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HIGHLIGHTS

1. Distance-dependent Hi-C contacts and fold change compression influence power
2. Integrative modeling of Hi-C power provides guidance for experimental design
3. Aninteractive web app aids the design of differential Hi-C experiments

ABSTRACT

3D chromatin structure plays an important role in gene regulation by connecting regulatory regions and gene
promoters. The ability to detect the formation and loss of these loops in various cell types and conditions provides
valuable information on the mechanisms driving these cell states and is critical for understanding how long-range
gene regulation works. Hi-C is a powerful technique used to characterize three-dimensional chromatin structure;
however, Hi-C can quickly become a costly and labor-intensive endeavor, and proper planning is required to determine
how to best use time and resources while maintaining experimental rigor and well-powered results. To facilitate
better planning and interpretation of Hi-C experiments, we have conducted a detailed evaluation of statistical power
using publicly available Hi-C datasets paying particular attention to the impact of loop size on Hi-C contacts and fold
change compression. In addition, we have developed Hi-C Poweraid, a publicly-hosted web application to investigate
these findings (http://phanstiel-lab.med.unc.edu/poweraid/). For experiments involving well-replicated cell lines, we
recommend a total sequencing depth of at least 6 billion contacts per condition, split between at least 2 replicates
in order to achieve the power to detect the majority of differential loops. For experiments with higher variation, more
replicates and deeper sequencing depths are required. Exact values and recommendations for specific cases can be
determined through the use of Hi-C Poweraid. This tool simplifies the complexities behind calculating power for Hi-C
data and will provide useful information on the amount of well-powered loops an experiment will be able to detect given
a specific set of experimental parameters, such as sequencing depth, replicates, and the sizes of the loops of interest.
This will allow for more efficient use of time and resources and more accurate interpretation of experimental results.

INTRODUCTION

3D chromatin structure is thought to play a critical role
in the regulation of gene expression, particularly during
development and in response to external stimuli'-3.
Abnormalities in this organization have been implicated
in a number of human diseases and developmental dis-
orders*. While multiple types of 3D chromatin structures
have been identified, chromatin loops—point-to-point
interactions between two genomically distal loci—are of
particular interest as they can bring gene promoters into
close physical proximity with distal enhancers and facilitate
transcriptional activation®. Multiple genomic approaches
have been developed to detectloops and other chromatin
structures, including Hi-C, a widely used approach to quan-

tify chromatin interactions in a genome-wide fashion®°.
Computational analysis of Hi-C data can be used to both
identify chromatin loops and quantify the interaction fre-
quencies between pairs of loop anchors. The application
of Hi-C to investigate differential looping, or changes in
looping across samples or biological conditions, has
provided valuable insights into the function of the human
genome, the role of enhancers in regulating gene expres-
sion, and the genetic basis of human disease?'°,

Proper design and interpretation of comparative Hi-C
genomics experiments requires a rigorous understand-
ing of the statistical power underlying the experiment
in question. Statistical power is the probability of a test
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rejecting the null hypothesis, given that the null hypothesis
is false. In this case, the null hypothesis is that a given
loop is not changing between conditions. Power relies
on several key factors including the sample size (e.g.
biological replicates), the effect size (i.e. fold change), the
counts representing the feature of interest (i.e. the loop
pixel), the alpha level, and dispersion. Several software
packages have been developed to estimate the power of
comparative genomic studies and these tools have been
extensively used to design and interpret studies involv-
ing RNA-seq, ChIP-seq, ATAC-seq, and numerous other
genomic methodologies''~'s. However, Hi-C has several
inherent differences compared to these data types that
make power analysis non-trivial. First, the generation of
Hi-C data sets for preliminary power analysis is expensive
since Hi-C requires sequencing depths that are orders
of magnitude greater than those required for traditional
sequencing experiments. Second, Hi-C library preparation
and data analysis both require special expertise due to the
lengthy protocol and the sheer size and complexity of the
resulting data sets. Finally, the counts observed in a given
Hi-C pixel arise due to multiple biological and technical
forces, each of which is dependent on the genomic dis-
tance between the loci depicted by said pixel.

Hi-C interaction frequencies are governed by at least
two main forces, or types of interactions, each of which
affects the power to detect differential looping. It is the
cumulative influence of these interaction types that gives
rise to the counts observed at any particular pixel in a
Hi-C dataset. The first type of interactions are polymer
interactions, which are distance-dependent interactions
between two regions of a chromosome due to their
inclusionin a linear polymer. The second type are looping
interactions, interactions driven by the forces of specific
chromatin interacting proteins. Most looping interactions
are presumably the result of CTCF binding and cohes-
in-driven loop extrusion; however, other less common
mechanisms have also been identified'®'8. Other forces,
including compartmentalization and contact domain
inclusion, also influence interaction frequencies albeit to
a lesser degree. An understanding of the relationships
between these forces can strongly influence the power to
detect differential loops as we describe here.

To facilitate better planning of Hi-C experiments, we
have modeled these forces and conducted a detailed
evaluation of the effects of sequencing depth and repli-
cate number on differential loop detection using deeply
sequenced, publicly available Hi-C data sets. We also
developed an interactive web application to enable better
planning of comparative Hi-C experiments. Finally, we
provide guidance and recommendations for planning Hi-C
experiments depending on project goals and budgets.

RESULTS

Loop size is anti-correlated with sequencing counts
One of the key determinants of power in genomic exper-
iments is the number of sequencing counts attributed to
the feature being measured, in this case, loops. One of the
unique aspects of Hi-C data is that on average, sequenc-
ing counts decrease as a function of genomic distance.
We modeled this trend to understand how it affects the
power to detect differential loops at various distances.
Using deeply sequenced Hi-C data from Rao & Huntley
et al., which includes roughly 5 billion unique contacts in
GM12878 cells, we extracted the observed counts and
expected counts for all loops and plotted the median
counts as well as interquartile and interdecile ranges of
observed counts (Fig 1A). These counts decrease as
genomic distance increases, and the relationship follows
a power law curve as previously observed®. This suggests
that the size of a differential loop is closely correlated
with the power we have to detect it. To elucidate this rela-
tionship, we calculated the power to detect differential
loops (via the RNAsegpower package'') using the median
counts for each genomic distance as values for depth (Fig
1B). We held dispersion, alpha, and fold change constant
at 0.001, 0.05, and 2, respectively. As expected, power
decreases sharply with increasing loop size, an effect that
is slightly alleviated with increased sequencing replicates.
The distribution of loop sizes is skewed toward the shorter
range of the distances shown (Fig 1C). These trends were
similar for other Hi-C data sets investigated(Fig S1)". How
the distributions of loop sizes and power intersect to
affect the overall power of a differential Hi-C experiment
will be explored in more detail later. Examples of loops at
varying distances and their associated statistical power
are depicted in Figure 1D.

Loop size is anti-correlated with fold change compres-
sion

A second key determinant of statistical power is the effect
size—or fold change—of the features of interest. However,
since only a fraction of the counts at a given loop pixel
arise from looping interactions, observed fold changes
in a Hi-C experiment are smaller than the actual changes
in chromatin looping. To illustrate this compression, we
consider a single 350 Kb loop from the GM 12878 data set
acquired by Rao & Huntley et al'® (Fig 2A). There are 159
observed counts at this loop pixel. Polymer interactions for
this pixel can be estimated by calculating the median inter-
actions for all pixels connecting loci 350 Kb apart. Because
the vast majority of pixels do not represent a chromatin
loop, the resulting value is called the ‘expected’ counts
since this is the number of counts that would be expected
in the absence of a chromatin loop. For the loop in ques-
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Figure 1. Counts and power decrease with increasing loop size.
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G 48 0.3519
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(A) Median counts per loop as a function of genomic distance are plotted as a solid purple line. Dark and light purple shaded areas represent
inner interquartile and interdecile ranges. The dotted black line represents the median value of all (loops and non-looped) pixels at each
10 Kb binned genomic distance. (B) Effect of loop size on power when dispersion, alpha, and effect are held constant at 0.001, 0.05, and 2,
respectively. This distance-dependent effect is due only to changes in counts and is investigated across different replicate values. (C) Distri-
bution of loop sizes showing a median loop size of 300 Kb. (D) An example region on chromosome 6 with loops labeled in order of increasing
distance. The observed contacts and the power to detect a 2-fold change in counts due to looping interactions are listed for each loop pixel.

tion, this provides a value of 36 counts, or 23% of the
observed counts. Looping interactions can be estimated
by subtracting the expected counts from the observed
counts which gives us 123, or 77% of the observed counts.
Therefore, a two-fold increase in looping interactions (123
* 2 = 246) would actually only be observed as a 1.77-fold
increase in observed counts (Fig 2A) since the expected
counts would remain the same.

We next sought to explore this effect across all loops
identified in a given Hi-C experiment. Using the same ap-
proach described above, we estimated the percentage of
counts due to looping interactions for all loops (Fig 2B).
As loop size increases, we observe a higher percentage
of counts due to looping. We next explored how this dis-
tance-dependent change in the composition of sequenc-
ing counts impacts fold change compression. For every
loop, we calculated the percentage of counts due to loop-
ing and calculated what the observed fold change would

be given a two, three, or four-fold change in looping. The
median as well as interquartile and interdecile ranges are
plotted in Figure 2C. As expected, fold change compres-
sion was observed for all loop sizes; however, the magni-
tude of fold change compression decreased with increas-
ing loop size.

To determine how these distance-dependent effects
on fold change compression impact statistical power,
we calculated the power to detect the median values of
observed fold change for each loop size (Fig 2D). Disper-
sion, alpha, replicates, and counts were held constant at
0.001, 0.05, 2, and 50 respectively. Plotting the result-
ing power reveals the opposite trend that we observed
when considering counts as a function of distance. That
is, the correlation between sequencing counts and loop
size suggests a positive correlation between loop size
and power, whereas the inverse correlation between fold
change compression and loop size suggests a negative
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Figure 2. Fold change compression is anti-correlated with loop size.

(A) An example region showing a loop and the effect on observed counts and fold change if counts due to looping interactions are doubled.
The counts due to looping interactions can be represented as the observed counts minus the expected counts. When these looping counts
are doubled, the expected counts remain the same, so the observed fold change of total counts (1.77) is less than that of the fold change of
looping counts (2)). (B) The distance-dependent nature of the percent of signal due to looping. The percent of signal due to looping is about
50-80% of the observed counts and increases slightly with loop size. For smaller loop sizes, expected counts comprise more of the observed
counts. (C) Observed fold change per loop for looping fold changes of 2 (red), 3 (green), and 4 (blue). Dark and light shaded areas represent
interquartile and interdecile ranges. Observed fold change is compressed when looping doubles, triples, and quadruples, with an increasing
range of effect as fold change increases. The compression effect is greatest for shorter-range loops, meaning longer-range loops typically
have higher observed fold changes for the same change in looping counts. (D) Effect of loop size on power for a median loop at each distance
when dispersion, alpha, replicates, and counts are held constant at 0.001, 0.05, 2, and 50, respectively.

correlation between loop size and power. However, these change inlooping. As expected, a higher overall sequenc-
models were built by isolating individual variables and ing depth results in increased power. At low values of dis-
using only median values of sequencing counts and fold persion, (those we typically observe when replicates are
change per loop size bin. How these features intersect defined as different wells of the same cell line) the number
to determine power on a per-loop basis in real data sets of replicates does not heavily influence power. The total
and how these relationships impact experimental design sequencing depth is the main determinant of power, and

is explored below. the number of well-powered loops is similar if those reads
are splitacross two or tenreplicates. For experiments with
Recommendations for maximizing power higher dispersion, (for example, if replicates come from

To determine optimal experimental parameters, such as donors with different genetic backgrounds, ages, ethnic-
sequencing depth and replicates, we calculated power for ity, etc) increasing replicates heavily influences power, with
every loop in the deeply sequenced dataset created by more replicates always being better. Even at relatively high
Rao & Huntley et. al'®. We subsampled the dataset to 10 sequencing depths, (i.e. 6 billion contacts per condition)
different sequencing depths and calculated power using power is highly distance dependent with shorter loops
a range of both dispersions and replicates. Observed fold being far more well-powered than longer loops. The per-
changes were modeled using the fold change compres- cent of well-powered loops at each distance is shown in
sion relationships for each loop as calculated in Figure 2. Fig 3B-C. Fortunately, loop size distributions are skewed
For the case of this analysis, a well-powered loop is defined to shorter loops so the low power to detect loops greater
as one which has 80% or higher power to detect a 2-fold than 1 Mb does not heavily influence the overall power of
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Figure 3. Power increases with replicates and sequencing depth.

(A) For each combination of replicates (2-10), dispersion (0.001, 0.005, and 0.02), and sequencing depth per replicate (50 M, 100 M, 250 M,
500 M, 750 M, 1 B, 2B, 3 B, 4 B, and 5 B contacts), the power to detect a 2-fold change in looping was calculated. Loops with a power above
0.8 were designated as "well-powered”, and the percentage of these loops is represented on the x axis. This percentage is investigated
across the total sequencing depth per condition (multiplying replicates by the sequencing depth per replicate). For the lowest dispersion, we
highlight 2 different scenarios: a recommendation of 6 billion contacts per condition to achieve ~50% well-powered loops, and a more ideal
scenario of 25 billion contacts per condition to achieve ~90% well-powered loops. (B-C) The percent of well-powered loops (B) and number
of loops (C) in Rao & Huntley et al.'s GM12878 data for the recommended 6 billion contacts per condition, using dispersion and replicate
values of 0.001 and 2, respectively. The power to detect a 2-fold change in looping interactions was calculated per loop, and the percentages
and numbers of loops with a power over .8 were calculated per 10Kb bin. (D-E) The percent of well-powered loops (D) and number of loops
(E) in Rao & Huntley et al.'s GM12878 data for the ideal 25 billion contacts per condition, using dispersion and replicate values of 0.001 and
2, respectively. The power to detect a 2-fold change in looping interactions was calculated per loop, and the percentages and numbers of
loops with a power over .8 were calculated per 10Kb bin.
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the experiment. Nevertheless, for proper interpretation of
differential Hi-C experiments, it is important to consider
this bias toward the detection of shorter loops.

Based on these findings, we recommend sequencing
to a depth of at least 6 billion contacts per condition. This
will ensure that roughly 50% of loops will exhibit 80% pow-
er to detect a two-fold change in looping. These calcula-
tions assume that replicates come from the same cell line
and are grown and treated in reproducible ways. For high-
er dispersion experiments, e.g. comparing data sets from
different individuals, even higher sequencing depth is re-
quired. In any case, more replicates are always as good
or better than fewer replicates. Therefore, in general, we
recommend performing as many replicates as possible.
In our experience, most Hi-C libraries are not complex
enough to produce more than 1 billion unique contacts,
so reaching 6 billion contacts likely requires many repli-
cates anyway. Sequencing depths exceeding 25 billion
contacts would be required to achieve 90% well-powered
loops, even with very low dispersion. Such sequencing
depths are not currently tractable for most researchers
but may become so in the near future as we discuss later.

Hi-C Poweraid: a web application for differential Hi-C
experiment design

Since there are various parameters to consider when plan-
ning a new Hi-C experiment that can quickly become com-
plex and overwhelming, we built Hi-C Poweraid, an R shiny
app to facilitate this planning (http://phanstiel-lab.med.unc.
edu/poweraid/). Hi-C Poweraid consists of 2 main tabs:
tab 1 for investigating power across different sequencing
depths and tab 2 for investigating power across different
loop sizes. In tab 1, the user can specify a range of repli-
cate values, a power threshold, and one or more dispersion
values. A well-powered loop is defined as one with a power
above the given power threshold to detect a 2-fold change
in looping interactions. This tab is useful for determining
the ideal total sequencing depth and number of repli-
cates for an experiment, and to investigate how differing
dispersions can affect that decision. Tab 2 provides more
granular information, albeit on just one set of parameters
at a time. Here, a user can make fine-tuned selections of
fold change, dispersion, replicate number, and sequencing
depth per replicate. The plots provided can then be used to
determine power as a function of loop size, which can help
inform both the planning and interpretation of differential
Hi-C experiments. For both tabs, we make use of interac-
tive plotly plots, which allow for features such as pan and
zoom, region selections, trace isolation, and hover effects
to glean more specific information about certain regions
or points on the plot?.

DISCUSSION

Due to the expense and difficulty of performing Hi-C
experiments, it is critical to first perform a careful power
analysis. A power analysis can also help inform the inter-
pretation of experiments; for example, it can help scientists
determine if the small number of differential loops is due
to a similarity between the samples or just a lack of power.
It can also help explain biases in the sets of differential
loops detected (e.g. shorter loops). To address this, we
performed a rigorous power analysis of differential Hi-C
experiments and developed a web application to facilitate
interrogation of the resulting data. As a result of this anal-
ysis, we recommend designing experiments with at least
6 billion contacts per condition, split between 2 or more
replicates to achieve a power above 0.8 to detect a 2-fold
change for over 50% of loops. A more ideal, albeit cur-
rently infeasible, design would include 25 billion contacts
per condition to achieve a power above 0.8 to detect a
2-fold change for over 90% of loops. The analyses and
web app described here can aid in the effective use of time
and resources and in justifying plans, costs, and resource
distribution when proposing new experiments.

However, several caveats pertain to these estimates.
First, itisimportant to note, "Hi-C contacts” refers to reads
that have passed a variety of filtering steps and that ac-
tual sequencing depths need to be even higher than the
numbers quoted here in order to achieve the appropriate
number of contacts. The percentage of reads that result
in Hi-C contacts varies widely based on library quality,
complexity, and sequencing depth and therefore cannot
be easily modeled here. Second, while Hi-C Poweraid pro-
vides good general guidelines for experimental design, op-
timal design is difficult to pinpoint. Different experimental
designs and protocols have different dispersions that can
be hard to predict but have an important impact on pow-
er. For experiments performed on multiple replicates of
the same cell line, low dispersion values are expected and
deep sequencing of a small number (e.g. 2) of replicates
is sufficient for optimal power. Experiments in which rep-
licates represent different donors or animals are likely to
exhibit higher dispersion values and more replicates may
be required to reach similar power thresholds. However,
exact values for dispersion based on different experi-
mental designs is difficult to determine. When estimating
a dispersion to use for Hi-C Poweraid, we advise using the
dispersion from other, similar experiments in the lab, a
collaborator’s lab, or from publicly available Hi-C data. If a
dispersion cannot be estimated, itis recommended to use
as many replicates as is feasible, as increasing replicates
is likely to increase the overall power of the experiment.
Third, these results pertain to Hi-C data only and it is cur-
rently unclear how these recommendations apply to other
methods, such as micro-C, Hi-ChlP, ChiA pet, and capture
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Hi-C. Estimates are likely to be comparable for micro-C,
as the experimental design and resulting data are similar;
however, protocols that involve regional enrichment (e.g.
Hi-ChlP, ChlA pet, capture Hi-C, etc) will require their own
power analysis.

We have found that optimally-powered Hi-C exper-
iments require far deeper sequencing than is typically
performed or feasible for most labs (e.g 25 billion con-
tacts per condition). While current sequencing costs
largely inhibit such experiments, sequencing costs have
decreased drastically over the past two decades, and
are likely to continue decreasing?'?2. Multiple emerging
sequencing technologies have the potential to decrease
sequencing costs by 60% or more®. As newer technolo-
gies arise and are adopted, and as sequencing costs con-
tinue to decrease, the recommendations for sequencing
depth proposed here will become more affordable and
attainable.

Hi-C Poweraid is a useful tool that enables accurate
Hi-C power estimates without the need to generate costly
preliminary datasets or conduct complex computational
analyses. These estimates will help facilitate grant pro-
posals and provide better planning for experiments, which
will ultimately translate into more robust scientific results.
Well-planned experiments will improve the efficiency of
allocation of time and resources, allow for more accurate
interpretation of results, and expedite scientific progress.

DATA AND CODE AVAILABILITY

Hi-C data can be accessed through SRA accession
PRJUNA385337 (Phanstiel et al) and GEO accession
GSE63525 (Rao et al)

Hi-C Poweraid is available as an R Shiny application
deployed at http://phanstiel-lab.med.unc.edu/poweraid/
The R Shiny application code is available at https://github.
com/sarmapar/poweraid
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METHODS

Hi-C Subsampling, alignment, and processing

In situ Hi-C datasets for 29 samples (18 primary and 11
replicate) of GM12878 cells were downloaded as merge_
no_dups files through GEO accession GSE63525. These
files were randomly subsampled to the proper proportion
of the total sequencing depth required so that the unique
reads add up to the desired sequencing depth. For each
line in the merge_no_dup file, a random float was gen-
erated, and if the float was less than the percent of total
needed, that line was included in the new subsampled
file. This method was repeated for the total sequencing
depths of 50 million, 100 million, 250 million, 500 million,
750 million, 1 billion, 2 billion, 3 billion, 4 billion, and 5 billion
contacts. This method resulted in files with +/- up t0 0.01%
difference from the whole number sequencing depths.

The 29 subsampled merge_no_dup files per sequenc-
ing depth were combined into one file per sequencing
depth and processed into Hi-C files using Juicer tools
(v1.14.08). Looping interactions were called at 5Kb reso-
lution with Significant Interaction Peak (SIP) caller?® (v1.6.1)
and Juicer tools using the merged Hi-C file from the 29,
non-subsampled merge_no_dup files (5,536,073,657 total
contacts) with the following parameters: “-g 2.0 -t 2000
-fdr 0.05" for a total of 14,849 loops after merging at 10Kb
resolution.

The un-normalized expected and observed counts for
each loop in each Hi-C file were extracted using a pre-re-
lease of mariner?® (v. 0.1.0). Loops were then filtered for a
length shorter than 2 Mb, observed counts greater than
expected, and for those only located on chromosomes
1-22, resulting in approximately 14,000 loops per se-
quencing depth.

Fold change and power calculations

The fold change of observed counts for various fold
changes of the counts due to looping interactions for each
loop was calculated using

(o-e)*FC +e

looping

FCobserved =

(0]

where o is observed counts, e is expected counts, and
FCoping IS the fold change of counts due to looping inter-
actions. For example, in Figure 2, the FC, | values used
were 2, 3, and 4.

Power was calculated per loop using the rnapower()
function from the RNASeqPower package'', where alpha
was 0.05 divided by the number of loops for a given se-
quencing depth, depth was the observed counts for the
given loop, cv was the square root of a given dispersion,
effect was the fold change of observed counts for a given
fold change due to looping counts, and n was the number
of given replicates. For the purpose of our analysis, dis-


https://doi.org/10.1101/2023.03.15.532762
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.15.532762; this version posted March 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

persion values ranging from 0.001 to 0.1, replicate values
ranging from 2 to 10, and fold change values ranging from
1.1 to 10 were used.

For each combination of parameters, the percent-
age of well-powered loops was calculated. A well-pow-
ered loop was one where the power was greater than a
set threshold, either 0.8 or 0.9 for a given fold change. A
threshold of 0.8 to detect a 2-fold change was used for all
analyses described here. For our initial analyses (Fig 1-2),
we used the following parameters: 4 replicates, 2 billion
reads per replicate, 0.001 dispersion.

These were chosen to reflect the same values from a
previous differential Hi-C study’. This allowed for compar-
ison between these 2 datasets to determine if the results
from the subsampled data can be reliably extended to
other Hi-C datasets and future studies (Fig S1).

Visualizations

To reduce noise and to aid in visualizations, the observed
and expected counts used for Figures 1 and 2 were fitto a
power law curve using aomisc?’. All figures were generated
by use of the Bioconductor package plotgardener?,
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Figure S1. The effect of loop size on counts, loop composition, and quantity of loops from two Hi-C data sets.

(A) Median counts vs loop size are plotted for loops from THP-1 cells (Phanstiel et al) and GM12878 cells (Rao et al). (B) Median percent of
signal due to looping vs loop size is plotted for loops from THP-1 cells (Phanstiel et al) and GM12878 cells (Rao et al). (C) Distribution of loop
sizes identified from THP-1 cells (Phanstiel et al) and GM12878 cells (Rao et al).
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