0)
that specifically models the head–head orientation of adjacent gene pairs.
In both cases, the SHMM(4.0) is the most general model that predicted the
highest number of putative common target genes including all target genes
predicted by LFC and HMM.

phenylalanyl-tRNA synthetase. The overexpression of this gene
is known to lead to a delay or an arrest of the G2 or M phase
of the cell cycle (Niu et al., 2008). In summary, for both pairs
of transcription factors ACE2 and SWI5, and ACE2 and FKH2
the SHMM approach predicted the highest number of putative
common target genes that are involved in the regulation of the yeast
cell cycle.

3.2 Arabidopsis dataset
3.2.1 Differences between HMM and SHMMs for ABI3 The
HMM approach allows to analyze ChIP-chip data in the context
of chromosomal locations of genes. The application of SHMMs
extends this analysis by discriminating different types of gene pair
orientations. In this study, we investigate how SHMMs behave
in comparison to the standard HMM. For that reason, the Viterbi
algorithm (Durbin et al., 1998; Rabiner, 1989; Viterbi, 1967) is used
to compare the most likely state sequence q for a ChIP-chip profile
o under the trained HMM to that of all trained SHMMs with scaling
factor f2 increasing from 1.1 to 10 in steps of 0.1. Here, the Viterbi
annotation of a gene t with log-ratio ot is given by qt ∈S, which we
interpret as the promoter of gene t is either a putative ABI3 target
or not. The scaling factor allows to directly influence the annotation
behavior for head–head gene pairs. That is, the higher f2 the more
likely it is that both genes of such head–head pairs are either putative
ABI3 targets or not, and the closer f2 is set to one the more similar
the annotation behavior of the SHMM gets to that of the HMM.
The results are summarized in Figure 4. As expected, we observe
that the number of head–head gene pairs for which both genes
of such a pair have identical annotations increases for increasing
scaling factor f2, and consequently, the number of head–head gene
pairs for which both genes of such a pair have different annotations
decreases. Obviously, each change in the annotation of a head–head
gene pair leads either to a change in the annotation of the upstream,
downstream, or both of these gene pairs. We find that the number
of non-head–head gene pairs for which both genes of such a pair
are annotated as putative ABI3 targets decreases only slightly for
SHMMs with increasing scaling factor f2 compared with the HMM.
We clearly observe substantially more decrease in the number of
non-head–head gene pairs for which both genes of such a pair are
annotated as putative non-target genes for SHMMs with increasing
scaling factor f2 in relation to the HMM. Consequently, the number
of non-head–head gene pairs for which both genes of such a pair
have different annotations increases with increasing scaling factor

f2. This comparative study points out that the Viterbi annotation
results of SHMMs can differ significantly from that of the HMM
resulting in a more general model for the prediction of putative
target genes.

3.2.2 Comparison of LFC, HMM and SHMM for the prediction of
ABI3 target genes We use the LFC method for scoring putative
ABI3 target genes based on the log-ratios of the genes. This method
neglects chromosomal locations and gene pair orientations. For
comparison, we make use of the HMM that models chromosomal
locations of genes, and we make use of the SHMM that extends
the HMM by modeling orientations of gene pairs. Thereby, both
HMM approaches score putative ABI3 target genes via the state
posterior of the target gene state. In this comparative study, we set
the threshold for the maximal number of candidates in a top list
to 200, because the mean log-ratio of 1.06 at this level is already
relatively small, and beyond, at a top list of 300 we did not get new
putative ABI3 target genes by the three methods. Moreover, we use
the SHMM with scaling factor f2 =4 in all further analyses, because
this model is quite different from the standard HMM (Fig. 4), and
because the comparison of this model to SHMMs with higher scaling
factors f2 =6 and f2 =10 yielded identical target genes. For each
approach, we score all five ChIP-chip experiments to determine
the intersection of putative ABI3 target genes for the top 50, 100,
150 and 200 candidates obtained from these experiments. Then,
we use Venn diagrams to directly compare the candidate genes
for these four top lists given by all three methods. The results
are shown in Figure 3a. We observe that the SHMM predicted
the highest number of putative ABI3 target genes, whereas the
LFC method predicted the smallest number. Comparing the Venn
diagrams of the top 100 list to the top 200 list, all candidates that
are predicted by the LFC method are also completely predicted by
both the HMM and the SHMM. In addition to this, the candidates
additionally predicted by the HMM in the transition of the top 150
list to the top 200 list are completely predicted by the SHMM.
Next, we investigate whether the putative ABI3 target genes that
have only been predicted by the SHMM at the level of the top
200 candidates are the consequence of specifically modeling the
head–head orientations. For that purpose, we also trained a SHMM
that specifically models tail–tail orientations using the identical
initial settings. Figure 3b shows that the SHMM that specifically
models tail–tail orientations has a prediction behavior that is nearly
identical to that of the standard HMM with perfect agreement at the
level of the top 50 and 150 candidates, and one additional putative
target gene at the level of the top 200 candidates. This coincides
with the observation shown in Figure 1 that the measured log-
ratios of gene pairs in tail–tail orientation tend to be uncorrelated.
Due to that, the specific modeling of tail–tail orientations has
nearly no effect on the prediction of putative ABI3 target genes.
Figure 3c shows that the prediction results of the SHMM that
specifically models tail–tail orientations are completely included in
the set of predicted putative ABI3 target genes of the SHMM that
specifically models head–head orientations. This indicates that the
gain of additional putative ABI3 target genes is based on the specific
modeling of head–head orientations. In summary, this emphasizes
that the SHMM approach that models head–head orientations tends
to be more general in the prediction of putative ABI3 target genes
than the HMM, the LFC and the SHMM that models tail–tail
orientations.
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Fig. 3. Venn diagrams for comparing the number of predicted putative ABI3 target genes by the standard LFC, the standard HMM, the SHMM(4.0)
that specifically models head–head orientations of genes, and the SHMM_TailTail(4.0) that specifically models the tail–tail orientation of genes for
validating the SHMM(4.0). (a) Venn diagrams that show the comparison of the number of predicted putative ABI3 target genes by LFC, HMM and
the SHMM(4.0) that specifically models the head–head orientations. The SHMM(4.0) is the most general model that predicted the highest number of
putative target genes including all genes found by LFC and HMM at the level of the top 200 candidates. (b) Venn diagrams that show the comparison of
predicted putative ABI3 target genes by LFC, HMM and the SHMM_TailTail(4.0) that specifically models tail–tail orientations. The SHMM_TailTail(4.0)
does predictions nearly identical to the HMM with perfect agreement at the level of the top 50 and 150 candidates. The total number of predicted
putative ABI3 target genes is less than in Figure 3a. (c) Venn diagrams that show the comparison of predicted putative ABI3 target genes by LFC,
SHMM_TailTail(4.0) and the SHMM(4.0). The SHMM(4.0) that specifically models the head–head orientation is the most general model that predicted
the highest number of putative ABI3 target genes including all genes predicted by LFC and the SHMM_TailTail(4.0) that specifically models tail–
tail orientations. This states that the gain of additional putative ABI3 target genes is based on the specific modeling of head–head orientations by the
SHMM(4.0).
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Fig. 4. Differences of gene pair annotations of the trained SHMM(f2) with
scaling factor f2 ∈[1.1,10] in steps of 0.1 in relation to the trained HMM
based on Viterbi annotations. The HMM is encoded by the orange shade
with value zero. The annotations ++, −− and +−/−+ of gene pairs define
that either both genes are putative targets, non-targets or only one gene of
both is a putative target of ABI3.

3.2.3 Gene expression analysis of putative ABI3 target genes
Next we investigate how putative target genes are regulated by
ABI3. For that purpose, we use Genevestigator (Zimmermann et al.,
2004) as an independent source of A.thaliana gene expression data
to analyze putative target genes. In Genevestigator, ABI3 is mainly
expressed within the categories inflorescence, silique and seed.

Based on that, we quantify the expression of all putative target
genes by dividing the sum of expression values within these three
categories by the sum of expression values in all categories. This
provides a quantitative measure, which we call Genevestigator score,
for analyzing how a putativeABI3 target gene follows the expression
profile of ABI3. Additionally, transient assays have been performed
in wet laboratory experiments to test whether the promoters of
putative ABI3 target genes in fusion with the glucuronidase (GUS)
reporter gene react on ABI3. The results are shown in Table 2.
Calculating the Genevestigator score, 16 of 22 putative target genes
show significantly high scores at the level of the 95%-quantile 0.15
based on the distribution of the Genevestigator scores for 1000
randomly selected genes. The promoters of these 16 genes have been
tested in transient assays, and we find that 15 of these promoters
can activate the GUS expression through ABI3. The promoter of
gene T21 shows nearly a 2-fold repression of the GUS expression,
which is not reflected by its Genevestigator score. Interestingly, the
genes T21 and T22 are in head–head orientation to each other, and
thus they have the potential to share a common promoter region.
Based on the results of the transient assays, the first gene might
be repressed while the second is activated. Hence, it seems that
activation and repression signals can be transmitted by ABI3 to these
two target genes in head–head orientation via a potential common
promoter region. Additionally, we point out that only the SHMM
approach was able to predict three of these 15 target genes activated
by ABI3 and the one target gene repressed by ABI3. In contrast to
these 16 target genes, the six remaining putative target genes do
not significantly differ in their Genevestigator scores at the level
of the 5–95%-quantile range [0.02,0.15] based on the distribution
of the Genevestigator scores for the 1000 randomly selected genes.

2123



[14:07 23/7/2009 Bioinformatics-btp276.tex] Page: 2124 2118–2125

M.Seifert et al.

Table 2. Overview of predicted ABI3 target genes by LFC, HMM and
SHMM(4.0) at the level of the top 200 candidates in Figure 3a.

ID LFC HMM SHMM(4.0) GV TA

T1 1 1 1 0.94 5
T2 1 1 1 0.11 2.5
T3 1 1 1 0.86 12
T6 1 1 1 0.72 15
T7 1 1 1 0.90 7

T12 1 1 1 0.74 24
T13 1 1 1 0.09 0.4
T14 1 1 1 0.93 8
T16 1 1 1 0.95 27
T17 1 1 1 0.98 27
T19 1 1 1 0.98 27
T20 1 1 1 0.57 8
T22 1 1 1 0.81 30
T11 0 1 1 0.09 2
T15 0 1 1 0.10 –
T18 0 1 1 0.98 27

T4 0 0 1 0.03 –
T5 0 0 1 0.39 3
T8 0 0 1 0.46 12
T9 0 0 1 0.07 1

T10 0 0 1 0.95 6
T21 0 0 1 0.20 0.6

The ID column contains anonymized target gene identifiers (a manuscript discussing
these genes is currently in preparation). The numbers 1 and 0 in the method columns
LFC, HMM and SHMM(4.0) encode whether a gene is predicted (1) or missed (0). GV
(Genevestigator) quantifies the gene expression of a target gene within the categories
inflorescence, silique and seed as described in Section 3.2.3. TA (Transient assay)
contains the measured fold-change of the GUS gene expression for a target gene
promoter under ABI3 expression in relation to this target gene promoter lacking the
expression of ABI3.

Interestingly, five of these six putative target genes are in head–head
orientation to one of the previous target genes activated by ABI3.
Next, we address the question if these six putative ABI3 target
genes are also under control of ABI3. To test this hypothesis, the
promoters of four of these six putative target genes have been tested
in transient assays. The promoters of the genes T2 and T11 show
a low activation of the GUS expression, the promoter of gene T13
shows a 2-fold repression of the GUS expression, and the promoter
of gene T9 does not seem to react on ABI3. In addition to this,
gene T13 is in head–head orientation with gene T23 that is not
represented by its own promoter fragment on the promoter arrays.
The Genevestigator score of T23 is significantly higher than those
of the 1000 random genes at the level of the 95%-quantile, and the
promoter of this gene shows activation of the GUS expression in
a transient assay. Hence, this gene pair seems to behave like the
gene pair T21 and T22. In summary, independent gene expression
profiles from Genevestigator give first hints which genes might be
activated by ABI3. Additionally, transient assays help to validate
these results if the underlying test system is capable of simulating
the natural situation in seeds. In total, 20% of the target genes
with high Genevestigator scores and activation by ABI3 could be
predicted only through the application of the SHMM approach and
would have been missed using the LFC or HMM approach. This
points out the relevance of SHMMs for the detection of ABI3
target genes.

4 CONCLUSIONS
We studied the LFC, HMM and new SHMM approach for the
analysis of promoter array ChIP-chip data of the yeast S.cerevisiae
and of the model plant A.thaliana. The application of HMMs
and SHMMs to the analysis of promoter array ChIP-chip data is
motivated by the observation of positive correlations of ChIP-chip
measurements of directly adjacent genes on DNA as shown in
Table 1 for S.cerevisiae, or in Figure 1 for A.thaliana. Especially, the
new SHMM approach takes additionally into account that the ChIP-
chip measurements of the head–head gene pairs have significantly
higher correlations than those of all other gene pairs. Regarding all
three methods, the SHMM predicted the highest number of target
genes for the promoter array ChIP-chip data sets of S.cerevisiae and
A.thaliana including all target genes of LFC and HMM. However,
the number of predicted target genes is not an optimal criterion to
decide which of the methods should be preferred. For that reason,
we searched in literature and data bases, analyzed expression data,
and had access to the results of transient assays to validate the
prediction results. Using these independent sources for validation,
the SHMM showed the best performance of all three methods for the
promoter array ChIP-chip datasets of S.cerevisiae and A.thaliana.
Taking this together, this indicates that the SHMM approach is a
valuable tool that could also be applied to other promoter array
ChIP-chip data sets.
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