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ABSTRACT
Objective Recent studies have provided insights into 
the gut microbiota in autism spectrum disorder (ASD); 
however, these studies were restricted owing to limited 
sampling at the unitary stage of childhood. Herein, 
we aimed to reveal developmental characteristics of 
gut microbiota in a large cohort of subjects with ASD 
combined with interindividual factors impacting gut 
microbiota.
Design A large cohort of 773 subjects with ASD 
(aged 16 months to 19 years), 429 neurotypical (NT) 
development subjects (aged 11 months to 15 years) 
were emolyed to determine the dynamics change of 
gut microbiota across different ages using 16S rRNA 
sequencing.
Result In subjects with ASD, we observed a distinct 
but progressive deviation in the development of gut 
microbiota characterised by persistently decreased alpha 
diversity, early unsustainable immature microbiota, 
altered aboudance of 20 operational taxonomic 
units (OTUs), decreased taxon detection rate and 
325 deregulated microbial metabolic functions with 
age- dependent patterns. We further revealed microbial 
relationships that have changed extensively in ASD 
before 3 years of age, which were associated with 
the severity of behaviour, sleep and GI symptoms in 
the ASD group. This analysis demonstrated that a 
signature of the combination of 2 OTUs, Veillonella 
and Enterobacteriaceae, and 17 microbial metabolic 
functions efficiently discriminated ASD from NT subjects 
in both the discovery (area under the curve (AUC)=0.86), 
and validation 1 (AUC=0.78), 2 (AUC=0.82) and 3 
(AUC=0.67) sets.
Conclusion Our large cohort combined with clinical 
symptom analysis highlights the key regulator of gut 
microbiota in the pathogenesis of ASD and emphasises 
the importance of monitoring and targeting the gut 
microbiome in future clinical applications of ASD.

INTRODUCTION
Autism spectrum disorder (ASD) is a group of 
neurodevelopmental disorders characterised by 
repetitive behaviours and impairments in social 
communication and interaction.1 Since Leo Kanner 
first described early infantile autism clinically,2 the 

worldwide morbidity of ASD has increased, ranging 
between 0.75%3 and 1.85%,4 and continues 
growing. Accumulating evidences have revealed 
that both genetic (eg, rare inherited and de novo 

Significance of this study

What is already known on this subject?
 ⇒ Increasing evidences have provided insights 
into the gut microbiota in autism spectrum 
disorder (ASD); however, these studies were 
restricted owing to the small sample size 
or limited sampling at the unitary stage of 
childhood.

 ⇒ Dynamic characteristics of gut microbiome 
development in children with ASD associated 
with clinical symptoms remained unknown.

What are the new findings?
 ⇒ We first reported that children with ASD 
displayed a progressive deviation in 
development of gut microbiota when compared 
with that of the neurotypical group based on a 
large cohort of stool samples.

 ⇒ In subjects with ASD, deviated development in 
ASD was manifested as persistently decreased 
alpha diversity, early unsustainable and 
immature microbiota, difficulty or obstruction 
in the colonisation of common foundational 
bacterial groups in the early life stage and 
altered microbial relationships.

 ⇒ We concluded that several bacterial taxa, 
bacterial metabolic function and alteration of 
microbial relationship that were associated 
with the severity of behaviour, sleep and GI 
symptoms in children with ASD.

 ⇒ Microbiota- based disease diagnostic models 
showed admired efficiency across age and 
region.

How might it impact on clinical practice in the 
foreseeable future?

 ⇒ Our findings provide admired visible and 
interpretable microbiota- based disease 
diagnostic models for the prevention and 
treatment of ASD.
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variants)5 and environmental factors (eg, perinatal events)6 are 
potential triggers of ASD.7 An encouraging hypothesis recently 
proposed that gut microbiota may be an important factor in 
a broad range of neurological and psychiatric disorders and 
diseases.8 Although recent studies have provided insights into 
the gut microbiota in ASD, most of these studies have been 
restricted owing to the small sample size or limited sampling at 
the unitary stage of childhood.9 10 Accordingly, whether there is 
a real difference in the gut microbiota between healthy individ-
uals and those with ASD has been questioned.11

The symbiotic microbiota affects the host nervous system 
development through multiple forms across different host life 
stages, such as via the maternal gut- immune axis in the sterile 
fetal period12 13 or the gut microbiota- brain axis in the post-
partum microbiota involved in host development.14 Recently, 
Roswall et al reported that gut microbiota of healthy children 
matured along similar trajectories at different speeds, and indi-
vidual dynamics of gut microbiota may indicate sensitive points 
for gut microbiota development in early life.15 To further explore 
the gut microbiota profile in children with ASD, we used a large 
cohort of 1222 subjects to determine the dynamics change of gut 
microbiota across different age. We first identified the effects of 
multiple factors, including age, region, sex, clinical comorbidity, 
perinatal events and other factors on the gut microbiota of the 
present cohort. Then, using our multiregional large cohort and 
clinical metadata, we exmined the impact of both population- 
wide and interindividual factors on the gut microbiota and 
determined whether alterations in gut microbiota impact the 
pathophysiological state of autism.

METHODS
Cohort description and study subjects
In toal, 1222 participants from 25 provinces of China (mainly from 
Hunan, Shandong, Zhejiang and Guangdong) including 773 partic-
ipants with clinical definition as ASD (aged between 16 months and 
19 years) and 429 neurotypical (NT) children (aged between 11 
months and 15 years) and 20 unrelated healthy adults (aged 16–24 
years) were recruited (online supplemental table S1, S2). Informed 
consent was obtained from all the guardians of the participants for 
the collection of stool samples and trial information. Table 1 lists a 
detailed demographic and age distribution for all samples in both 
ASD and NT groups. Other detailed information about two cohorts 
and validation cohort 1–310 16 are shown in online supplemental 
methods 1. The usage of antibiotics in the past 3 months before 
sampling was recorded in detail (online supplemental table S1). The 
detailed clinical evaluation standard is shown in the online supple-
mental table S3. The summaries of age, demographic, clinical and 
district characteristics are provided in online supplemental table S2 
and S4.

16S rRNA gene sequencing
PCR amplification for V4 region of bacterial 16S rRNA gene 
was performed. Sample- specific paired- end 6 bp barcodes were 
incorporated into the TrueSeq adaptors for multiplex sequencing; 
2×150 bp pair- end sequencing was performed using the Illlumina 
NovoSeq6000 platform at GUHE Info Technology (Hangzhou, 
China).

Bioinformatics and statistical analysis
The criteria for sequences filter are detailed in online supplemental 
methods 1. The resultant clean reads were blasted, dereplicated, 
clustered and chimaera detected using VSEARCH (V.2.4.4) against 
the SILVA138 database.17 Sequences with similarity ≥97% were 

assembled into operational taxonomic unit (OTU) using Quantita-
tive Insights Into Microbial Ecology (QIIME2, V.2020.6) pipeline. 
Microbial functions were predicted by PICRUSt (Phylogenetic inves-
tigation of communities by reconstruction of unobserved states). The 
output file was further analysed using Statistical Analysis of Metage-
nomic Profiles (STAMP) software package V.2.1.3. Host multifacto-
rial effects on gut microbiota was assessed by EnvFit based on NMDS 
with Bray- Curtis dissimilarity. MaAslin218 was used to determine 
multivariable associations via generalised linear regression between 
the relative abundance of microbial signatures and metadata.

Random forest analysis was performed to discriminate the 
samples from different groups using the R package ‘randomForest’ 
with 1000 trees and all default settings off.19 20 The generalisation 
error was estimated using 10- fold cross- validation. SHapley Additive 
exPlanations (SHAP) value was evaluated according to the unified 
framework proposed by Scott M. Lundberg and Su- In Lee21 to inter-
pret the kind of host factor that affected the selected feature. The 
decision tree was visualised using treeheatr R package.22

Definition of the 30 age-discriminatory bacterial taxa
Age- discriminatory bacterial taxa list containing feature importance 
was obtained using the random forests machine learning algorithm 
proposed by Subramanian et al.23 The relative abundance of OTUs 
was then regressed against their physiological age using random 
forest regression (default parameters), and the most 30 taxa were 
extracted to map the developmental spectrum of gut microbiota in 
both ASD and NT.

Deep neural network for microbiota age quantification
Microbiota age was quantified using a neural network approach 
similar to that described by Galkin et al.24 All deep neural networks 
(DNNs) were implemented using the Python V.3.6 Keras library 
with Tensorflow backend. The detail process of mode constuction is 
described in online supplemental methods 1.

Taxa detection rate analysis
Taxa with at least 10 samples were piped into the detection rate anal-
ysis. The detection rate for each taxon is defined as:

 D = number of samples in which the taxon was detected
total samples   

The detection rate in the NT and ASD cohorts was calculated 
and compared using Fisher’s exact test.

Absolute microbial abundance change analysis
The absolute microbial abundance change was analysed following 
the previous method.25 False discovery rate (FDR) q value <0.05 
were used to filter significantly changed taxa.

Microbial relationship alteration analysis
Alteration in the paired microbial relationship between the NT 
and ASD groups, and alteration of microbial relationship with 
increasing ASD score were derived using PM2RA (profile moni-
toring for microbial relationship alteration).26 The detailed anal-
ysis method is shown in online supplemental methods 1.

RESULTS
General characteristics of the gut microbiota and clinical 
information of the cohort
To characterise the gut microbiota profile in ASD across age, we 
enrolled 773 subjects clinically diagnosed with ASD (aged 16 
months to 19 years), 429 NT subjects (aged 11 months to 15 
years) (figure 1A and B and online supplemental table S1- S4). 
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The 20 adults were observational cohort, mainly for monitoring 
the development of both alpha diversity and gut microbiota age.

Consistent with previous studies,9 10 16 although subjects with 
ASD were separated from NT and healthy adults (figure 1C), 
obvious variations in microbial composition were still detected 

among individuals in the same group (figure 1C and D). At the 
phylum level, Firmicutes, Bacteroidetes, Proteobacteria and Acti-
nobacteria were dominant in the different groupings (figure 1D). 
The alpha diversity of gut microbiota in the ASD group showed 
a significant decrease when compared with those of the NT and 

Figure 1 General characteristics of gut microbiota and clinical information of cohorts. (A) Geographical features of residence of the studied 
cohort. Subjects with ASD (n=773) were from 25 provinces of China, while NT subjects (n=449, 20 adults included) were from 14 provinces of China. 
(B) Histogram showing the summative distributions of grouped subjects according to age and gender. (C) Unweighted PCA at OTU level (for PC1, PC2 
and PC3) showed that the gut microbial composition of subjects with ASD was separated from that of NT and healthy adults. The p values between 
each group were tested using mutational multivariate analysis of variance (Adonis). (D) Phylum- level distribution of gut microbiota in ASD, NT and 
healthy adults. (E) The Shannon diversity index of each group or age category. The mean values±SEM are plotted. One- way analysis of variance, 
***p<0.0001. (F) Diverging bar chart of absolute microbial abundance changes by Analysis of Compositions of Microbiomes with Bias Correction 
(ANCOM- BC) between NT and ASD. (G) Horizontal bars indicate the impact (R2) of each host factor on gut microbiota variations. Subjects were 
subdivided into two groups (group 1: age ≤3 years or group 2: age >3 years), and the effect of each host factor was determined by EnvFit (vegan). 
Factors were roughly classified according to metadata categories, and the factors with significant effects are indicaed with an asterisk (FDR adjusted 
p value, *p<0.05 and **p<0.01). (H) The severity of ASD showed a significant correlation with severity of GI (Wilcoxon signed- rank, p=8.274e- 06), 
sleep disorder (Wilcoxon signed- rank test, p=0.0001537) and allergy (Wilcoxon signed- rank test, p=0.03008). ASD, autism spectrum disorder; NT, 
neurotypical; ns, not significant; OTU, operational taxonomic unit; PC, principal component; PCA, principal component analysis.
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adult groups (figure 1E and online supplemental table S5); 18 
and 17 genera showed elevated or decreased absolute abun-
dance in the ASD group relative to the NT group, respectively 
(figure 1F). The gut microbiome has been reported to be affected 
by multiple factors, such as age, region, food, gender, clinical 
comorbidity and perinatal factors.27 28 Thus, we further analysed 
the effects of these factors on the gut microbiota of the present 
cohort. A total of 12 host factors were detected to significantly 
affect the gut microbiota of children under 3 years of age (≤3 
years) or/and more than 3 years of age (>3 years) (figure 1G and 
online supplemental table S6). Unsurprisingly, regional differ-
ences provided the greatest contribution (≤3 years, R2=0.0544; 
>3 years, R2=0.0295) of gut microbiota variations across all 
factors but with no significance difference (figure 1G). Consis-
tent with a recent analysis of gut microbiota in children with 
ASD,29 age afforded the second highest variance in gut micro-
biota in ASD, although the effect decreased after 3 years of age 
(figure 1G). The reduced covariance of age from 0.0384 (≤3 
years) to 0.0283 (>3 years) could be attributed to the develop-
ment of the gut microbiota from a highly chaotic and changeable 
state to a relatively mature state, additionally, we noted that the 
clinical conditions of food allergy or intolerance of individual 
significantly affected gut microbiota only in subjects over 3 years 
of age (figure 1G). At this age bracket, their diet, usually trans-
formed from a diet based on dairy products to concentrate on 
fewer food types and became diverse, can be largely affected by 
the food susceptibility. In the present cohort, the incidence rates 
of comorbidities were associated with ASD (online supplemental 
table S1 and S7) especially the GI problems, approximately 
sixfold higher in the ASD group (63.9%) than in the NT group 
(10.7%) (online supplemental table S7). Impressively, children 
with ASD who presents serious GI (scores >3), sleep (scores 
>1) and allergy problems (scores >1) showed more severe ASD 
symptoms (figure 1H). To investigate which bacteria are associ-
ated with GI problems in ASD, we further compared differential 
bacteria between ASD patients with/without GI problems. We 
identified that 12 genera showed significant differential rela-
tive abundance between ASD with/without GI problems, and 
the most common comorbidity, that is, GI problems presenting 
a significant positive association with the differential bacteria, 
such as Clostridia Vadin BB60 group, UBA1819 and Erysopela-
toclostridium (online supplemental figure S1A). Moreover, a 
small number of differential genera were associated with social 
retardation, language retardation and total ASD score (online 
supplemental figure S1B). The analysis highlighted the interac-
tion between gut microbiota and other host factors in the patho-
logical process of ASD.

Deviated development in diversity and microbial relationship 
of gut microbiota in ASD group
To explore the effect of age on gut microbiota, we further tracked 
the principal component spectrum with age and described two 
simultaneously evolving temporal organisations of gut micro-
biota with different origins (figure 2). Age- mediated changes in 
gut microbiota mainly contributed to the first axis of taxonomy- 
based principal components, and the diagnosis of ASD contrib-
uted to the second and third axes (figure 2A). Other tracking 
methods according to the significant gut microbiota affecting 
factors showed no potential rules (online supplemental figure 
S2A- R). The development of gut microbiota is the replacement 
of dominant bacteria,30 31 and the spatiotemporal dislocation of 
functional bacterial groups indicates immaturity.23 32 Using the 
random forests machine learning algorithm,23 we observed that 

the relative abundance of 27 taxa from among the top 30 age- 
discriminatory bacterial taxa, were relatively consistent in the 
ASD and NT groups (figure 2B). Unlike those in children with 
immature or stunted gut microbiota,23 33 only taxa Veillonella 
ratti (OTU 359954), Clostridium (OTU 3203801) and Entero-
bacter (OTU 2119418) were significantly disturbed in children 
with ASD (especially in subjects aged >3 years) (figure 2B and 
online supplemental figure S3A- C). It is noteworthy that subjects 
with a higher abundance of age- discriminatory taxa were more 
likely to be distributed close to the ends of axis PC1 (online 
supplemental figure S4A- C), which was consistent with the age- 
related subject distribution in PCA (figure 2A).

To further evaluate the relationship between gut microbiota 
and age, we conducted a DNN to quantify the physiological 
age based on the gut microbiota (see ‘Methods’ section). The 
predicted microbiota age linearly fitted the physiological age, 
with R2=0.04373 in the NT group and R2=0.08405 in the ASD 
group (figure 2C, top panel). According to the method devel-
oped by Subramanian et al,23 developmental disorders of gut 
microbiota were investigated in two dimensions: (1) deviations 
between the predicted microbiota age and their physiological 
age and (2) microbiota- for- age Z score (MAZ) of each subject 
with ASD. Regardless of whether the predicted microbiota age 
was compared among themselves or with NT (ASD cohort only 
and for MAZ calculation), only early unsustainable immaturity 
(18–20, 20–22, 22–24, 26–28 and 28–30 months) of gut micro-
biota in the subjects with ASD were found (figure 2C, bottom 
panel and online supplemental table S8). The validation cohort 1 
showed similar encounter in the development of gut microbiota 
(24–35 and 36–47 months) (online supplemental figure S4D). 
Due to the inconsistent age distribution between the ASD and 
NT groups, especially the lack of samples at younger ages, vali-
dation cohort 2 did not show similar changes when compared 
with the current cohort and validation cohort 1 (online supple-
mental figure S4E).

Alpha diversity in the NT group increased rapidly from 
newborn to 2–3 years of age and entered a relatively stable stage 
(figure 2D), consistent with findings in a recent longitudinal birth 
cohort.15 However, the ASD group showed a mostly persistent 
decrease in bacterial alpha diversity (especially the Shannon 
diversity index) (figure 2D, online supplemental table S5). In line 
with the alpha diversity analysis across age, the genera detection 
rate with age was always lower in the ASD group than that in 
the NT group, and the detection rates of the NT group- enriched 
genus Blautia and Faecalibacterium fluctuated (figure 2E, online 
supplemental table S9 and S10). The genera detection rate in 
the ASD and NT groups after 3 years of age was associated with 
the rate before 3 years of age (online supplemental figure S5A). 
Accordingly, the difference in the genera detection rate between 
the NT and ASD groups remained constant along with age 
(figure 2E, online supplemental figure S5B) and online supple-
mental table S10). The histogram presenting changes in absolute 
microbial abundance changes indicated that the gut microbiome 
of subjects with ASD showed partial recovery after 3 years of age 
(online supplemental figure S5C, online supplemental table S11). 
The results suggested the challenges or hindrances in the coloni-
sation of common foundational bacterial groups in subjects with 
ASD during early life stages.

Some studies have indicated that gut microbiota evolves towards 
an adult- like composition 2–3 years after birth.34 35 Revealing the 
relationship alteration (RA) of gut microbiota between groups of 
subjects provides additional ecological perspective.36 37 To reveal 
the microbial RA between two groups with age, using our newly 
developed analysis tooling called PM2RA,26 we quantified the 
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RA between ASD and NT groups before and after 3 years of 
age, respectively. As shown in figure 3A, RAs between ASD and 
NT groups showed complex alterations before 3 years of age; 
however, after 3 years of age, RAs between the two groups were 
significantly reduced, and only a few RAs occurred (figure 3B). 
Moreover, the microbial co- occurrence network showed a 
similar alteration in the microbial network to that observed in 
the PM2RA method (online supplemental figure S6A- B). Consis-
tent with these results, we observed that the PM score which 
quantified the total RAs between NT and ASD after 3 years of 
age was also significantly reduced when compared with that 
before 3 years of age (figure 3C, online supplemental table S12). 
For example, the RA of Chloroplast and Fenollaria between the 
NT subjects and subjects with ASD under 3 years of age was 
considerably higher than after 3 years of age (figure 3D and E). 
RAs between the NT group before and after 3 years of age were 

less complex than those between the ASD group before and after 
3 years of age (online supplemental figure S6C- D), suggesting 
that the relationship between microbes in the ASD group were 
greatly altered with age. For example, the RA between Desul-
fovibrio and Ezakiella remained mostly unchanged in the NT 
group before and after 3 years of age (online supplemental 
figure S6E), however, the RA between the two microbes were 
considerably altered, and the PM score was substantially higher 
than that of NT (online supplemental figure S6F). Given that 
Veillonella showed different dynamic changes with age in ASD 
and NT (online supplemental figure S7A), we further compared 
the relationship between Veillonella and other microbes in ASD 
and NT groups. Consistent with the whole relationship change 
with age, correlations between Veillonella and other bacteria 
in the NT group showed a simpler microbial network with age 
(online supplemental figure S7B- C), however, ASD showed a 

Figure 2 Deviated developmental spectrum of gut microbiota in children with ASD. (A) Three- dimensional diagram of unweighted PCA based 
on OTU- level Bray- Curtis dissimilarity. Plots of each sample were dyed gradients according to their physiological age. Arrows with gradient colours 
showed the developmental trends of the gut microbial community in ASD (red) and NT (blue) from young to old. (B) Heat map showed the mean 
relative abundance changes (10- based logarithm) of 30 age- discriminatory bacterial taxa across the physiological ages of subjects. (C) Predictions 
of microbiota age in both ASD, NT and adult subjects (above). Each circle represents an individual faecal sample, and the curves are a smoothed 
linear fit between the microbiota age and physiological age. The values of physiological age minus (−) predicted microbiota age of each group and 
the microbiota- for- age Z score (MAZ) of the subjects with ASD are shown in the Figure 2C chart below. Mean values±SEM are shown. (D) Shannon 
diversity index with age. (E) The taxon detection rate difference between NT and ASD remained constant with age. The detection rate curves of 
Bifidobacterium, Veillonella, Faecalibacterium, Lachnospira and Blautia are highlighted. Arrows indicated the time points of a specific bacteria with an 
abnormally fluctuating detection rate. ASD, autism spectrum disorder; MAZ, microbiota- for- age Z score; NT, neurotypical; OTU, operational taxonomic 
unit; PC, principal component; PCA, principal component analysis.
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substantially more complicated microbial network with age 
(online supplemental figure S7D- E), which implies that Veil-
lonella partially contributed to microbiota immaturity in the 
ASD group and played an important role in the microbiota 
development.

To further identify the correlation of clinical symptoms of 
ASD with RA, we compared RA in ASD groups with different 
clinical symptoms, and observed that the alteration in the 
microbial relationship increased with the severity of ASD 
(figure 3F). Notably, the total PM score of 54 paired microbial 

Figure 3 Deviated development in the microbial relationship in children with ASD. (A) Altered microbial community network between NT and 
ASD before 3 years of age. (B) Altered microbial community network between NT and ASD after 3 years of age. (C) Box plot of profile monitoring 
(PM) scores between NT and ASD at different ages. The PM score, that is, the microbial relationship alteration, is significantly reduced in NT subjects 
and children with ASD after 3 years of age when compared with that for children under 3 years of age (Wilcoxon signed- rank test, p<2.2e- 16). (D, 
E) The isometric log- ratio transformed the abundance scatter plot of Fenollaria and Chloroplast before and after 3 years of age, respectively. The 
relationship beween these two taxa is significantly altered between NT and ASD groups under 3 years of age. This difference disappeared in NT 
subjects and children with ASD after 3 years of age. (F) Expanded alteration in the microbial community relationship with increasing ASD score. The 
edge width is proportional to the linear slope in the regression of the PM score to ASD symptom severity. (G) The identified PM score for 54 altered 
genera relationships is shown in figure 3F, which increased with ASD severity. (H–K) The isometric log- ratio transformed abundance scatter plot of 
(Ruminococcus)_gauvreauii_group and Coprobacillus in different ASD symptom severity groups. The microbial community alteration networks in A, 
B and F were derived using PM2RA. The edge width represented the interaction of the PM score. The node size represents the relative abundance 
change, as well as the label of the nodes specified taxonomic affiliation. The red node represents the increase of taxon abundance in ASD, and the 
green nodes represent the decrease. p<0.05 *, p<0.01 **, p<0.001 *** and p<0.0001 ****. ASD, autism spectrum disorder; NT, neurotypical.

https://dx.doi.org/10.1136/gutjnl-2021-325115


1595Lou M, et al. Gut 2022;71:1588–1599. doi:10.1136/gutjnl-2021-325115

Gut microbiota

relationships gradually increased with the aggravation of clinical 
ASD symptoms (figure 3G and online supplemental table S12). 
For example, the PM score for RA of (Eubacterium)_siraeum 
and Lactonifactor increased from 0.00 to 0. 36, along with an 
increase in the ASD score (figure 3H–K).

In summary, the above analysis suggested that ASD and NT 
groups were not synchronised in gut microbiota development. 
Furthermore, we noted that the development of gut microbiota 
in subjects with ASD deviated from NT development in terms 
of bacterial diversity, colonisation and microbial relationships.

Significant changes in microbial taxa and metabolic features 
across ages
Next, we deconstructed whether the signatures of gut micro-
biota between the two groups in an age- based dependent 
manner. In result, we observed that 20 microbial taxa showed 
significant different abundance across age between ASD and 
NT groups (figure 4). The total abundances of these 20 micro-
bial taxa in different age brackets ranged beween 33.41% and 
65.90% in the NT group and 35.69% and 62.41% in the ASD 
group, representing the main proportion of the gut microbiota 
(online supplemental table S13). The Enterobacteriaceae family, 
Bifidobacterium genus and Lachnospiraceae NK4A136 group 
fluctuated substantially across different age brackets (figure 4A). 
Although Veillonella only showed a non- statistical increase in 
abundance in age brackets 7 and 8 years (figure 4A), it was posi-
tively correlated with the severity of ASD in subjects with >4 
years of age (figure 4C, online supplemental figure S8A). Impres-
sively, the abundance changes of Veillonella between ASD and 
NT groups was significantly negatively associated with the clin-
ical diagnosis and age (online supplemental figure S9A). In agree-
ment with its reported neuroactive potential,38 Faecalibacterium 
was inversely correlated with ASD severity (mainly in subjects 
>3 years), while GI and sleep problems were significantly asso-
ciated with age (online supplemental figure S9A). Unlike the 
previously reported loss of probiotics in children with ASD,39 
the relative abundance of Bifidobacterium flattened before the 
age of 3 years between the two groups, significantly increasing 
in the ASD group at the age of 4–5 years (figure 4A and online 
supplemental table S13).

To further investigate the potential microbial metabolic 
function in ASD across age brackets, we compared the differ-
ential microbial function of ASD and NT groups. Accordingly, 
we found 325 microbial- metabolic functions, 39 functions 
annotated as gut- brain modules (GBM) and 286 functions as 
members of the biocycle (METACYC), with a significant shift 
across age (figure 4B). Compared with dynamic changes in taxa, 
variations in microbial functions exhibited more obvious age 
dependence (figure 4B). The influence of early childhood on gut 
microbial function was mainly attributed to the conversion of 
the diet structure from breast milk or formula milk to comple-
mentary food.40 Correspondingly, in the present cohort, the shift 
in cofactor biosynthesis and carbohydrate metabolic pathways 
were differentially enriched in the age brackets of 3–9 years 
(figure 4B and online supplemental table S14- S15). Furthermore, 
we revealed changes in the abundances of gut microbial taxa, 
such as Veillonella, Faecalibacterium and Blautia, as well as func-
tions, such as MGB- 004, MGB- 027, PWY−7374, PWY−7254 
and CODH−PWY, that were significantly related to the subjects’ 
GI and sleep problems (online supplemental table S16- S18).

Although with moderate complexities, correlation networks 
between microbial functions and phenotypes were more closely 
interconnected with the clinical manifestations of ASD (online 

supplemental figure S8B). For example, glutamate degradation 
I (MGB- 050) was positively correlated with the severity of both 
clinical manifestations before 3 years of age (figure 4D and 
online supplemental table S17). In contrast, glutamate degra-
dation II (MGB- 051) was inversely related to ASD severity in 
subjects after 3 years of age. From a higher level of functional 
annotation, functions (METACYC) correlated with the severity 
of ASD, with significance mainly in amino acid metabolism, 
aromatic compound metabolism and cofactor biosynthesis 
(figure 4E). Additionally, changes in the aboudance of MGB- 56, 
MGB- 004, PWY- 5188, PWY- 5189 and X1CMET2- PWY- N10 
between two groups showed a significant association with the 
clinical condition of ASD (online supplemental figure S9B and 
S9C). In brief, the analysis further suggested that gut microbes 
may involve in the pathological process of ASD via deregulation 
of various metabolic activities.

Gut microbiota as biomarkers for ASD and NT
To define ASD- associated microbes or metabolic pathway 
markers, we devised a random forest model to correlate ASD 
and NT with gut microbiota data at OTUs, genus, GBM and 
METACYC levels in the current and validation cohorts. A 
unified framework for interpreting predictions, namely, SHAP, 
was conducted (see ‘Method’ section). Given that the microbial 
ecosystem differed dramatically in subjects before and after 3 
years of age, we first defined two sets of markers for children 
≤3 years of age and >3 years of age, respectively (online supple-
mental figure S10A- D). The predictive accuracy in the group ≤ 
or >3 years of age is 0.83 and 0.86 AUC, respectively. To 
provide a prediction tool for clinical applicability in all children, 
we selected the 20 top features with the highest model- building 
importance value and lowest inner subcategory bias to re- estab-
lish the prediction model. All 20 features showed no intergroup 
specificity, and in part, changes in aboudance between the two 
groups remained consistent in the validation cohorts (figure 5A 
and online supplemental figure S11A- C). Each feature had an 
equal importance value to the ASD (red) or NT (blue), and 
the contribution of the subjects’ ages was at the middle level 
(figure 5A).

To create an interpretable decision model with greater practical 
clinical value, we visualised a typical decision tree (figure 5B) 
using treeheatr (see ‘Methods’ section). The metabolic pathway 
of propionate synthesis III (MGB- 055, no. 9), which showed 
significantly increased abundance changes in the ASD cohort 
(age brackets 3, 6 and 9) (figure 4B and online supplemental 
table S14), was placed at the top of the tree and tagged with 
a cut- off value (accounted abundance, 41119.31) (figure 5B). 
Other features were also distributed on the tree’s leaf nodes 
and branched with specific cut- off values. The MGB- 055 abun-
dance value >41 119.31 distinguished more subjects with ASD 
at the left bottom of the tree, consistent with the finding in an 
animal study indicating that propionic acid may cause autism- 
like behaviours in mice.41 Almost all subjects with an abnormal 
abundance of MGB- 055, MGB- 044 and PWY- 5088 which were 
annotated to metabolic activities of intestinal microbes were 
addressed to the ASD group (figure 5B).

As most microbial features were age- dependent, we incorpo-
rated individual physiological ages into the performance verifi-
cation. At the OTU level, our model showed 56%–79% accuracy 
in the current and validation sets, respectively (figure 5C–5D, 
online supplemental figure S10E- J). The model based on genus 
level was slightly inferior, with 62%–72% accuracy. The accu-
racy of the GBM and METACYC models in distinguishing 
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ASD from NT reached 81% (GBM model in the current set), 
64%–82% (GBM model in validation sets), 85% (METACYC 
model in current set) and 62%–90% (METACYC model in the 
validation sets). We then mixed all features and evaluated their 
detection effectiveness. The accuracies of all features reached 
85% and 82% in the current and validation set 2, respectively. 

Most METACYC features in the ‘top 20’ belonged to amino acid 
metabolism, aromatic compound metabolism and carbohydrate 
metabolism (online supplemental table S15 and S18). Unexpect-
edly, the accuracies of the top 20 features was slightly improved 
(86%) when compared with that of all features (85%) in the 
present current cohort and was maintained in the validation set 

Figure 4 Age- specific taxonomic and microbial- metabolic signatures in the ASD group. (A) Column chart illustrating the average relative abundance 
of the 20 taxa with significant abundance changes across different age brackets between ASD and NT (20 adults included). Only columns with 
significant abundance changes at a specific age are circled on their top surface (based on the Kruskal- Wallis test, and p values were detailed in online 
supplemental table S13. (B) Heat map showing the significant changes in microbial metabolic functions across age. Functions annotated as GBM 
(left) or a member of the biocycle (METACYC, right) were exhibited (based on the Kruskal- Wallis test, and p values are shown in online supplemental 
table S14 and S15). (C–E) Relationship between microbial taxa/function and clinical phenotypes. Correlations with p<0.05 were visualised based 
on Spearman’s correlation coefficient. The circle size represents both the grouping schemes used to calculate the correlation and the degree of 
significance (only in the two bigger circles). From left to right, the two bigger circles represent the grouping schemes ≤3 years or >3 years, and the 
small circles represent the age brackets according to the age axis of figure 3A. Correlations between the significantly altered microbial genera and 
predicted microbiota age were obtained from all subjects (C). To show the relationships between GBM and phenotype more intuitively, functions with 
significant correlations between phenotypes (all four ASD- related phenotypes) among subjects aged ≤3 years or >3 years or ≥4 individual subdivided 
age brackets are visualised (D). Correlations between METACYC and phenotypes are shown as circles (E). The values of rho and the p value of each 
taxa/GMB/METACYC for each phenotype are shown in online supplemental table S16–S18. ASD, autism spectrum disorder; GBM, gut- brain modules; 
NT, neurotypical.
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1 (78%), 2 (82%) and 3 (67%) (figure 5C and D). By decon-
structing of the AUC from our random forest- based models 
across different age brackets, we found that the efficiency of 
both all- features and the top 20 features- based models fluctuated 
(figure 5E). Impressively, before 6 years of age, the diagnostic 

efficiency of our top 20 features was appreciable, especially in 
age brackets of 3–6 years (AUC 0.93–0.97) (figure 5E).

In short, the results indicated that the predictive model based 
on these identified biomarkers showed a admired discriminant 
ability to predict the ASD status.

Figure 5 Diagnostic potential of gut microbiota in current and validation sets. (A) Microbial taxonomic and metabolic markers for detecting subjects 
with ASD were identified from random- forest classifiers based on the genus, GBM and METACYC. The x- axis represents the mean SHAP value (average 
impact on model output magnitude) of the features to the model prediction in each test (see ‘Methods’ section). The length of the column represents 
the total SHAP values of a specific marker by summing the SHAP value of ASD (red) and NT (blue). (B) A decision tree heat map for predicting whether 
a subject is diagnosed with ASD (purple) or NT (yellow). The heat map colours indicate the value of a sample relative to the rest of the group for each 
feature. (C) Performance of the classifiers using AUCs in both current (solid red line) and validation (solid blue line) sets. (D) AUC values in different 
prediction groups. (E) AUC values of all features and top 20 features in the current cohort across age brackets. AUC, area under the curve; ASD, autism 
spectrum disorder; GBM, gut- brain modules; NT, neurotypical; OTU, operational taxonomic unit.
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DISCUSSION
Based on our population- based multiregional gut microbiota 
results, we demonstrated that gut microbiota development 
significantly deviated and was unsustainably immature in chil-
dren with ASD, considering microbial composition, function 
and relationship profiles compared with that in NT subjects. 
We further explored and confirmed the diagnostic potential of 
gut microbiota in large- scale human cohorts, suggesting that 
the gut microbiome can be considered a non- invasive method 
for the early warning of ASD. In addition to behaviour symp-
toms, comorbidities such as GI dysfunction, sleep disturbance 
and food allergies are frequently reported in children with 
ASD.42–44 Correspondingly, we illustrated that the abundances 
and functions of microbial taxa were significantly related to the 
mentioned comorbidities in subjects with ASD.

We identified significant changes in microbial relationships in 
individuals with ASD, especially before 3 years of age, and the 
degree of the altered relationship correlated with the severity 
of ASD, indicating that alteration in microbial relationships 
occurred in the early stages of microbiome development in 
children with ASD, which is consistent with the nodes when 
behavioural defects in children with ASD occur. Increasing 
evidence has suggested that the gut microbiota plays a key role 
in biological and physiological featues underlying neurodevelop-
ment.45 The analysis further implicates that the establishment of 
early community relationships among microbes may potentially 
impact neurodevelopment in children.

Unlike growth faltering caused by severe paediatric patholog-
ical conditions, such as severe acute malnutrition23 32 and cystic 
fibrosis,46 only transient dysplasia of gut microbiota was observed 
in the children with ASD in the present cohort; however, detach-
ments of early predominant bacteria, such as Veillonella, were 
delayed. Roswall et al have recently reported that Veillonella and 
Clostridium showed dynamic changes during the early devel-
opmental stage of healthy children similar to that observed in 
the present cohorts.15 However, both OTUs were significantly 
disturbed in children with ASD, suggesting that both OTUs play 
an important role in establishing of the gut microecological 
system at the early stage of life.

Most disrupted microbial functions in ASD belong to GBM, 
amino acid metabolism and aromatic compound metabolism. 
Previous studies have indicated that these functions are involved 
in individual nervous system development, neurotransmitter 
biosynthesis and neuronal response regulations.47 For instance, 
we observed that the bacterial pathways for tryptophan metabo-
lism, including the production of neuroprotective kynurenic acid 
(kynurenine synthesis, MGB- 004) and neurotoxic quinolinic acid 
(tryptophan synthesis, MGB- 055), were significantly correlated 
with the severity of ASD. Similar correlations were also shown in 
propionate and dopamine metabolism, which is involved in the 
metabolic network of neurotransmitters. Our findings highlight 
that the gut microbiota may profoundly impact neural develop-
ment by regulating neurotransmitter metabolism.

Most previous studies that constructed gut microbiota- based 
diagnostic models are typically described in a ‘parts list’, enumer-
ating of component members and model’s efficiency,9 48 49 thus 
limiting the interpretation and practical application of gut micro-
biota features in human disease progression. In the current study, 
we visualised the decision- making process of our model and 
revealed the inner- group specificity of the factors in our model 
using treeheatr22 and SHAP.21 Accordingly, the decision- making 
process was visualised by distributing each factor on a tree’s leaf 
nodes and branched with specific cut- off values. Moreover, our 

model indicates the specific cut- off values and their final judge-
ment results of a factor, which can provide practically available 
indexes for an independent individual in clinical warning or 
treatment as well as for the scientific exploration of potential 
pathogenic factors.

In summary, the progressive deviation in the development of 
gut microbiota of subjects with ASD highlighted the influence of 
age on the composition of gut microbiota, which suggested that 
individuals with ASD should be compared with healthy controls 
at the same physiological age to exclude ‘age- discriminatory’ 
features for both clinical application and scientific research. As 
to the construction of animal model based on faecal microbiota 
transplantation, researchers should consider the conversion and 
matching of age between human faeces donor and recipient mice. 
In the future, by constructing longitudinal cohorts of children 
with ASD and NT, and integrating metagenomics and metabolo-
mics analyses, we can precisely identify potential developmental 
windows during which the gut microbiota may be particularly 
sensitive to ASD development, and further provide critical clues 
to reveal how gut microbiota participates in the pathogenesis of 
autism by regulating metabolic pathways.
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