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Power-law coarsening in network-forming phase
separation governed by mechanical relaxation

Michio Tateno"? & Hajime Tanaka® '*

A space-spanning network structure is a basic morphology in phase separation of soft and
biomatter, alongside a droplet one. Despite its fundamental and industrial importance, the
physical principle underlying such network-forming phase separation remains elusive. Here,
we study the network coarsening during gas-liquid-type phase separation of colloidal sus-
pensions and pure fluids, by hydrodynamic and molecular dynamics simulations, respectively.
For both, the detailed analyses of the pore sizes and strain field reveal the self-similar network
coarsening and the unconventional power-law growth more than a decade according to # «
tV/2, where ¢ is the characteristic pore size and t is the elapsed time. We find that phase-
separation dynamics is controlled by mechanical relaxation of the network-forming dense
phase, whose limiting process is permeation flow of the solvent for colloidal suspensions and
heat transport for pure fluids. This universal coarsening law would contribute to the funda-
mental physical understanding of network-forming phase separation.
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hase separation is one of the most fundamental phase

transition phenomena and ubiquitous in naturel?.

Demixing of oil and water in salad dressing is a typical
example. Very recently, the phenomena have attracted con-
siderable renewed interest since the discovery of biological phase
separation in living cells?>-®. In general, phase separation starts
from a molecular length scale, and then the characteristic size of
phase-separated domains grows with time to a macroscopic scale.
Thus, it is crucial to understand how phase-separation mor-
phology is selected and coarsens with time. This problem is sig-
nificant not only from a fundamental viewpoint!? but also from
an application viewpoint, e.g., the processing of soft materials in
electric, medical, cosmetics, paint and food industries”~10.

The dynamics of phase separation was studied intensively in
the 20th century, and the fundamental physical mechanism was
well understood. The scaling concept has been established based
on the self-similar growth of the phase-separation pattern, which
leads to the power-law growth of the characteristic domain sizel:
¢tV (t: time). The exponent v is called the growth exponent,
whose value depends on the physical mechanism controlling the
coarsening dynamics. It has been well established that for droplet
phase separation, the evaporation—condensation or Brownian-
coagulation mechanisms (for both, v = 1/3) are relevant, whereas,
for bicontinuous phase separation, hydrodynamic coarsening
(v=1) is relevant. These physical mechanisms have successfully
described the dynamics of phase separation of various materials
with fluidity, ranging from one-component atomic (or molecular)
fluids, binary mixtures of simple liquids’>!1-1, to solutions of
macromolecules such as polymers, colloids, proteins and
emulsions®17-20, These fundamental coarsening laws have tre-
mendously contributed to a broad field of basic science and
technology.

Here it should be noted that the above theories were developed
for phase separation of fluids taking place near the critical point.
In reality, however, phase separation in nature and industrial
processes often takes place far from a critical point. Although not
widely recognised, this means that the applicability of the above
theories can be severely limited. The crucial point is that for deep
quench far below the critical point, the difference in the particle
density between the two phases becomes significantly large, which
may lead to a significant difference in the dynamics between
them. Under substantial dynamic difference between the two
phases, the slower phase cannot catch up with the speed of
domain deformation induced by phase separation, behaving as a
viscoelastic body rather than a viscous fluid. Accordingly, the
viscoelastic nature of the dense (slower-component-rich) phase
plays a critical role in the phase-demixing process, leading to
unconventional pattern formation. We called this phenomenon
viscoelastic phase separation?!-22. The most remarkable feature is
the formation of the network structure of the minority phase,
which was first discovered for polymer solutions?!:22, In this case,
the polymer-specific dynamic effect originating from topological
entanglements plays a crucial role and leads to the breakdown of
the self-similar domain growth. Since the self-similarity is a
prerequisite for the power-law growth, there is no universal
coarsening law for the viscoelastic phase separation of polymer
solutions.

From this respect, gas-liquid phase separation of single-
component atomic (or molecular) fluids may be much simpler
than that of polymer solutions because atoms (or molecules) have
no (or few) conformational degrees of freedom, unlike polymers,
implying a possible self-similar domain growth. The same logic
may apply to the solutions of macromolecules with few internal
degrees of freedom, such as colloidal suspensions, globular pro-
tein solutions, and emulsions. Indeed, we have noticed that for
network-forming gas-liquid-type phase separation under deep

quench, unconventional coarsening behaviour, i.e., the power-law
growth of v =1/2, has been seen in a variety of systems, including
a single-component atomic and molecular system?3-27 and
macromolecular systems (colloidal suspensions®$-31, protein
solutions2 and lyotropic liquid crystals®3). These observations
imply a universal physical mechanism behind this unusual
power-law growth with the exponent of v=1/2.

In this work, we aim to reveal the physical mechanism
responsible for the unconventional power-law coarsening law of
£ tY2 and how universal it is. To this end, we perform
numerical simulations of phase separation in two types of sys-
tems. One is gas-liquid phase demixing of a colloidal suspension,
and the other is that of a single-component atomic (or molecular)
fluid. We find that both systems show the power-law coarsening
of the network structures with the exponent of 1/2. We suc-
cessfully uncover the underlying physical mechanism, in which
mechanical relaxation of the dense phase plays a critical role, and
establish the universal coarsening law, which is valid for
gas-liquid-type phase separation in a variety of materials ranging
from pure fluids to soft matter such as colloidal suspensions,
protein solutions, and emulsions.

Results

Phase separation in dynamically asymmetric systems. First, we
explain in more detail how the depth of quench affects coarsening
process. For a very shallow quench, ordinary phase separation
mechanisms are usually valid (see the phase diagram of Fig. la
and b). For droplet phase separation, the coarsening is driven by
the diffusional transport of molecules among droplets (see the
top panel of Fig. 1a) or the diffusional transport of droplets and
their resulting collision and coalescence (see the middle panel),
for both of which v = 1/3. These mechanisms are widely known
as the evaporation-condensation (i.e., Lifshitz-Slyozov-Wagner)
and the Brownian-coagulation mechanism, respectively!2. For
bicontinuous phase separation, material transport is governed by
hydrodynamic flow from a narrower part of the network tube to
nearby thicker parts due to the Laplace pressure gradient (see the
bottom panel of Fig. 1a), and then the tube eventually breaks up,
leading to thickening of the nearby tubes. This mechanism is
known as Siggia’s hydrodynamic pumping mechanism34, whose
growth exponent is v=1.

For a deep quench far below the critical point, the difference in
the particle density between the two phases becomes significantly
large (see Fig. 1b), which may lead to a significant difference in
the structural relaxation time, 7, i.e., strong dynamic asymmetry,
between them?122. Such a situation is generally realised for
gas-liquid-type phase separation under a deep quench (see
Fig. 1b). In such a situation, ordinary phase-separation mechan-
isms do not necessarily work. As we mentioned above, we
observed unconventional domain coarsening with the growth
exponent v=1/2. To indicate under what situations this
exponent is observed, we show phase diagrams of three different
soft-matter systems together with the type of phase separation
observed (see Supplementary Note 1 for the details). In ordinary
binary liquid mixtures, such as a water-oil mixture, the region
where bicontinuous structure appears is limited only to a region
where the volume fraction of the minority phase is higher than
32+3%!2. Contrary to this traditional knowledge, even the
minority phase, whose volume fraction is much lower than 30%,
forms network structures, instead of droplets, as shown for
colloidal suspensions®! (a), protein solutions? (b), and charged
colloidal suspensions?® (c) in Fig. 2. Furthermore, for these
systems, the characteristic length of the network, ¢, commonly
grows as £ t1/2 in the late stage, while retaining the network
connectivity (see Fig. 2d-f). Interestingly, the exponent of v ~ 1/2
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Fig. 1 Phase separation and dynamic asymmetry. a Three classical coarsening mechanisms for phase separation and the corresponding growth exponents
v. b The left panel shows a typical phase diagram of colloidal suspensions. For a shallow quench, the two phases have similar relaxation time z,, because of
the similar colloid volume fraction, ¢, between the two phases (see the upper right panel ‘shallow quench’, where we can see similar particle mobilities
between the two phases; each particle trajectory is coloured differently). Since the domain deformation rate induced by phase separation is much slower
than 1/z,, both phases behave as viscous liquids. In this case, the growth exponents are those known for classical coarsening mechanisms'/18:20 Such
behaviours are observed only for a very shallow quench condition (see the green-shaded region; see also Fig. 2). For a deeper quench, on the other hand,
the phase with higher ¢ has a much slower relaxation time than the one with lower ¢ (see the lower right panel ‘deep quench’, where we can see very
different particle trajectories between the two phases), and the phase separation proceeds with an average speed between them. As a result, the higher ¢
(slower) phase cannot catch up with the domain deformation speed and thus behaves as an elastic body transiently. Thus, the viscoelastic response of the
higher ¢ phase plays a dominant role in the domain coarsening dynamics, which cannot be described in the conventional theory of phase separation of fluid
mixtures. Here we emphasise that this effect is essential in a broad region of the phase diagram in various dynamically asymmetric systems (see Fig. 2).

has also been observed in the network-forming gas-liquid phase
separation of single-component fluids under a deep quench
condition?3-27, This suggests that the coarsening law may be
general, but the underlying physical mechanism and its
universality have remained elusive.

Numerical simulations. To reveal the physical mechanism of the
peculiar coarsening behaviour, we numerically study phase
separation in two systems: gas-liquid phase demixing of a colloidal
suspension and that of a single-component atomic (or molecular)
fluid. For the former system, we used a hydrodynamic simulation
model, fluid particle dynamics (FPD) method30-3>, which is based
on the direct computation of the incompressible Navier-Stokes
equation (Supplementary Note 2 for details). We have recently
confirmed3! that this simulation method can reproduce the col-
loidal phase-separation kinetics experimentally observed without
any adjustable parameters once the interaction potential is mat-
ched precisely (see Fig. 2d). In this work, we use a Lennard-Jones
(L)) potential as an interaction potential between colloids since its
long-range nature prevents dynamic arrest by gelation. It allows us
to access a power-law coarsening regime for nearly two decades.
For the latter system, we used standard molecular dynamics (MD)
simulations of single-component L] fluids (see ‘Methods’).

In the following, we first show the numerical simulation
results of colloidal suspensions, and then, discuss those of pure
atomic fluids, including the similarity and difference between
the two.

Self-similar network coarsening of colloidal phase separation.
We show in Fig. 3a the time evolution of phase-separation
structures in a colloidal suspension at the colloid volume fraction
of 10% and zero temperature. We can see that a space-spanning
network structure of the minority colloid-rich phase sponta-
neously forms in the early stage, and its characteristic length scale

continuously grows with time. In order to characterise the coar-
sening behaviour quantitatively, we compute the temporal change
of the characteristic wavenumber, (gq(t)) (see ‘Methods’ for its
definition), which is inversely proportional to the characteristic
length of the network: £(t) = 27/(q(t)). As shown in Fig. 3b, we
can see a clear power-law coarsening behaviour extending nearly
two decades: (q(£)) o< t~1/2. We confirm that our results are free
from finite-size effects (see Supplementary Note 2, C and Sup-
plementary Fig. 1).

To elucidate which length scale of a real network structure the
characteristic length ¢ represents, we perform the structural
analysis in real space by using the chord length distribution
function, P(£,,)3° (see ‘Methods’ for the details). Organizing the
results based on the dynamic scaling concept!, we find that the
scaling of the length by #(f) leads to the collapse of the
distribution functions P(£,,,) at various ¢ onto a single master
curve (see Fig. 3¢): €(t)P(four) = f(€our/€(t)), where f(-) is some
function. This result indicates the self-similarity of the coarsen-
ing: phase-separation patterns at any time are identical to each
other in a statistical sense, once their sizes are scaled by the
characteristic lengths €(f). This fact further indicates the presence
of a unique self-similar coarsening mechanism behind this phase-
separation process. In Fig. 3c, we can also see that the peak
position of the distribution is around £,,,(t)/€(t) ~ 0.8, indepen-
dent of time f. It means that the characteristic length, £(f),
obtained by the structure factor, roughly corresponds to the
characteristic pore size of the network structure, £, at any time.
Here we mention that the same scaling law is also valid for the
chord length distribution function for the colloid-rich region, P
(6in), and its peak is located around ¢;,/€(t) ~ 0.2 (Supplementary
Note 3 and Supplementary Fig. 2). The fact that the ratio between
the characteristic length of the two phases is kept constant with
time (i.e., €ou(t)/€in(t) ~4) is consistent with the self-similar
nature of the network growth.
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Fig. 2 Three different soft-matter systems exhibiting network phase separation with growth exponent =1/2. a A suspension of PMMA colloids3',
interacting with the depletion attraction of strength, ¢, due to polystyrene added to solvent. ¢ represents the colloid volume fraction. b Aqueous lysozyme
solution32, where a temperature quench induces phase separation. ¢ represents the protein concentration. ¢ A suspension of polystyrene latex colloids28,
where phase separation is induced by a change of a salt (NaCl) concentration, ¢, through an osmotic membrane. ¢ represents the colloid volume fraction.
The crosses, triangles, and circles represent the state points where we observe a stable one phase, cluster-forming phase separation, and network-forming
phase separation, respectively. In panels a-c, the solid curves are the binodal lines, and the dashed curves show the borders between cluster- and network-
forming phase separation. d Temporal change of the characteristic wavenumber (q(t)) of the phase-separated structure in colloidal systems (see panel a)
at (¢, kgT/€) = (0.1,0.17). Time and space are scaled by the colloidal diameter ¢ and Brownian time g, respectively. We show the experimental results of
two systems with different ¢'s, 1.9 pm (circle) and 2.9 pm (square), together with that of the FPD simulation (brown curve). We note that the intercolloid
potentials of the three systems are precisely matched. We can see the three curves of (q(t)) almost coincide with each other under the above scaling.
e (g(t)) for a lysozyme solution (panel b) at c=200 mg/ml and T=36, 37, 38 °C (square, open circle, filled circle, respectively). f (q(t)) for latex
suspensions (see panel €) at (¢, ¢s) = (0.1%,10 w%) (circle). The red lines in panels d-f have a slope of —1/2. The insets of panels d-f show the network
structures observed with microscopy during phase separation (d and f: the cross-sections of 3D network structures). Note that the characteristic length

scale ¢ is inversely proportional to (g(t)).

In Fig. 3d, we show that the structure factor, S(q,f)
(the definition being described in ‘Methods’) can also be scaled
as (q)dS(q, t) =g(q/{g)) (d: the spatial dimension; g(-): some
function), which is further support for the self-similarity in
pattern evolution. We also find that the master curve of S(g, t) can
be apparently described by Furukawa’s scaling function3”:

g(x) x K;jc—zm, where k =d+ 1 (see the grey curve in Fig. 3d),

whose low and high g-dependences are constrained by the
conservation law of the composition and the Porod law due to the
sharp domain interface, respectively. Moreover, denoting the g-
integral of S(q, t) as I(£), we expect the relation of I(t) « £4~1 = ¢2
for self-similar domain growth!2. In the inset of Fig. 3b, we show
that I(f) indeed linearly increases with time ¢ (I(f) « t), which is
consistent with the coarsening law of £ « t1/2 found in the above.

In general, the self-similar nature of the domain coarsening
during phase separation is a consequence of the fact that the
volume fractions of the two phases keep constant with time, after
the formation of a sharp domain interface between them, i.e., the
saturation of the compositions of both phases to their equilibrium
ones. In Fig. 4a, we indeed find that the colloid volume fraction
in the colloid-rich phase ¢, is kept almost constant with time at

¢ =0.54£0.03 in the late stage of phase separation, ie., in the
power-law-growth time regime. We also confirm that the
pressure of randomly packed colloids at zero temperature is
almost zero at ¢~0.54 (see Supplementary Note 4 and
Supplementary Fig. 3). This fact is also consistent with the
condition for gas-liquid coexistence (note that since there are few
colloids in the colloid-poor phase (see Figs. 3a and 4c), its
pressure should be nearly zero).

Coarsening mechanism. Now, we turn our attention to the
coarsening mechanism. In ordinary bicontinuous phase separa-
tion34, a domain responds as viscous fluid to the mechanical
stress generated by the interfacial tension. In other words, both
phases behave like viscous fluids. This coarsening mechanism due
to hydrodynamic flow leads to the growth exponent of v=1 (see
the right panel of Fig. 1a)34, and thus, the domain coarsens much
faster than in the present case with v =1/2. Therefore, it is nat-
ural to consider that the viscoelastic nature of the colloid-rich
phase may play a critical role in the slower domain coarsening
(see the right lower panel of Fig. 1b). The crucial point is that
the elastic deformation of the network structure must be
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Fig. 3 Coarsening behaviour of network-forming phase separation of a colloidal suspension. a Time evolution of 3D phase-separation structure (see
Supplementary Movie). Particles are coloured to distinguish front particles from back ones. Here we also show the cross-section image of each structure in
black&white colour. b Temporal change of the characteristic wavenumber (g). The red line represents a power-law function of the exponent —1/2. The
inset shows the temporal change of the integrated intensity I(t) of the structure factor S(q, t). We can see that I(t) «t. € The chord length distribution
functions for the colloid-poor phase, P(¢,.), at various times, after scaling the length by the characteristic length £ = 27/(q). o is determine by

measuring the length of the lines extending radially from randomly chosen points within the colloid-poor region (see the red arrows in the inset). d Scaled
structure factors, ({(q)e)4S(g, t) (d: spatial dimension; d = 3), as a function of q/(q) for various times. The grey curve is the fit by the so-called Furukawa

function37, ;;fw where x=g/(q), k=d+1, and A is a constant.
accompanied by small local composition change of §¢(r) from its
average value ¢, ~ 0.54 (Fig. 4a), i.e., the local volume deforma-
tion e(r) = — 8¢(r)/¢o (see Fig. 4b). Then, because of the mass
conservation law, the volume deformation of the colloid-rich
phase must be accompanied by the slow solvent transport, which
leads to the permeation of the solvent through small gaps among
densely-packed colloids. This situation is precisely that of the
poroelastic theory38, which, for example, describes slow water
transport in soil. We can directly confirm this transport
mechanism by looking at the pressure field of the solvent in the
colloid-rich domain (see Fig. 4c): The pressure field of the solvent,
p» is strongly inhomogeneous inside the colloid-rich network,
which is coupled with the volume deformation field, ¢. Note that
the pressure gradient in the network is the driving force inducing
the permeation flow of the solvent. According to the poroelastic
theory38, the local volume deformation, e(r, t), should obey the
following diffusion-type equation:

0

&E = DPVZS7 (1)
where Dp is the so-called poroelastic diffusivity>®3°. Here,
because the average composition, ¢, inside the colloid-rich phase
is almost constant in the coarsening regime (Fig. 4a), the elasticity
and permeability of the colloid-rich phase should be more or less
constant with time, which allows us to treat Dp as a constant with
time. This result indicates that the mechanical relaxation of the
network deformation, which is the crucial process of the network
coarsening, is limited by the slow fluid transport through the
dense colloid-rich phase (i.e., poroelastic deformation, see
Fig. 4b). In other words, the characteristic time of domain

deformation is given by the time required for the solvent to
transport over the characteristic length €. The self-similar nature
of the network growth indicates that there is a specific char-
acteristic length for the phase-separation pattern, which is €. This
fact justifies choosing ¢ as the space unit of the Laplacian in front
of € in Eq. (1) in our scaling analysis. Thus, we obtain the domain

coarsening law of £ ~ (Dpt)"/?,

Evidence for the above mechanism. To confirm the validity of
the above mechanism, we now focus on the elastic nature of the
colloid-rich domain. To this end, we first analyse the strain field,
€ap> Dy coarse-graining the local displacements of colloidal par-
ticles (see ‘Methods’ and Supplementary Note 5 for details). In
Fig. 5a, we show the 3D structures of the colloid-rich network
together with real-space mapping of local volume strain, € (see
below). Here we can see that the locations where compression
(€ <0) or dilation (e > 0) takes place are not distributed randomly,
but distributed with the characteristic length scale of the network
width (i.e., the chord length of the colloid-rich network), €. This
situation is very similar to the composition and pressure dis-
tributions in Fig. 4b, as it should be. Here we note that because of
the self-similar nature of the network growth, £(f) « €,(f). This
fact allows us to treat the elastic deformation of the colloid-rich
domain in a coarse-grained manner. We also show in Fig. 5b the
time evolution of the distribution function, P(¢), of local volume
strain with respect to the reference time ¢, (=62.0),
€= ,€.(ty — ty + t'). We note that t,=62.0 corresponds to
the right most panel in Fig. 3a. We can see that the peak width
broadens and the peak height decreases with the increase of t'.
Here we stress that the self-similarity and dynamic scalability
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Fig. 4 The origin of self-similarity and the key material transport mechanism. a The distribution function of the local volume fraction of each particle,
Boor = % where V., is the volume of the Voronoi cell of each particle. In the early stage, since most of the particles are located at the interface of the
colloid-rich phase, or having only a few neighbouring particles (-6) (much less than in bulk (~12)), the distribution is very flat. However, in the late stage (t
>31.0), we can see a rather sharp peak. The local volume fraction in the colloid-rich phase in the late stage is approximately estimated as ¢, = 0.54 £
0.03 and almost constant with time. b A schematic illustration of poroelastic and thermoelastic deformations. Elastic volumetric deformation of the dense
colloidal domain must involve the solvent transport inside the domain. For example, when the rod-like domain is deformed from the bottom to the top
configuration in panel b, the colloid volume fraction increases (decreases) in the upper (lower) part of the domain, accompanying the transport of the
solvent from the upper to the lower part (see the magenta arrows). For a single-component fluid, on the other hand, heat transport takes place instead of
solvent transport, but the underlying physics is to be the same. The green arrows indicate the reverse process. ¢ Visualisation of elastic deformation with
the solvent exchange by a 2D slice of the phase-separation structure at t = 62. The circles represent the cross-sections of colloidal spheres, and the particle
colour is labelled according to the scaled local volume deformation introduced in Fig. 5¢c. The colour in the background (i.e., outside the particles) shows the
pressure field of the solvent.
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Fig. 5 Volume strain in the colloid-rich domain. a Real-space mapping of the local volume strain around each particle. Colour labelled on the particles
represents the value of the scaled local volume strain tye/t'. The reference time of the strain is chosen as to = 62.0. Here we show only particles which are
located in the top one-quarter of the simulation box to make the details of structures visible. b Time evolution of the distribution of local volume strain,
P(e). Here t’ represents the duration of time from the reference time, to = 62.0, to measure the strain. ¢ P(¢) after scaling e by t'/t,. The data are sampled
from the data whose reference time is to = 31.0 (blue), 46.5 (green), 62.0 (brown). Then, cross, triangle and square symbols represent the data at
t'/t, = 0.001,0.01,0.02, respectively.

hold for the phenomena. Thus, if the elastic response of the
colloid-rich phase plays an important role, we expect that the
dynamical scaling holds for the distribution function of
P(e,ty,t'). Indeed, we find that it can be scaled as
(t'/ty)P(e, ty, t") = f(toe/t') (f: some function; see Fig. 5¢). From
this scaling, we may conclude that ¢ is proportional to ¢ for a
certain ty: € o t'/t,. This proportionality can be explained by the
linear nature of the Stokes regime: In a short time duration (¢'), in
which the relative displacements between the centre-of-mass
positions of colloidal particles are negligibly small compared to

the particle size of g, the velocities of colloidal particles should be
constant with time. Here, (1) ¢ is an infinitesimally small
dimensionless quantity, (2) t, o £2, and (3) the above relation of
€ x t'/t, is to hold for arbitrary ¢'. These facts (1)-(3) tell us that
t' should also be proportional to £2. This finding clearly indicates
that the growth exponent, v=1/2, reflects the elastic response
inside the colloid-rich phase, whose characteristic time (7.) and
length scales (£,.) satisfy 7, o éi (note that £(t) « &, (t) ~ £.(1)).
Here we stress that our hydrodynamic simulation method (FPD)
strictly satisfies the momentum conservation for colloids and a
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Fig. 6 Temporal change of the characteristic wavenumber (q) in phase separation of various systems studied. a A single-component fluid system in 3D
(p=0.33,7T=0.01,0.1,0.5,1.1; p. ~ 0.33, T. ~1.2). b A 50-50 dynamically symmetric mixture of a two-component fluid system in 3D (p =1.0, T=0.1,0.5,
0.7,0.9; p.=0.5, T. ~1.4). ¢ A single-component fluid system in 2D at T= 0.3. d Colloidal suspensions in 2D at the same parameter setting as in 3D. The

dashed lines in panels a and ¢ have a slope of 1/2.

solvent as well as the incompressibility condition for a solvent,
allowing us to observe the local solvent exchange accompanied by
subtle volumetric deformation of the colloid-rich domain (see
Fig. 4c). This technical feature can generally be attained by
simulation methods of colloidal suspensions based on the direct
computation of the incompressible Navier-Stokes equations (see,
e.g., refs. 40-42) In refs. 3143, we discussed the advantages and
disadvantages of our simulation method, including comparison
with other simulation methods.

Finally, we mention the elementary process of the topological
change of the network structure during its coarsening. In the
absence of thermal noise (i.e., at zero temperature), the
coarsening cannot be due to thermal activation but should be
of purely mechanical nature*4. The network structure is under
mechanical stress to reduce the interfacial energy cost. The
resulting mechanical stress is concentrated on weak parts of
the network structure, leading to their eventual rupture. Then the
whole network relaxes its shape while retaining the momentum
balance (or, mechanical balance) condition. Such topological
change of the network and the resulting slow mechanical
relaxation are the primary mechanisms of the network coarsening
(see also Supplementary Movie). Since the mechanical rupture is
a rapid nonlinear process, it is not the limiting process controlling
the network coarsening. It is slow mechanical relaxation that
controls the network coarsening. This situation is similar to the
case of Brownian-coagulation mechanism for droplet phase
separation (see the middle panel of Fig. la): slow Brownian
motion of droplets is the limiting process of domain coarsening,
but rapid droplet coalescence accompanying the topological
change is noth21634 The slow mechanical relaxation process
described in the above is characterised by the successful scaling of
P(e) with 7, oc £, as shown in Fig. 5c.

Crossover of the limiting transport process. Here we note that
the above scenario is valid only when the characteristic time
required for poroelastic deformation (ie., 7, = £2/D;) is suffi-
ciently shorter than the structural relaxation time of the colloid-
rich phase (7,). 7. increases monotonically with domain growth,
whereas 7, is almost constant since it is determined only by the
volume fraction of the colloid-rich phase, ¢q, which is constant
with time (see Fig. 4a). Thus, the above condition is eventually
violated in a very late stage. In such a situation, the colloid-rich
domains no longer behave as an elastic body and start to behave
as a viscous fluid. Then, the domain growth is driven by fluid-like

domain deformation, i.e., hydrodynamic transport. Thus, Siggia’s
growth exponent (v =1; see the right panel of Fig. 1a) is to be
observed as long as the bicontinuous structure is preserved.
Indeed, such a crossover of the growth exponent from 1/2 to 1
was observed in a microgravity experiment carried out in the
International Space Station?®, which successfully followed the
phase demixing of colloidal suspensions over five decades. On
the other hand, if the connectivity of the network structure is lost,
the ordinary mechanisms of droplet growth may start to play a
significant role in the domain coarsening.

Network-forming phase separation in pure fluids. Next, we turn
our attention on network-forming phase separation in single-
component fluids. As mentioned above, the domain growth
exponent of v~1/2 has also been observed in the gas-liquid
phase separation of single-component fluids under a deep quench
condition?3-27, To reveal the underlying mechanism, we study
the kinetics of gas-liquid phase separation in a single-component
3D Lennard-Jones (L]) system (see ‘Methods’ on the simulation
details). When the gas and liquid phases have significantly dif-
ferent densities, the two phases exhibit strong dynamic asym-
metry (see Fig. 1b). In Fig. 6a, we show the temporal change of
the characteristic wavenumber, (q(f)), for various quench con-
ditions. We find that (gq(¢)) indeed decays with an almost con-
stant power-law exponent close to 1/2 for a wide range of deep
quench conditions (from T'=0.5 to 0.01).

As in the case of colloidal phase separation, the dense phase is
expected to respond elastically to deformation because of its slow
dynamics. The domain deformation should be accompanied by
small local density change dp around its average density of po, as
in the case of colloidal phase separation (see Fig. 4b). This local
density change may further be coupled to the local kinetic energy
for a single-component fluid: The more (less) dense the local
density is, the less (more) the local kinetic energy is. Note that
thermal expansion is the only mechanism of the density change
in a single-component system!. Then, the relevant transport
process should be heat transport. To check whether the
coarsening mechanism based on the slow heat transport is
relevant or not, we calculate the effective temperature, ie., the
kinetic energy of each particle, K;(t) = m(V7)(t), where i is the
particle index (see ‘Methods’). Figure 7a shows an example of the
real-space distribution of K;, where we can see that particles with
high/low kinetic energy are not randomly distributed, but
heterogeneously with the characteristic length scale of the
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Fig. 7 Phase-separation patterns in 3D pure fluid and in 2D colloidal liquid. a Real-space mapping of the kinetic energy of each particle K; in a single-
component 3D LJ fluid. Here we show a snapshot at time t = 45. The thermodynamic variables are chosen as p =0.33 and T = 0.01. Particle colour

represents the kinetic energy of the particle. b Phase separation in 2D colloidal suspension. A snapshot of a phase-separating 2D colloidal suspension (¢ =
38%) at zero temperature at t = 500. Here we show the pressure field p in the solvent together with the position of colloids. The colour bar represents the

pressure.

network structure €. This observation supports the mechanism we
proposed above.

The pattern in Fig. 7a is quite similar to those shown in Fig. 5a,
although the physical quantity displayed is fundamentally
different. This similarity in the pattern between the two types
of systems can be understood from the similarity between
poroelasticity and thermoelasticity: the fundamental equation of
poroelasticity3® is known to be mathematically equivalent to that
of thermoelasticity** (see, e.g., ref. 3°). This fact indicates that the
elastic deformation of the dense phase is limited by the transport
of the kinetic energy, i.e., heat transport (see Fig. 4b). Similarly to
the case of colloidal phase separation, thus, we have the following
diffusion equation for volumetric deformation e = — dp/p, of the
network domain:

0

ge = DTVZG, (2)
where D is the thermal diffusion coefficient and almost constant
with time since p, is almost constant during the coarsening. On
noting that the characteristic length is given by ¢, Eq. (2) leads to
the domain coarsening law of ¢~ (DTt)l/ . This relation
indicates that the characteristic timescale required for thermal
diffusion over the length of ¢ is given by 7 ~ ¢*D;'. The thermal
diffusion coefficient of the dense glassy system with the similar
density p, is estimated as Dy ~ 3 from the literature data6-48 (see
Supplementary Note 6 for details). In Fig. 7a, the characteristic
length of domains, or the inhomogeneity of the kinetic energy, is
£~ 10 at t =45. Consistently, the above relation provides 71 ~ 30
for £~ 10. This result supports the validity of our mechanism.

Importance of dynamical asymmetry. In the above, we have
shown that the power-law growth of the exponent 1/2 in
network-forming gas-liquid phase separation of colloidal sus-
pensions and single-component atomic (or molecular) fluids is a
consequence of the slow elastic response of the dense phase,
whose limiting process is solvent transport (poroelasticity) and
heat transport (thermoelasticity) in the dense phase, respectively.
Here we examine in more detail under what conditions this
coarsening behaviour is to be observed. We need a sufficiently
deep quench to induce enough strong dynamic asymmetry
between the two phases (see Fig. 1b). However, we note that the
growth exponent of 1/2 is not observed for ordinary binary liquid
mixtures, where dynamics of the two phases is symmetric. In
Fig. 6b, we show the temperature dependence of the coarsening

behaviour for a dynamically symmetric binary liquid mixture. We
can see that there is no distinct power-law growth, and the
apparent growth exponent (ie., the slope of the curve) con-
tinuously decreases with a decrease in temperature. In contrast, in
a single-component 3D fluid (Fig. 6a), the characteristic domain
size grows more slowly at a lower temperature in the range of
0.5<T<0.01, yet with the same power-law exponent (v ~1/2).
The dynamically symmetric binary mixture at the lowest tem-
perature (T = 0.1) exhibits a logarithmic-like slow decay of (g(t))
(see also ref.49). It is because both phases equally suffer from
dynamic arrest due to the glassiness. For such a case, our
mechanism is not relevant due to the lack of dynamic contrast
between the two phases. For binary mixtures of equal-size par-
ticles with dynamic asymmetry, e.g., systems whose components
have very different glass-transition temperatures, network phase-
separation patterns may be formed. However, the slow inter-
species diffusion prevents the early establishment of the satura-
tion of the composition field, which is prerequisite for the scale
invariance of the pattern evolution. Thus, we do not expect the
power-law domain growth. The absence of the self-similarity and
power-law growth was confirmed for polymer mixtures, whose
components have very different glass-transition temperatures>C.

In single-component systems, such a situation never takes
place: elastic deformation of the dense phase can proceed without
being influenced by the dilute gas phase. It is because the
relaxation time of the gas phase is rather insensitive to the
temperature and always much faster than the timescale of elastic
deformation of the dense liquid phase (see the right panel of
Fig. 1b). Thus, a considerable difference in the dynamics
(structural relaxation time) between the two phases (i.e., the
dilute gas and dense liquid phases) is prerequisite for the power-
law growth of exponent 1/2. It is also the case for colloidal
suspensions: although a colloidal suspension should be regarded
as a binary mixture, the significant size difference between
colloids and solvent molecules leads to the strong dynamic
asymmetry between the two phases. We may safely assume that
the structural relaxation time of a gas (or, solvent-rich) phase is
significantly faster than that of liquid (or, colloid-rich) phase (see
again the right panel of Fig. 1b). Note that the characteristic
timescale of a particulate system is roughly proportional to the
cube of the particle size.

In short, our coarsening mechanism is operative in the case
where one phase has a space-spanning network structure and
exhibits slow elastic motion during coarsening, and the other
phase does not hinder the mechanical relaxation process. This
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situation is widely satisfied with gas-liquid-type phase separation
of dynamically asymmetric mixtures.

Dependence of the growth exponent on the spatial dimen-
sionality. From the above, we may conclude that the growth
exponent of 1/2 observed in network-forming phase separation
originates from the slow elastic motion of the dense phase under a
condition that the other phase does not hinder this process. This
condition requires strong dynamic asymmetry between the two
phases. This conclusion is valid for three dimensional (3D) sys-
tems. However, it may not be necessarily the case for 2D systems.
It is because there is an intrinsic topological difference in the
percolated network structure between 2D and 3D: in 2D, a
bicontinuous network structure can never be formed, unlike in
3D. In the above, we see that for 3D systems, the limiting process
of elastic deformation is a slow transport of the solvent or heat,
which obeys the diffusion-like equation (Eqs. (1) and (2),
respectively). In thermoelasticity, the limiting process is heat
transfer, which takes place at any dimension in the same manner.
This is confirmed in Fig. 6¢c: The domain coarsening exponent is
v~1/2, even for 2D. In poroelasticity, on the other hand, the
limiting process is fluid flow through the dense colloid-rich phase,
which obeys Darcy’s law, in which the gradient of fluid pressure
induces the flow of the solvent relative to colloids. For a network
structure in 2D, the solvent-rich phase cannot have connectivity,
and instead, is divided into isolated domains with different
pressure, as shown in Fig. 7b. In this situation, isolated solvent-
rich domains cannot change their volume easily because of the
incompressibility of the solvent, which does not allow the volume
deformation of each solvent-rich domain. The only way to change
the domain volume is to exchange the solvent between neigh-
bouring solvent-rich domains through the colloid-rich network.
This process is very slow. In Fig. 7b, we show a pressure dis-
tribution in the solvent-rich domains together with the network
of the colloid-rich phase during phase separation of a 2D colloidal
suspension. Here we note that the similar pressure field was
reported by Yamamoto et al.>l. The pressure difference between
neighbouring domains leads to solvent transport. This transport
mechanism imposes a strict boundary condition on the elastic
deformation of the colloid-rich network. In Fig. 6d, we show the
volume-fraction dependence of the temporal change of the
characteristic wavenumber during network-forming colloidal
phase separation in 2D. We can see that the growth exponent is
much less than 1/2 and strongly depends on the volume fractions,
as a consequence of complex nonlocal coupling among solvent-
rich isolated domains through a solvent exchange under the
constraint of the incompressibility.

The critical point is that pores (i.e., the less dense phase) are
isolated for 2D whereas interconnected for 3D. Thus, for 2D
colloidal suspensions, permeation flow (Darcy’s law) is induced
not only by the pressure gradient inside the percolated network
but also by the pressure difference between isolated liquid pores
(or, the colloid-poor phase) (see Fig. 7b for the pressure
distribution in pores). On the other hand, thermal conduction
(Fick’s law) can take place exclusively inside the network for both
2D and 3D single-component fluids since the kinetic energy is
inhomogeneous only in the network. Thus, there is no
dependence of the coarsening law on the dimensionality for
single-component fluids.

Generality of the coarsening law. Here we discuss for what kinds
of systems our coarsening law controlled by mechanical relaxa-
tion is relevant.

First, we consider the growth exponent v=1/2 observed
previously by MD simulations of spinodal decomposition. This

exponent was reported for 2D gas-liquid spinodal decomposition
of single-component fluids23~2->%, For this case, the growth
exponent of 1/2 was ascribed to the interface-limited (or, ballistic)
evaporation—-condensation mechanism, where the transport of
molecules is kinematic (or, interface-limited) rather than
diffusive!2255°6, The same exponent was also reported for
dynamically symmetric binary mixtures®’-¢0. In this case, on the
other hand, it was ascribed to the Brownian-coagulation
mechanism for 2D fluids®!, in which the Plateau-Rayleigh
instability responsible for Siggia’s mechanism in 3D fluids is
absent. For both cases, the minority phase forms only droplets
unlike our case. Furthermore, the coarsening is governed by
thermodynamically-driven transports (ballistic or diffusional) in
these mechanisms, whereas by mechanically-driven transport in
our mechanism.

The growth exponent suggestive of 1/2 was also reported for
the gas-liquid-type spinodal decomposition of 3D pure fluids,
based on MD simulations?3-27. In ref.23, this exponent was
ascribed to the interface-limited evaporation-condensation
mechanism®2 for both 2D and 3D. In ref. 24, it was speculated
that the difference from the coarsening behaviour of the
corresponding symmetric binary fluid mixture might be due to
the difference in the density and viscosity between the gas and
liquid phases, but its exact mechanism has remained elusive. In
ref. 2, the exponent of v = 1/2 was regarded to be transient before
a crossover to ordinary hydrodynamic coarsening with v=1. In
refs. 2027, similarly, it was suggested to be transient before a
crossover to faster growth. We speculate that our mechanism may
be responsible for these phase-separation behaviours.

For the nucleation-growth-type phase separation with a very
asymmetric composition, the same exponent of 1/2 also appears in
the time regime where the composition of the majority phase is
supersaturated®>-%4, In such a case, diffusional material transport
from the surrounding majority phase to droplets of the minority
phase controls coarsening dynamics. After the saturation of the
majority phase, the evaporation-condensation (or Brownian-coagu-
lation) mechanism starts to play a central role in coarsening (see, e.g.,
refs. ©395). This mechanism is also governed by thermodynamically-
driven transports and nothing to do with our coarsening mechanism,
where mechanical relaxation plays a central role.

Finally, we stress that our coarsening mechanism is relevant for
phase-separation behaviours observed experimentally for colloi-
dal suspensions and globular protein solutions, as shown in
Fig. 2d-f, and also for surfactant solutions33. Furthermore, the
exponent v = 1/2 was observed over two decades by microgravity
experiments of colloidal phase separation2®. These experimental
examples include diverse dynamically asymmetric soft-matter
systems with various interparticle potentials, from short-range
depletion interaction?>3! (Fig. 2d), interprotein interaction’?
(Fig. 2e), to van der Waals interaction28 (Fig. 2f). Moreover,
although we consider colloids interacting with the L] potential in
our hydrodynamic simulations, the exponent 1/2 is also
numerically reproduced for colloids interacting with short-range
depletion attractions®®3! (Fig. 2d). These facts indicate the
universality of this power-law coarsening with the exponent of
1/2 to a wide variety of network-forming phase separation of
dynamically asymmetric mixtures.

Discussion

In summary, we discover a universal coarsening law (£ « t1/2) for
gas-liquid-type network-forming phase separation in soft matter
and pure fluids, which is valid in a practically relevant condition
far from the critical point. We have revealed that the growth
exponent of 1/2 is a consequence of the fact that elastic defor-
mation of the dense phase forming a network is controlled by
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slow transport of the solvent (heat) through it for soft matter
(pure fluids). The universality of the coarsening law relies on the
absence of complex internal degrees of freedom in the system
element, ie., the presence of a specific length characterising a
system; for example, the atomic (or molecular) size in pure
fluids?3-2627, the colloid size in colloidal suspensions?8-31, the
protein size in protein solutions®2, and the intermembrane spa-
cing in lyotropic liquid crystals3. The mechanism we found here
is relevant to gas-liquid-type phase separation of dynamically
asymmetric mixtures, in which the coarsening proceeds via sol-
vent (or heat) transport inside the higher-density phase with
elasticity. This condition is satisfied for a quite broad class of
materials: They include pure atomic and molecular fluids as well
as dynamically asymmetric mixtures, e.g., macromolecular sys-
tems containing a solvent as the component. We also stress that
this mechanism is not restricted to a limited region of the phase
diagram but relevant in its broad region (see Figs. 1b and 2). We
expect that this mechanism may be relevant to biological phase
separation in living cells’®, where various components with
different mobility coexist. In this regard, it is notable that very
recently, non-spherical network-like morphology has been
reported in diverse bio-systems (see, e.g., refs. 90-68),

We hope that our finding would contribute to the more pro-
found understanding of phase separation in soft and granular
matter, including gel formation®®-71, as well as in living systems.
From an application point of view, our coarsening law would
provide a useful guide to design the structures of porous mate-
rials, which are used in batteries’?, ion exchange’, catalysis’3,
microelectronics’ and medical applications’47°,

Methods

Simulations of colloidal phase separation. To study colloidal phase separation
numerically, we consider a suspension of colloids interacting with L] potential,
U(r) = 4ey{(r/ ULI)’IZ - (r/au)’(’}, whose interaction range is much longer than
a depletion potential. This long-range nature of the interaction allows us to prevent
dynamic arrest due to gelation and thus to follow the coarsening behaviour for a
long period. Since our interest is in phase-separation dynamics under a deep
quench, we neglect thermal noise. In the data analysis, we use the length unit o as
0= o1y and the time unit 74 as 74 = 3770%/€y;, where 7 is the viscosity of the
solvent. T4 corresponds to the time during which a free colloid under a constant
external force of magnitude, €;;/0, moves by its diameter 0. The depth of the L]

potential er; is set such that the Reynolds number Re = ;’%2‘ = 0.8 (p being the
density of the solvent). In Supplementary Note 2, B, we confirm the Stokes

behaviour for this Reynolds number. We define the volume fraction of colloids, ¢,
as ¢ = "g;N, where N and L are the number of colloids and the side length of our
cubic simulation box and set ¢ = 0.1, which is a volume fraction high enough to
form network structures upon phase separation. We perform large-scale FPD
simulations with the system size of L/o=69.2 (the corresponding number of the
computational grid being 5123) by utilising multiple GPUs at the same time.

Simulations of phase separation of a single-component fluid. To study
gas-liquid phase separation, we use a single-component Lennard-Jones system.
We utilise the LAMMPS package to perform molecular dynamics simulation with
NVT ensemble and control the temperature by Nose-Hoover thermostat. We

employ the standard Lennard-Jones units (i.e., oy, Ty = y/0of;m/eyy, ey for
length, time and energy units, respectively). We apply the same simulation box size
as in the above FPD simulation (L/oy; = 69.2). To simulate gas-liquid phase
separation, we first prepare an equilibrium liquid at p =0.33 and T'= 1.8 (the
critical number density and temperature being p. ~ 0.33 and T, ~ 1.2, respectively).
Then, we quench the system into various temperature, T'=1.1,0.5,0.1,0.01 in the
unit of ery/kg, for which we observe the formation of interconnected network
structure during phase separation. In the analysis of the local kinetic energy, we
calculate the kinetic energy of each particles, K;(t) = 1m(V?)(t) by taking the time
average of the velocity of i-th particle, V; over the period [t — % JE+ %] For
simulations of a dynamically symmetric binary mixture (see Fig. 6), we employ an
LJ potential with the potential depths, e1; and ey;/2, for identical and dissimilar
particle pairs, respectively (o1; being common for all pairs of particles).

Analysis of the temporal growth of the scattering function during demixing.
We calculate the scattering function S(g, t) from the 3D power spectrum of the
density correlation function as S(q, t) = pg(t)p_4(t)/N. Here the density field is

defined as p(r, 1) = 5 37,0( — [r — R,()|), where © is the step function and {R}

is the set of the centre-of-mass positions of colloids. To analyse the temporal

change of network patterns during phase separation, we compute the temporal

change of the characteristic wavenumber, (¢(t)), defined as the first moment of the
dq4S(q.

structure factor S(g, t): (q(t)) = %, which provides the characteristic

wavenumber of a network structure.

Structural analysis based on the Chord length distribution. To characterise the
typical length of the network structure in real space, we use an analysis method
called as the chord length distribution3¢. To perform this, we first divide the space
into the colloid-rich and poor regions. Specifically, we apply the Gaussian filter
with the standard deviation A on the centre-of-mass positions of the colloidal

particles, and construct a coarse-grained density field, p,(r) = 3=, exp(— "%:zi)‘
With this function, we define the part of the space with p, > py (o, being a
threshold value) as the colloid-rich region, and the remaining region as the colloid-
poor region. In this analysis, we set as A = o and py, = 1/2. The inset of Fig. 3c
shows an example of the binary field obtained by the above procedure. The black
and white parts represent the colloid-rich and poor regions, respectively.

The chord length that we use in this paper (¢, and £,,) is determined in
the following way: We randomly choose a point on the space and draw a
straight line from the point until the line hitting to the boundary of the colloid-
rich and poor regions (see the red arrows in the inset of Fig. 3c). If the chosen
point is in the colloid-rich region, we regard the length of the line as €,,; otherwise,
as .

Construction of strain fields. We compute the strain field €44, following ref. 7°.
Denoting the displacement of i-th particle from time t =0 to t =t as u;(t) = R(t)

— R/(0), a coarse-grained displacement field u(r, ) can be written as, u(r,t) =

%, where G(r) is a coarse-grain function and we employ the following

Gaussian form: G(r) = Wexp(f %) The strain field €, is defined as
ouy (r, Qug(r,t)
etxﬂ(r7 t) = %( uﬁf; . ugr: )
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