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Abstract Hormones are potent endo-, para-, and autocrine endogenous regulators of the function of multiple organs, in-
cluding the heart. Endocrine dysfunction promotes a number of cardiovascular diseases, including atrial fibrillation
(AF). While the heart is a target for endocrine regulation, it is also an active endocrine organ itself, secreting a
number of important bioactive hormones that convey significant endocrine effects, but also through para-/auto-
crine actions, actively participate in cardiac self-regulation. The hormones regulating heart-function work in con-
cert to support myocardial performance. AF is a serious clinical problem associated with increased morbidity and
mortality, mainly due to stroke and heart failure. Current therapies for AF remain inadequate. AF is characterized
by altered atrial function and structure, including electrical and profibrotic remodelling in the atria and ventricles,
which facilitates AF progression and hampers its treatment. Although features of this remodelling are well-
established and its mechanisms are partly understood, important pathways pertinent to AF arrhythmogenesis are
still unidentified. The discovery of these missing pathways has the potential to lead to therapeutic breakthroughs.
Endocrine dysfunction is well-recognized to lead to AF. In this review, we discuss endocrine and cardiocrine sig-
nalling systems that directly, or as a consequence of an underlying cardiac pathology, contribute to AF pathogene-
sis. More specifically, we consider the roles of products from the hypothalamic-pituitary axis, the adrenal glands,
adipose tissue, the renin–angiotensin system, atrial cardiomyocytes, and the thyroid gland in controlling atrial elec-
trical and structural properties. The influence of endocrine/paracrine dysfunction on AF risk and mechanisms is
evaluated and discussed. We focus on the most recent findings and reflect on the potential of translating them
into clinical application.
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This article is part of the Spotlight Issue on Atrial Fibrillation.

1. The hypothalamus-pituitary axis
and AF

The hypothalamus-pituitary axis is a key component of the endocrine
system. The pituitary gland is located in the sella turcica, a pouch of the
sphenoid bone, and connected to the hypothalamus via the hypophyseal
stalk. It is composed of the anterior (adenohypophysis) and posterior

(neurohypophysis) pituitary, embryologically separate, and functionally

independent units. The posterior pituitary secretes oxytocin and vaso-

pressin synthesized in the hypothalamus; they do not have any known di-

rect electrophysiological effects or associations with atrial fibrillation

(AF). The anterior pituitary secretes the six tropic hormones, thyroid-

stimulating hormone (TSH), adrenocorticotropic hormone (ACTH),

growth hormone (GH), follicle-stimulating hormone (FSH), luteinizing
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..hormone (LH), and prolactin, in response to stimulation from the hypo-
thalamus. Over or underproduction of pituitary hormones lead to char-
acteristic disease-conditions (Figure 1).

ACTH stimulates cortisol production by the adrenal cortex.
Cushing’s disease is caused by pituitary ACTH-dependent hypercortiso-
lism.1 Cushing’s syndrome can be caused by ectopic ACTH-secreting ex-
tra-pituitary tumours and iatrogenic glucocorticoid administration. AF is
more prevalent in patients taking high-dose exogenous corticosteroids2

and in those with cortisol-secreting adrenal adenomas vs. age-matched
controls3; the association between Cushing’s disease per se and AF is not
well-characterized and the underlying mechanisms are incompletely un-
derstood. Cushing’s syndrome/disease causes important AF-associated
risk factors, like hypertension, diabetes, dyslipidaemia, and obesity.4,5

Adrenal insufficiency results in hypocortisolism and can be primary
(adrenal), secondary (pituitary), or tertiary (hypothalamus). Association
between adrenal dysfunction and AF has not been described.

Glucocorticoid receptors (GRs) are expressed in cardiomyocytes and
mediate a wide range of genomic and non-genomic anabolic and meta-
bolic effects. The electrophysiological effects of GR activation, particu-
larly with respect to AF,6 are understudied; however, cortisol affects
intracellular calcium (Ca2þ) homeostasis. Hydrocortisone administration
led to a protein kinase C (PKC)-dependent shortening of the ventricular
action potential duration (APD) and changes in Ca2þ-transients7, while
adrenalectomized rats showed abnormal sarcoplasmic Ca2þ-uptake cor-
rectable with exogenous dexamethasone.8 These effects may be due to
serum- and glucocorticoid-inducible kinase 1 (SGK1)-mediated upregu-
lation of cardiac potassium (Kþ) currents, including Ito, IKs, IKr, and IKur.

9,10

Adrenal insufficiency is associated with QT-prolongation and polymor-
phic ventricular tachycardia responsive to exogenous corticoste-
roids.11,12 While excess cortisol increases the risk of AF, likely mediated

by a combination of direct electrophysiological effects and indirectly
through AF-associated risk factors, the effects of cortisol deficiency on
atrial electrophysiology and AF are unknown. Recent studies have identi-
fied the importance of GR-transcriptionally induced glucocorticoid-
induced leucine zipper (GILZ or tsc22d3) protein. GILZ mediates
multiple effects of glucocorticoids that has not been linked to AF poten-
tially due to more selective, as opposed to glucocorticoids, effects.13

GH is secreted by the anterior pituitary and has direct as well as indi-
rect anabolic and positive inotropic effects mediated via the GH-
directed hepatic secretion of insulin-like growth factor (IGF)-1.14 Both
GH excess and deficiency have been associated with increased cardiac
arrhythmias, including AF, cardiovascular morbidity, and mortality.15

Chronic GH excess, most often caused by a pituitary GH-secreting ade-
noma, leads to acromegaly, with typical morphological and clinical fea-
tures. Elevated GH is associated with left ventricular (LV) hypertrophy,
left-sided valvular heart disease, and other cardiovascular risk factors for
AF, including diabetes, coronary artery disease, hypertension, and dyslipi-
daemia.16 The mechanism underlying acromegaly-associated AF has not
been fully elucidated but likely involves left atrial (LA) enlargement with
pro-fibrillatory structural remodelling (Figure 2).

GH deficiency, a common manifestation of hypopituitarism, presents
with growth retardation in children and as a cardiometabolic syndrome
in adults.15 Patients with GH deficiency GH develop hypertension, re-
duced LV mass (Figure 2),17 and LA structural remodelling that may me-
diate increased AF risk in patients with GH deficiency. Cardiomyocytes
express GH and IGF-1 receptors but there are no reported direct
effects of GH/IGF-1 on atrial electrophysiology.18

FSH and LH stimulate oestrogen production in women (ovaries) and
testosterone in men (testis), among other functions. Changes in cardiac
electrophysiology across the menstrual cycle have been described, with

Figure 1 Summary of the endocrine glands and hormones associated with atrial fibrillation (AF). The anterior pituitary secretes tropic hormones in
response to hypothalamic stimulation. Tropic hormones stimulate the release of physiologically active hormones from their target organ(s). The posterior
pituitary hormones do not have known direct electrophysiological effects. ACTH, adrenocorticotropic hormone; CRH, corticotropin-releasing hormone;
CV, cardiovascular; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, GH releasing-hormone; GnRH, gonadotropin-releasing hormone;
IGF-1, insulin-like growth factor-I; LH, luteinizing hormone; T3, triiodothyronine; T4, tetraiodothyronine; TRH, thyrotropin-releasing hormone.

1646 M. Aguilar et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
oestrogen having APD-prolonging effects (follicular phase) while proges-
terone tends to shorten APD (luteal phase) by decreasing and increasing
Kþ repolarizing currents, respectively19; however, oestrogen abnormali-
ties have not been formally linked to a higher risk of AF.

Low testosterone levels can result from primary (testis), secondary
(pituitary), or tertiary (hypothalamus) male hypogonadism in young indi-
viduals, or as the result of normal ageing in older men.20 Males with
lower testosterone levels have worse cardiovascular outcomes in gen-
eral, including higher rates of AF.21 Low testosterone levels are associ-
ated with several AF-related cardiovascular risk factors such as diabetes,
premature coronary artery disease, dyslipidaemia, and obesity.
Accordingly, recent work suggests that transgender women on hor-
monal therapy might be at increased risk of AF22; however, the available
data are scarce, and a larger database is needed to confirm this
association.

Furthermore, proinflammatory markers like C-reactive protein (CRP)
and interleukin-6 (IL-6) have an inverse correlation with testosterone
levels,23 suggesting that inflammation may contribute to pro-fibrillatory
atrial structural remodelling. Testosterone affects cardiac electrophysiol-
ogy, as castrated rats showed increased expression of the ryanodine re-
ceptor type-2 (RyR2), sodium (Naþ)/Ca2þ exchanger (NCX), late Naþ

current (INaL), APD prolongation, and higher AF susceptibility vs. control
animals.24,25 Androgen receptor knock-out (KO) rats have reduced rest-
ing membrane potential, increased APD, and enhanced sensitivity to
isoproterenol-induced delayed afterdepolarizations,26 that are partly re-
versed by testosterone replacement therapy.20

A TSH-producing adenoma is the most common cause of central hy-
perthyroidism, a rare cause of thyrotoxicosis. Similarly, central hypothy-
roidism is much less common than its primary counterpart. Although
poorly characterized, the cardiovascular consequences of central hypo-/
hyperthyroidism are expected to parallel those observed with primary
hypo-/hyperthyroidism, as described below.

Prolactin stimulates milk production in the gravid woman and has not
been association with AF.

2. The adrenals and AF

The adrenal, or suprarenal, glands are composed of two embryologically
distinct and functionally independent cortical and medullary units. The
adrenal cortex contains three layers secreting aldosterone (zona glo-
merulosa), cortisol (zona fasciculata), and androgens (zona reticularis).

Figure 2 Growth hormone (GH) and AF. GH excess and deficiency have both been associated with an increased risk of AF. Chronic GH excess leads to
left-ventricular (LV) diastolic dysfunction and left-atrial (LA) enlargement, contributing to pro-arrhythmic LA structural remodelling. In addition, GH defi-
ciency has been associated with decreased LV mass and LV systolic dysfunction. GH dysregulation also often co-exists with pro-AF cardiovascular (CV) risk
factors [i.e. hypertension (HTN), diabetes (DM), dyslipidaemia (DLP), coronary artery disease (CAD)]. The effect of GH excess and/or deficiency, if any, on
LA electrophysiology (electrical remodelling) is not known.

New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation 1647
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..The adrenal medulla is part of the sympathetic nervous system and
releases epinephrine and norepinephrine.

Aldosterone is normally secreted in response to hypovolemia and
hyperkalaemia and binds mineralocorticoid receptors (MRs) to regulate
Naþ/Kþ/Hþ homeostasis by activating the epithelial Naþ channel
(ENaC) in the nephron distal tubule and collecting duct.27 MRs are also
expressed on other cell types, including atrial and ventricular cardio-
myocytes. The association between aldosterone and AF has most
clearly been demonstrated in patients with primary hyperaldosteronism
(PA; renin-independent aldosterone production), the most common
cause of secondary hypertension.28 AF is more prevalent in patients
with PA (7.3%) vs. matched patients with essential hypertension
(0.6%)29, adrenalectomy lowers the PA-associated risk of AF30 and the
MR-specific antagonist eplerenone is associated with a 42% relative risk
reduction of AF,31 all suggesting a potential role of aldosterone in the
pathogenesis of AF independent of upstream regulatory hormones (i.e.
renin/angiotensin-II).

The mechanisms linking hyperaldosteronism and AF are complex
and incompletely understood (Figure 3). However, chronic excess
aldosterone leads to LA enlargement and remodelling, indirectly via
hypertension and diastolic dysfunction and/or directly via blood

pressure-independent effects.32–34 Aldosterone-binding to cardiac mac-
rophage MRs increases expression of the profibrotic markers transform-
ing growth factor-beta 1 (TGF-b1), matrix metalloproteinase-12,
tumour necrosis factor-alpha (TNFa), and plasminogen activator
inhibitor-1 (PAI-1)35,36, promotes macrophage-mediated oxidative
stress37 and stimulates the Keep1/Nrf2-dependent cardiac fibroblast to
myofibroblast transformation38 contributing to pro-fibrillatory LA struc-
tural remodelling. Conduction time and P-wave duration are increased
in a rat model of hyperaldosteronism, compatible with increased atrial fi-
brosis and slowed conduction.39

Aldosterone also has direct electrophysiological effects, the clinical
significance of which remains to be fully elucidated. Aldosterone adminis-
tration to rats caused APD shortening, mediated by an increase in Kir2.1
(inward rectifier Kþ current, IK1) and Kv1.5 (ultrarapid delayed rectifier
Kþ current, IKur) expression; these changes were reversed by the MR an-
tagonist spironolactone.40 Conversely, ventricular APD was prolonged
in a MR-overexpression model because of the downregulation of tran-
sient outward Kþ current (Ito) and upregulation of L-type Ca2þ current
(ICaL).

41 It has been shown that ventricular ICaL magnitude correlates
with aldosterone levels42,43 and MR-activation increases sarcoplasmic-
reticulum (SR) Ca2þ-sparks and delayed afterdepolarizations,44

Figure 3 Hyperaldosteronism and AF. (A) Hypovolemia and hyperkalaemia are the primary physiological stimuli for adrenal aldosterone secretion, which
acts on the nephron distal tubule and collecting duct to retain Naþ and excrete Kþ. (B) Mechanism of aldosterone-related AF. Hyperaldosteronism causes
angiotensin-independent hypertension and left atrial (LA) inflammation, leading to pro-fibrillatory LA remodelling. It also produces pro-AF electrical remod-
elling in the form of LA action potential-shortening, increased sarcoplasmic reticulum Ca2þ sparks, and delayed afterdepolarizations. Sustained AF may po-
tentiate the effects of hyperaldosteronism by upregulating of the mineralocorticoid receptor (MR) on AF atrial cardiomyocytes (CMs). Furthermore, AF
increases 11b-hydroxysteroid dehydrogenase type 2 (11b-HSD2), which metabolizes cortisol, thereby increasing MR occupancy by aldosterone.

1648 M. Aguilar et al.
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implicated in AF pathophysiology. A mouse model of spontaneous AF
was associated with increased 11b-hydroxysteroid dehydrogenase type
2 (11b-HSD2), which inactivates cortisol, thereby allowing for increased
MR occupancy by aldosterone.45 Patients with AF have upregulated ex-
pression of MRs vs. sinus-rhythm controls46 and MR antagonists reduce
the risk of AF in heart failure patients.31 Hence, AF may itself potentiate
aldosterone’s proarrhythmic effects.

Pheochromocytomas are epinephrine and norepinephrine-secreting
adrenal tumours. The excess catecholaminergic state leads to hyperten-
sion, myocardial ischaemia/or, and cardiomyopathy.47 Cardiac arrhyth-
mias are common in pheochromocytoma and AF was documented in
11.3% of patients with this condition, all of which responded to tumour
resection.48

3. Obesity and AF

Obesity and AF are both reaching epidemic levels. Obesity can result
from endocrine abnormalities, and adipose tissue secretes a number of
bioactive hormones.49 Obesity is a well-established AF risk factor.45

Weight loss reduces the risk of AF in obese patients improves outcomes
after AF catheter ablation and reverses obesity-related electrical remod-
elling.50 The relationship between obesity and AF has been framed into a
two-component model: the corporal load model and the lipotoxicity model
(Figure 4).51

The corporal load model stipulates that the increase in hemodynamic
load imposed by excess weight leads to left ventricular (LV) hypertro-
phy, diastolic dysfunction with secondary LA enlargement, and
pro-fibrillating remodelling. Interestingly, excess lean body mass, not
merely adipose mass, is an important mediator of obesity-associated
AF risk.52

The lipotoxicity model refers to the direct proinflammatory and profi-
brotic states associated with obesity. Obesity induces pro-inflammatory
signalling in the atria53 that can promote both ectopic firing and an AF-
maintaining electrical and structural substrate, ultimately leading to AF.54

Visceral adiposity is associated with increased blood leukocyte count,
CRP, IL-6, and TNF-a.55,56 Accelerated fibrogenesis mediated by the
TGF-b1, connective tissue growth factor (CTGF), and endothelin-1 sys-
tems,57 among others, contributes to the proarrhythmic lipotoxic effect.
Epicardial adipose tissue (EpAT) is in direct contact with the epicardium
and shares its blood supply, positioning it to affect atrial electrophysiol-
ogy through paracrine and vasocrine interactions. EpAT volume corre-
lates with areas of atrial fibrosis, slow conduction, electrogram
fractionation, and lateralization of connexin (Cx)-40,58 suggesting a di-
rect effect on atrial electrophysiology. Similar to visceral fat, EpAT
secretes metabolically active (e.g. free fatty acids), angiogenic (e.g. vascu-
lar endothelial growth factor), growth (e.g. activin A), and remodelling
(TGF-b1/2 and MMPs) factors, as well as inflammatory cyto- and chemo-
kines (e.g. IL-6 and PAI-1), and adipokines (e.g. leptin).59 While leptin is
implicated in angiotensin-II-mediated pro-fibrillatory atrial remodel-
ling,60,61 another adipokine, resistin, correlates with clinical AF risk.62

Adipocytes also secrete neprilysin, a neutral endopeptidase that
degrades cardioprotective endogenous natriuretic peptides (NPs),63

that positively correlates with body mass index (BMI)64 and regulates
angiotensin-II concentrations in human adipose tissue.65 An overproduc-
tion of aldosterone,66 linked to AF pathogenesis, shorter atrial, and pul-
monary vein refractory periods, conduction slowing, and
heterogeneity57,67 are also found obesity and may be involved in obesity-
associated AF.

4. Renin–angiotensin system and AF

Hypertension, an important risk factor for AF,68–71 is often associated
with activation of the renin–angiotensin system (RAS).72 The RAS sys-
tem is a neuroendocrine axis involving kidney production of renin that
converts liver-produced angiotensin into angiotensin-I, which is subse-
quently converted into active circulating angiotensin-II in the lungs.
Hypertension leads to atrial remodelling as indicated by LA enlargement
and prolongation of P-wave duration.73,74

Angiotensin-II infusion produces a rapid increase in systolic blood
pressure (exceeding 140–150 mmHg)75–77 and a substantial increase in
susceptibility to AF in mice.75–79 Enhanced AF-susceptibility in
angiotensin-II infused mice occurs in association with atrial enlargement,
atrial fibrosis, and prolonged P-wave duration.75,80,81 Consistent with P-
wave prolongation in vivo, optical mapping demonstrates conduction
slowing in the right atrium (RA) and LA of angiotensin-II infused mice.75

RA and LA APD are prolonged and sinoatrial node function is impaired
in angiotensin-II infused mice (Figure 5A).75 Notably, atrial tachyarrhyth-
mia itself induces angiotensin-II type 1 receptor-mediated oxidative
stress (mainly due to increased nicotinamide adenine dinucleotide phos-
phate oxidase activity, LOX-1 upregulation, and F2-isoprostane genera-
tion) in the ventricular myocardium, negatively impacting on its
function.82 Ion-channel remodelling may explain the electrophysiological
changes associated with AF promotion by angiotensin-II. LA INa is re-
duced by approximately 50% in angiotensin-II infused mice, apparently
via enhanced PKCa activity as dialysis with BIM1 (a PKC inhibitor) nor-
malized INa density and activation kinetics.69,71 APD-prolongation oc-
curred in conjunction with decreased outward Kþ-current (IK),
attributed to reductions in Ito and IKur independently of a change in Kv4.2,
KV4.3, KChIP2, and Kv1.5 protein levels.

AF following angiotensin-II infusion in mice is also associated with oxi-
dative stress, leading to oxidation of Ca2þ-calmodulin-dependent pro-
tein kinase II (CaMKII).78 CaMKII-oxidation leads to pathological,
constitutively active CaMKII-signalling.83 Oxidized CaMKII expression is
increased in both AF patients and mice infused with angiotensin-II.78

CaMKII oxidation causes arrhythmogenic alterations in SR Ca2þ-han-
dling, with increased Ca2þ-sparks leading to delayed afterdepolariza-
tions. Knock-in mice resistant to CaMKIId oxidation are protected from
Ca2þ-mishandling and show less AF inducibility.78

Angiotensin-II infusion also causes atrial interstitial fibrosis75,77

(Figure 5A), resulting from altered extracellular matrix (ECM) remodel-
ling by MMPs and TIMPs under the influence of oxidative stress and
inflammation.78,79

5. Natriuretic peptides in AF

Natriuretic peptides (NPs) are cardioprotective hormones that play im-
portant roles in regulating cardiac electrophysiology and arrhythmogen-
esis.84,85 NPs modulate atrial AP morphology and alter atrial conduction
patterns by regulating ion-channel function.84–88 NPs elicit their effects
by binding to NP receptors (NPRs), including NPR-A, NPR-B, and NPR-
C.89 NPR-A and NPR-B are guanylyl cyclase-linked receptors that modu-
late cGMP signalling, while NPR-C is coupled to the inhibitory G protein
(Gi) and phospholipase C signalling.84,90,91

NPR-C is highly expressed in the atria,86,92 and recent studies have
identified an essential role for NPR-C in regulating atrial conduction and
AF inducibility.77,92 NPR-C knockout (NPR-C-/-) mice display increased
susceptibility to burst pacing-induced AF in association with impaired

New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation 1649
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.atrial conduction. Atrial interstitial fibrous-tissue content is increased in
NPR-C-/- mice, whereas no differences in atrial AP morphology occur.92

In contrast, no ventricular arrhythmias or ventricular fibrosis were ob-
served in NPR-C-/- mice,92 further indicating that NPR-C is particularly
important for regulation of atrial structure and function.

NPR-C plays a modulating role in angiotensin-II mediated AF.77

Angiotensin-II infusion in NPR-C-/- mice produces enhanced effects on
AF vulnerability and duration, P-wave duration, and atrial conduction.
Reductions in AP upstroke velocity (Vmax) and INa, as well as APD pro-
longation, are seen, particularly in LA cardiomyocytes. Angiotensin-II in-
fusion also produced larger increases in PKCa protein expression in
NPR-C-/- mice, as well as enhanced RA and LA fibrosis.77 Co-treatment
of wild-type mice with angiotensin-II and cANF (a synthetic, selective
NPR-C agonist90) reduces AF burden, while improving atrial conduction,
attenuating atrial fibrosis, and improving AP properties.77 These findings
are consistent with other work showing that NPR-C plays protective
roles in the cardiovascular system.76,93–95 On the other hand, one study
using transverse aortic constriction and TGF-b-overexpression found
that the absence of NPR-C was protective against AF and atrial fibrosis.96

The basis for these contradictory observations is unclear and further
studies are warranted.

Studies showed that mutations in the atrial natriuretic peptide
(ANP) gene are linked to AF.97,98 A family with familial AF was
shown to have a frameshift mutation in the NPPA gene (encoding
ANP) that results in a mutated ANP (mANP) circulating at concen-
trations 5–10 times greater than wild-type ANP because of increased
resistance to proteolytic degradation.98,99 While ANP has been
shown to increase funny current (If) in human atrial cardiomyocytes
and predispose to AF,100 ANP and mANP have also been found to
demonstrate opposite effects on mouse and human atrial cardiomyo-
cytes.101 Specifically, ANP increased Vmax, APD, and ICa,L in isolated
atrial cardiomyocytes via the NPR-A receptor. In intact mouse atrial
preparations, ANP speeded atrial conduction and increased atrial ef-
fective refractory period (AERP). In contrast, mANP decreased atrial
Vmax, shortened atrial APD, decreased atrial ICa,L, slowed atrial con-
duction, and shortened AERP. These effects were mediated by the
NPR-C receptor, as the effects of mANP were absent in NPR-C-/-

mice. ANP and mANP also had opposing effects on ICa,L in human
RA cardiomyocytes. Finally, mANP administration caused re-entrant
conduction patterns, ectopic firing, and disorganized conduction in
mouse atria exposed to programmed stimulation, an effect not seen
with ANP. These studies suggest that mANP is proarrhythmic in

Figure 4 Current understanding of the mechanistic links between obesity and AF. The corporal load model states that excess body mass (adipose and/or
lean) poses a haemodynamic load culminating in pro-AF left-atrial (LA) remodelling. Obesity has also been associated with pro-fibrillatory electrical
remodelling in the form of shorter effective refractory period (ERP), slower conduction velocity (CV) and increased conduction heterogeneity. Adipocytes
have a pro-inflammatory secretome which can affect LA electrophysiology indirectly (systemic adiposity) or directly (epicardial adiposity). Finally, obesity
often co-exists with a number of pro-AF cardiovascular risk factors.

1650 M. Aguilar et al.
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..association with a shift in the balance between NPR-A and NPR-C
mediated NP-signalling. Mice expressing the same nppa frameshift mu-
tation show increased AF burden in association with APD shortening,

in association with ion-channel remodelling, including changes in am-
plitude and expression of Naþ, Ca2þ, and Kþ channels.94 Collectively,
the available data indicate that this frameshift nppa mutation increases

Figure 5 Atrial electrical and structural remodelling in angiotensin-II mediated hypertension and in mouse models of type-1 (T1DM) and type-2 (T2DM)
diabetes mellitus. (A) Angiotensin-II infusion in mice causes distinct patterns of ion channel remodelling and changes in action potential morphology in left
and right atrial myocytes. Angiotensin-II also causes right and LA fibrosis. These alterations lead to conduction abnormalities and increased susceptibility to
AF. Loss of NPR-C leads to worsened ion channel remodelling and atrial fibrosis, as well as enhanced AF susceptibility, while NPR-C activation prevents
some ion channel remodelling, reduces right and LA fibrosis, and decreases AF burden. (B) T1DM (Akita mice) is associated with reductions in AP Vmax due
to reduction in atrial INa as well as increases in AP duration due to reduction in IKur. T2DM (db/db mice) show increases in AP duration due to reduction in
both Ito and IKur while INa amplitude and AP Vmax are not altered. Both T1DM and T2DM are associated with increased atrial fibrosis. These alterations lead
to conduction abnormalities and increased susceptibility to AF. Insulin treatment in T1DM prevents reductions in atrial INa and reduces atrial fibrosis leading
to improved conduction and reduced AF susceptibility.
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susceptibility to AF in association with increased circulating mANP
levels and shortening of the atrial AP, which could decrease the
wavelength for re-entry (Figure 5A).

6. AF in diabetes mellitus

Type-1 (T1DM) and type-2 (T2DM) diabetes mellitus (DM) are meta-
bolic disorders associated with hyperglycaemia and changes in insulin
production and signalling.102-104 T1DM is characterized by the loss of
insulin-producing b-islet cells in the pancreas and deficient insulin genera-
tion. T2DM, which often occurs in association with obesity, is character-
ized by insulin resistance in peripheral tissues while insulin can still be
produced in the pancreas.102 T2DM can ultimately lead to insulin insuffi-
ciency requiring insulin therapy.

AF is prevalent in both T1DM and T2DM.69,71,105 T1DM is associated
with atrial electrical and structural remodelling.69 Experimental studies
have evaluated atrial effects in genetic (Akita mice) or chemically induced
[streptozotocin (STZ) or alloxan] animal models, of T1DM106 that are
characterized by substantial increases in AF susceptibility and dura-
tion.107,108 Akita and STZ mice had increased P-wave duration; Akita
mice also had impaired RA and LA conduction,107 reduced atrial Vmax,
and prolonged APD. These AP morphology changes occurred in associa-
tion with reductions in IKur and INa, associated with decreased SCN5a
gene and NaV1.5 protein expression, as well as a loss of phosphoinosi-
tide 3-kinase (PI3K) signalling via the second messenger PIP3. Strikingly,
insulin treatment protected against changes in INa, but not the changes in
IKur, in Akita mice. Chronic insulin treatment increased NaV1.5 protein
levels, atrial INa density, and AP upstroke velocity. Insulin could also in-
crease atrial INa and AP upstroke velocity acutely via the rapid activation
of PIP3 signalling. These effects of insulin on atrial INa were associated
with increases in atrial conduction velocity and were sufficient to reduce
the AF burden. Consistent with previous work on the PI3K- and PIP3-
mediated effects on Naþ-channel function,109 these studies revealed a
critical role for insulin in regulating atrial electrophysiology and AF sus-
ceptibility via effects on atrial Naþ channels in T1DM, though the basis
for INa dysregulation in T1DM remains unclear. Structural profibrotic
remodelling in T1DM110-112 is increased in the atria of Akita mice,110

STZ-treated rodents,111-113 and alloxan-treated rabbits,114 that in STZ-
treated rats was prevented by inhibition of the type-1 angiotensin-II
receptors,112 suggesting a critical role of angiotensin-II in T1DM-related
atrial fibrosis (Figure 5B). STZ-treated rats showed reduced velocity and
increased heterogeneity of the LA conduction associated with a reduced
LA Cx40 expression, leading to increased arrhythmogenesis,113 while
atrial Cx40 or Cx43 mRNA expression were unaltered in Akita mice.107

T2DM, which accounts for up to 90% of DM-patients, continues to in-
crease at epidemic proportions in association with rising rates of obesity
and metabolic syndrome.115 AF is prevalent in T2DM.105,116 Clinical
studies in T2DM patients have shown that alterations in Ca2þ-handling
may contribute to atrial remodelling.117 T2DM patients have atrial inter-
stitial fibrosis and increased EpAT, potentially infiltrating atrial
myocardium,118-123 that could lead to impaired electrical conduction
and AF (Figure 5B). While mechanistic studies in animal models are lim-
ited, recent work in T1DM and T2DM mouse models demonstrated
that AF promotion is related to pro-arrhythmic activation of CaMKII
(due to oxidative stress-mediated oxidation and O-GlcNAcylation of
CaMKII)124 that would potentially affect multiple ion currents.83

AF in T2DM was recently investigated in db/db mice, which carry a
mutation in the leptin receptor leading to obesity, insulin resistance, and

hyperglycaemia.125 The db/db mice have increased susceptibility to
burst-pacing induced AF, associated with increased P-wave duration and
AERP, reduced RA and LA conduction velocity, and prolonged hetero-
geneous APD. These changes were accompanied by a decrease in Ito
(associated with reduced expression of Kcnd2 mRNA and Kv4.2 protein)
and suppressed IKur, occurring in the presence of unchanged KV1.5
expression. Zucker diabetic fatty (ZDF) rats also showed increased AF
susceptibility and APD,126 associated with reduced atrial Ito, IKur, and ICa,L

currents, and respective channel protein subunits Kv4.3, Kv1.5, and
Cav1.2, indicating some model-specific differences. In contrast to Akita
(T1DM) mice,107 atrial INa was not reduced in db/db atrial myocytes.125

The only alteration observed in atrial INa in db/db mice was a shift in
steady-state inactivation that resulted in a larger INa window current,
which could contribute to the prolongation of APD. This observation
identifies potentially important differences in electrical remodelling
between T1DM and T2DM that may have important implications for AF
therapy in these related, but distinct conditions.

Animal models of T2DM also consistently display atrial structural
remodelling, including fibrosis, lipidosis, and inflammation
(Figure 5B),125,127–130 which has been shown to promote AF.54

Adipokines (cytokines with pro-inflammatory properties) like leptin are
also implicated in the atrial fibrosis of diabetic mice,131 while cathepsin-A
(a proteolytic enzyme active in the extracellular space) contributes to
atrial fibrosis in ZDF rats.127 Gene expression of Cx40 and Cx43
remained unchanged in both db/db mice and ZDF rats,125,127 yet laterali-
zation of Cx43 was observed in ZDF rats127 that could underlie higher
conduction heterogeneity.

7. Thyroid dysfunction in AF

Thyroid disease has a large number of well-characterized cardiac mani-
festations and both hypo- and hyperthyroidism have been associated
with worse cardiovascular outcomes.132 Although clinical (low TSH, ele-
vated T4) and subclinical (normal TSH, elevated T4) hyperthyroidism,
even with marginally increased T4 levels, have been linked to a higher
risk of AF,133–135 overt hyperthyroidism is present in less than 1% of
patients with new-onset AF.136 Conversely, antiarrhythmic treatment
with amiodarone is itself an important potential cause of hyperthyroid-
ism in cardiac patients, so-called amiodarone-induced thyrotoxicosis.137

Elevated thyroid hormone (TH) levels have also been associated with in-
creased atrial premature depolarizations and supraventricular tachyar-
rhythmias.138,139 Hypothyroidism appears to have relatively protective
effects, especially against malignant ventricular arrhythmias, and a much
less robust association with AF.140

Thyrotropin-releasing hormone (TRH) release from the hypothala-
mus stimulates secretion of TSH by the anterior-pituitary and subse-
quent release of tetraiodothyronine (thyroxine; T4) and in lesser
amounts (�1:9 ratio), triiodothyronine (T3) by the epithelial cells of the
thyroid gland (Figure 6). The enzyme 50-iodinase converts T4 into T3, the
more metabolically active TH. T3 and T4 inhibit TRH and TSH release,
forming a negative-feedback loop. TH actions can be genomic or non-
genomic (Figure 6). Genomic effects are mediated as T3 enters the nu-
cleus and interacts with the nuclear thyroid a receptor-1 (TRa1), which
binds the thyroid release elements (TREs), promoting/repressing tran-
scription of TH-regulated genes like sarcoplasmic reticulum Ca2þ adeno-
sine triphosphate (SERCA2), phospholamban, Naþ/Kþ ATPase, NCX,
selected voltage-gated Kþ currents, ICaL, and b1-adrenergic receptor.141

Non-genomic effects (reviewed elsewhere142) have a rapid onset of
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actions that are transcription/translation-independent and are mediated
by extra-nuclear receptors, structurally related to the thyroid receptor-
like integrin avb3, cytoskeleton, mitogen-activated protein kinase 1=2

and PI3K.
Hyperthyroidism leads to so-called high-output heart failure charac-

terized by hyperdynamic congestive failure in patients with normal
baseline LV-function.143 Left untreated, heart failure leads to LA-
enlargement, activation of the RAAS, and increased sympathetic tone
(Figure 6)142 and hypertension.142

THs also have important electrophysiological effects. Hyperthyroidism
leads to sinus tachycardia from increased rates of diastolic depolarization
in sinoatrial cells; hypothyroidism has the opposite effect.144,145 Similarly,
APD is consistently prolonged in animal models of hypothyroidism,146–150

whereas hyperthyroidism shortens APD.147,148,151 There are no docu-
mented effects of thyroid disease on the resting membrane potential.
Beyond these well-characterized macroscopic electrophysiological

changes, there is substantial heterogeneity in the reported TH-induced
ion-channel remodelling.

7.1 Depolarizing currents
There are no documented effects of hypo-/hyperthyroidism on INa, al-
though one study reported increased/decreased conduction velocity in
hyper-/hypothyroid rabbit atria, respectively.146 ICaL has been found to
be increased,148,152,153 unchanged154 or decreased155,156 in hyperthyroid
models. Interestingly, one study found hyperthyroidism to increase
ICaL sensitivity to b-adrenergic stimulation, which may favour the occur-
rence of the triggered activity.153 Hence, the effects of hyperthyroidism
on depolarizing currents are incompletely defined.

7.2 Repolarizing currents
THs were shown to increase IK1 by activating channel open probability,
while the resting membrane potential remained unchanged.146,148 It was

Figure 6 Thyroid dysfunction and AF. (A) The hypothalamic-pituitary-thyroid axis forms a closed negative-feedback system. The thyroid secretes primar-
ily T4, which is converted to T3, the more metabolically active thyroid hormone, by the enzyme 50-ionidase. Thyroid hormone effects can be genomic or
non-genomic. Genomic effects are mediated by binding of T3 to the nuclear thyroid a-receptor-1 (TRa1), which interacts with the thyroid release elements
(TREs) to promote/suppress thyroid hormone-regulated genes. Non-genomic effects are mediated by T3 and T4 as they interact with extra-nuclear
receptors, which may or may not be structurally related to the thyroid receptor. (B) Hyperthyroidism leads to high-output heart failure (HF), causing left
atrial enlargement (LAE), activation of the renin–angiotensin–aldosterone system (RAAS), and increased adrenergic stimulation. Altered intracellular Ca2þ

promotes the formation of early (EADs) and delayed afterdepolarizations (DADs) from the pulmonary veins (PVs). Action potential duration (APD)
shortening promotes re-entry. Finally, hypertension (HTN) also contributes to pro-fibrillatory left-atrial structural remodelling. TRH, thyrotropin-releasing
hormone; TSH, thyroid-stimulating hormone; DNA, deoxyribonucleic acid.
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proposed that the rapid time course of action of T3 on IK1 is suggestive
of a non-genomic mechanisms.157 THs have been reported to differen-
tially increase ventricular Ito without affecting its atrial counter-
part.148,150,152,158 Conversely, Kv1.4 was found to be reduced159–161 and
Kv4.2 was unaffected156,159–161 by THs, while Kv1.5, the IKur a-subunit,
was increased in hyperthyroid animals.151,156,159–161 APD prolongation
due to decreased IKs was reported in thyroidectomized guinea pigs.149

Finally, Kv1.2 has been reported to be reduced159,160 and Kv2.1
unchanged159,161 or increased151,160 in hyperthyroid models. Hence, the
mechanisms of hyperthyroidism-induced APD shortening are likely
multifactorial.

THs also modulate intracellular Ca2þ homeostasis characterized by
decreased phospholamban and increased SERCA2, potentially promot-
ing the occurrence of proarrhythmic afterdepolarizations in hyperthy-
roid rats.162 Similarly, pulmonary vein cardiomyocytes from a
hyperthyroid rabbits have higher automaticity, more frequent early and
delayed afterdepolarizations and shorter APD.163 The pro-AF changes
encountered in hyperthyroidism are summarized in Figure 6.

7.3 Thyroid dysfunction and cardiac
remodelling
Dysregulated THs mediate multiple cardiac remodelling processes, e.g.,
necrosis, apoptosis, inflammation, and regression to the foetal heart phe-
notype. However, cardiac fibrosis remains the hallmark of AF-associated
remodelling. THs were shown to downregulate interstitial collagen con-
tent164 and collagen I gene expression in the rat myocardium and cardio-
fibroblast culture165 and increased degradation of LV collagen-I/III
protein, associated with an activation of MMPs and inhibition of TIMPs, in
hyperthyroid rats.166,167 T3 supplementation in a rat model of ischemia/
reperfusion inhibited TGF-b1, reduced scar size, and improved cardiac
performance168; T3 was also shown to inhibit activator-protein-1
(AP-1),169 involved in the stimulation of MMPs and collagen mRNA.170

RAS appears to play a role in T4-induced cardiac hypertrophy,171 which
was prevented by treatment with angiotensin-converting enzyme-inhibi-
tor or angiotensin-1 receptor blocker.172 While hyperthyroidism in rats
decreased LV levels of TGF-b1, SMAD2/3, total and phospho-serin368-
Cx43 without enhanced interstitial collagen deposition, the TGF-b1 and
SMAD2/3 were increased in hypothyroid rats.173 Although, the majority
of studies argue for the anti-fibrotic effects of THs, longstanding hyper-
thyroidism has been demonstrated to impair LV function and increase in-
terstitial fibrosis in hamsters.174 Thus, the TH-induced cardiac
remodelling may continue to develop over time.

Hypothyroidism is primarily thought to exert profibrotic phenotype
associated with increases in the LV TGF-b1 and procollagen-I mRNAs
and protein,164 induced LV hypertrophy with fibrotic lesions, and upre-
gulated a-SMA expression; all these changes were reversed by euthyroid
state. Collagen-I/III gene expression was unaltered, while TGF-b1,
CTGF, IL-1, and MCP1 gene expression were increased in hypothyroid
rats.175 Interestingly, the TGF-b1 gene promoter has binding sites
for Sp1, a critical transcription factor that interacts with TRH-binding
protein associated factors,176–178 while pro-a1(I) collagen gene contains
a binding site for the receptor, which functions as a TRE.179

Hypothyroidism was also shown to increase LV collagen-based diastolic
wall stiffness180 and content of collagen and glycosaminoglycans in
rat LV.181 Experiments in cultured rat cardiofibroblasts found increased
biosynthesis of fibrillar collagen under TH-depleted conditions179

and increased proliferation in both TH-depleted179 and TH-treated
cells.165

Atrial remodelling mediated by thyroid dysfunction is not fully under-
stood; however, a recent study in rats showed that both hypo- and hy-
perthyroidism increased AF vulnerability, that, as well as the decreased
LV and LA dimensions, AERP prolongation, and atrial fibrosis, were de-
creased by T4 administration.182 The cross-sectional area and diameter
of LA myocytes were reduced in hypothyroid and increased in hyperthy-
roid rats.182 While some studies reported an association of hypothyroid-
ism with LA remodelling (marked by increased LA diameter) and
increased preoperative AF incidence in patients with heart valvular dis-
ease183 or dilated cardiomyopathy,184 others did not confirm this.185,186

The impaired ejection fraction, presence of multiple valvular lesions, and
a lower recovery rate of LA enlargement after valve surgery were also
observed in hypothyroidism.183 Overt and subclinical hypothyroidism
also increased the risk of post-operative-AF in the patients after cardiac
surgery187–189 At the molecular level, hypothyroidism was associated
with increased serum levels of CRP, TNF-1a, IL-6, and TGF-b1 in rats, in-
duced secretion of the cardiac stress markers ANP, brain natriuretic
peptide (BNP) (regulated by TH) and cardiac troponin-T.175

Hyperthyroidism also caused increase in cardiac TGF-b1 in cardiac hy-
pertrophy mediated by angiotensin-II receptors190 and was associated
with increased protein and ribosome synthesis.191,192 These observa-
tions suggest that TH are important regulators of cardiac remodelling
(Figure 6).

8. Calcitonin and AF

Calcitonin (CT) is canonically secreted by parafollicular cells (C cells) of
the thyroid gland and is a 32 amino acid single-chain peptide that is
cleaved from a precursor pro-CT by protein convertases.193 Human CT
originates from the CT-related polypeptide-alpha (CALCA) gene on
chromosome-11 (ID: ENSG00000110680) that also encodes alpha-
calcitonin gene-related peptide (aCGRP, a potent vasodilator with func-
tions in the nervous and vascular systems).194

CT plays a well-known role in bone metabolism195 and plasma Ca2þ-
homeostasis.196 Extra-thyroidal CT expression is present in organs,
such as the brain, uterus, prostate, and central nervous system.197,198

We recently discovered that atrial cardiomyocytes actively produce
CT.199 Regardless of where CT is produced, it exerts its effects via bind-
ing to the CT receptor (CTR),200 the seven-transmembrane domain
class II (family B) G protein-coupled receptor that can couple to Gs, Gi,
or Gq proteins.201,202 The CTRs are expressed in tissues such as kid-
neys,203, osteoclasts,204 skeletal muscle,205 and recently identified in
human atrial fibroblasts.199 A wide distribution of the CT and CTR indi-
cates that CT-CTR signalling may be involved in the (patho)physiology
of multiple systems, including the heart.

The role of the CT-CTR cascade in AF is unclear, however, key risk fac-
tors for AF, age206 and BMI,207 are associated with decreased circulating
CT-levels and CTR single-nucleotide polymorphisms respectively.208,209

Early work in dog and rabbit models of Ca2þ-induced arrhythmias ob-
served antiarrhythmic effects of CT on Ca2þ-induced ventricular arrhyth-
mias210 and the inhibition of atrial chrono-/inotropic function.211 The
mechanisms of these effects are unknown, though studies in non-cardiac
cells showed that CT affected ion fluxes (e.g. neuronal Ca2þ-currents,212

kidney Ca2þ-channels and NCX213 and, intracellular Ca2þ214,215 and im-
plicated in AF pathogenesis216 mitochondrial Ca2þ influx,217 in CT-
secreting cells) and channel expression (e.g. neuronal NaV1.3, NaV1.8, and
NaV1.9218). RA cardiomyocytes from patients with persistent AF secrete
six-fold less CT compared to sinus-rhythm controls.199 Knockdown (KD)
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of atrial cardiomyocyte-CT in an atrial-specific LKB1-KD model of sponta-
neous AF caused�three-fold higher incidence and�16-fold longer dura-
tion of spontaneous AF episodes, which commenced at a younger age vs.
control LKB1-KD mice.199 Overexpression of CT in atrial cardiomyo-
cytes of the LKB1-KD mice prevented atrial arrhythmia.199 Global dele-
tion of the CTR in mice resulted in increased AF-inducibility.199 These
findings point to a potentially important relationship between the cardiac
CT-CTR axis and AF arrhythmogenesis.

CT-CTR signalling is important for tissue fibrogenesis, as it regulates
collagen homeostasis, e.g., CT inhibits collagen breakdown in bones197

and in chondrocytes,219 while CTR-cKO promotes fibrosis in murine
skeletal muscle.220 Binding of cardiac CT to the surface CTRs of neigh-
bouring human atrial fibroblasts inhibits the production of ECM proteins
like collagens-I/III, TIMP2, and SERPIN.199 In patients with persistent AF,

accompanied by significant fibrotic remodelling, fibroblast-CTR localiza-
tion was altered and confined to the intracellular space, thus, precluding
CT from binding CTR (Figure 7A). CTR-KO mice or atrial-specific cardio-
myocyte-CT-KD in the LKB1-KD mice exacerbated atrial fibrosis, sup-
pressed by overexpression of CT in atrial cardiomycytes.199 In the light
of this work (Figure 7B), maintaining CT-CTR signalling in atrial myocar-
dium may benefit patients with AF.

9. Towards ‘hormonal therapeutics’
in AF

The evidence discussed in this review unequivocally demonstrates a po-
tent regulatory role of both endocrine and cardiac para-/autocrine

Figure 7 Calcitonin signalling and AF-induced remodelling. (A) In healthy hearts, atrial cardiomyocytes secrete calcitonin, which binds to the calcitonin-
receptors (CTRs) on atrial fibroblasts, controlling extracellular matrix deposition and helping to maintain normal sinus rhythm. In AF, calcitonin signalling is
disordered by reduced secretion of calcitonin by atrial cardiomyocytes and reduced calcitonin-receptor responsiveness; these changes impede the calcito-
nin-mediated brake on fibrogenesis causing atrial fibrosis and increased arrhythmogenesis (created with Biorender.com). (B) CTRs (green) in atrial fibroblasts
co-stained with filamin A (red) and 40,6-diamidino-2-phenylindole (DAPI) (blue). Relocalization of CTRs from the cell membrane to the nucleus explains
CTR hyporesponsiveness. Scale bar = 50 lm; adapted from Moreira et al.199
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systems on myocardial function and structure in AF. Although currently
not performed, screening of patients with AF for both systemic and car-
diac (when possible) hormonal imbalance (in combination with other
conventionally used diagnostic tests) may potentially advance treatment-
stratification and existing treatment options with the new hormone-
based therapies.

Such therapies would first of all aim to treat the prime underlying en-
docrine pathology (e.g. diabetes, pheochromocytoma, and obesity) with
conventional therapies to reduce the risk of new-onset AF or prevent
arrhythmia progression. In some cases, available therapies can fully cure
the underlying endocrine disorder (e.g. resection of pheochromocy-
toma) and, hence, reduce risk of AF. Current treatment options for com-
mon endocrine conditions (e.g. diabetes and obesity) are often
suboptimal; nevertheless, they help to reduce, while not completely
eliminating, the risk of AF onset and progression. Furthermore, contem-
porary medications with improved safety profile may offer improved
possibilities for control of AF, for example, with sodium-glucose co-
transporter-2 inhibitors that may reduce risk of AF in T2DM,221 or with
glucagon-like peptide-1 receptor agonists (except albiglutide222) that ad-
vantageously do not increase risk of AF in obese patients with DM.223

Looking into the future, control of metabolism with, for example, modi-
fied synthetic secreted factors or inhibitors may not only improve cardi-
ometabolic conditions like DM and hypertension224 but may also hold
promise to control AF risks associated with these serious pathologies.

Some endocrine therapies targeting selective pathways, e.g., inflamma-
tion and fibrosis, are likely to aid treatment of specific type(s) of AF, e.g.,
corticosteroids, due to their potent anti-inflammatory properties, might
reduce AF recurrence after ablation procedures225 and incidence of
post-operative AF.226 Selective inhibition of inflammation, for instance
with GILZ small molecules, may help to circumvent undesirable side-
effects of broad-spectrum glucocorticoids and improve therapeutic
options in AF.13

Availability of the RAAS antagonists [angiotensin-II-converting
enzymes inhibitors and angiotensin II receptor blockers (ARB)], owing
to their pronounced antifibrotic effects, may not only control blood
pressure in hypertensive patients but to also reduce the occurrence, de-
velopment, and duration of AF.227 A recent meta-analysis of 7914
patients showed that aldosterone pathway blockade with MR antago-
nists limited AF recurrence and, to a lesser extent, prevented the new
onset of AF.228 Since NPs counter-balance RAAS, recombinant human
NPs (e.g. nesiritide—recombinant BNP) combined with neprilysin inhibi-
tors (e.g. sacubitril, enhancing NP signalling) and ARBs (e.g. valsartan),
denoted ARNi (currently approved for the heart failure management)228

or synthetic modified NPs designed to preferentially enhance signalling
via specific NPRs, may also have potential benefits for AF management.

Sex hormone (testosterone and oestrogen) replacement therapies in
patients with AF may also help to prevent AF.229,230 However, altering
sex hormone-dependent pathways may increase the risk of stroke, car-
diac arrest, and life-threatening ventricular arrhythmias (due to altered
ventricular repolarization and prolonged QT interval).231,232 Thus, po-
tential risks of such therapies should be carefully balanced against their
benefits.

TH replacement therapy can also be beneficial.233,234 Disrupted CT-
CTR signalling in AF might be amenable to CT-based therapies used to
treat conditions like osteoporosis and Paget’s disease. However, their
use is limited due to a release of anti-CT antibodies in some patients and
CTR internalization during prolonged CT treatment.235 Gene-therapy
to overexpress CT in atrial cardiomyocytes might offer a tool to manipu-
late CT levels in a controlled manner. Patients with persistent AF do not

maintain membrane CTR localization (Figure 7A)199; thus, strategies to
normalize localization of the CTR is a necessary and challenging objec-
tive in attempts to exploit CT-CTR signalling to prevent atrial structural
remodelling in AF-patients. In addition, off-target effects of CTR-
activation need to be avoided.

10. Conclusions

It is clear that endocrine/paracrine/autocrine effects play an important
role in AF pathogenesis and might present interesting, presently under-
developed, therapeutic targets. AF management is still very challenging,
with many obstacles to optimal management.236 Recent discoveries, like
those of cardiac CT-production and involvement in AF, novel molecular
mediators (like GILZ) and the potential mechanistic role of inflammatory
signalling, highlights how little we know about endocrine control of AF
and how much more there is to learn in order to harness the full thera-
peutic potential of this critical system.
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Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Ida Chen Y-D, Clarke R,
Warwick Daw E, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N,
Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V,
Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe H-J,
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MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S,
Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott
WR, Seufferlein T, Shi J, Vernon Smith A, Smolonska J, Stanton AV, Steinthorsdottir
V, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen A-C, Tan
S-T, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh H-W, Vandenput L,
Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR,
Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski
MK, Wong A, Wright AF, Zhang Q, Brennan EP, Choi M, Dastani Z, Drong AW,
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