
R E S E A R CH A R T I C L E

Hippocampus shape characterization with 3D Zernike
transformation in clinical Alzheimer's disease progression

David C. Zhu1 | Chih-Ying Gwo2 | An-Wen Deng2 | Norman Scheel1 |

Mari A. Dowling1 | Rong Zhang3,4 | for the Alzheimer's Disease Neuroimaging Initiative

1Department of Radiology and Cognitive

Imaging Research Center, Michigan State

University, East Lansing, Michigan, USA

2Department of Information Management,

Chien Hsin University of Science and

Technology, Taoyuan City, Taiwan

3Departments of Neurology and Internal

Medicine, University of Texas Southwestern

Medical Center, Dallas, Texas, USA

4Institute for Exercise and Environmental

Medicine, Texas Health Presbyterian Hospital

Dallas, Dallas, Texas, USA

Correspondence

David C. Zhu, Department of Radiology,

Michigan State University, 846 Service Road,

East Lansing, MI 48824, USA.

Email: zhuda@msu.edu

Funding information

National Institutes of Health; Department of

Defense, Grant/Award Number: W81XWH-

12-2-0012; National Institute on Aging,

Grant/Award Number: R01AG057571;

National Institute of Biomedical Imaging and

Bioengineering

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause

of dementia among older adults. Mild cognitive impairment (MCI) is considered a

transitional phase between healthy cognitive aging and dementia. Progressive brain

volume reduction/atrophy, particularly of the hippocampus, is associated with the

transition from normal to MCI, and then to AD. We aimed to develop methods to

characterize the shape of hippocampus and explore its potential as an imaging marker

to monitor clinical AD progression. We implemented a 3D Zernike transformation to

characterize the shape changes of hippocampus in 428 older subjects with high-

quality T1-weighted volumetric brain scans from the Alzheimer's Disease Neuroimag-

ing Initiative data set (151 normal, 258 MCI, and 19 AD). Over 2 years, 15 cognitively

normal subjects converted to MCI, and 42 subjects with MCI converted to AD. We

found a significant correlation between hippocampal volume changes and Zernike

shape metrics. Before a clinical diagnosis of AD, the shapes of the left and right hip-

pocampi changed slowly. After AD diagnosis, both volume and shape changed rapidly

but were uncorrelated to each other. During the transition from a clinical diagnosis of

MCI to AD, the shape of the left and right hippocampi changed in a correlated man-

ner but became uncorrelated after AD diagnosis. Finally, the pace of hippocampus

shape change was associated with its shape and the subject's age and disease condi-

tion. In conclusion, the hippocampus shape features characterized with 3D Zernike

transformation, in complement to volume measures, may serve as a novel imaging

marker to monitor clinical AD progression.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a progressive, neurodegenerative brain dis-

order and the most common cause of dementia among older adults.

Patients with AD exhibit a gradual decline in cognitive function,

resulting in memory loss, impaired decision-making capacity, disorien-

tation, as well as changes in personality and mood (McKhann

et al., 2011). The cognitive decline and behavioral changes are accom-

panied by histological changes including neuronal degeneration and

abnormal protein deposition in the cerebral cortex (Querfurth &

LaFerla, 2010). Mild cognitive impairment (MCI) is a clinical syndrome

considered to represent a transitional phase between healthy cogni-

tive aging and dementia (Petersen et al., 1999). In contrast to demen-

tia, cognitive deficits observed in patients with MCI are milder and

typically do not interfere with an individual's ability to perform activi-

ties of daily living. Importantly, patients with MCI have a significantly

increased risk of developing dementia, with a 10%–15% annual rate

of progression (Petersen et al., 2009). Identifying the characteristics of

the sub-population of MCI individuals who are at a higher risk of con-

verting to AD is critical for preventative and treatment interventions.

Global and regional brain volume loss has been found to be asso-

ciated with disease progression from normal cognition to MCI, and

then to AD. Among the various brain regions, hippocampus volume

reduction was found to be a sensitive and reliable imaging biomarker

to monitor clinical AD progression (Jack et al., 1999, 2004, 2005). The

current characterization of hippocampus changes has mostly been lim-

ited to volumetric analysis. Nevertheless, the hippocampus contains

multiple subfields, with the subiculum and CA1 changes likely associ-

ated with AD pathophysiology, and the CA3 and dentate gyrus

changes associated with normal aging (Jagust, 2013; Pievani

et al., 2011). Given these region-specific differences in the underlying

neurobiological mechanisms, it is reasonable to speculate that the hip-

pocampus may undergo both volumetric and shape changes corre-

sponding to normal aging and the stage of clinical AD progression.

Prior work by Wachinger et al. has demonstrated a significant increase

in hippocampus left–right asymmetry in dementia (Wachinger

et al., 2016). Therefore, analysis of changes in hippocampus shape, in

complement to volume measures, may contribute to the understand-

ing of the dynamics of hippocampus volume loss and possibly serve as

a novel image marker for AD.

In this regard, Wachinger et al. (2016) utilized a statistical shape

analysis method developed by Styner et al. (2006) to characterize hip-

pocampus shape features in dementia. This method is based on spher-

ical harmonics analysis of an object's shape. Spherical harmonics

analysis can be used to characterize a shape with a spherical topology,

but it would fail to characterize complicated shapes, such as structures

with holes and tori (Venkatraman et al., 2009).

Brain structures contain complex shapes, with various curvatures,

extensions, and pockets in the brain's gyri and sulci. To fully character-

ize complicated shape features such as the brain structures, the

applied methodology must be able to characterize topological struc-

tures with holes and tori. The methods should also have properties

such as spatial invariants to the object orientations, resistance to

image noise, and being able to define a one-to-one mapping

relationship between the object shape and shape feature vectors. Zer-

nike transformation can satisfy these criteria (Khotanzad &

Hong, 1990). Similar to the Fourier analysis, the shape features of an

object captured on MRI can be represented by the coefficients of the

Zernike polynomial expansion (i.e., Zernike transformation), referred

to as Zernike moments (ZMs) (Zernike, 1934). Recently, we applied a

2D version of Zernike transformation to characterize T2 FLAIR white-

matter hyperintensity brain lesions in cognitively normal older adults

(Gwo et al., 2019). We were able to characterize white matter hyper-

intensity brain lesions to six distinct shape clusters, which were signif-

icantly correlated with a lesion growth index calculated based on the

border characteristics of the white matter lesions. These observations

suggest that longitudinal changes of brain white matter lesions may

be influenced by their shape characteristics. We now explore the

application of 3D Zernike transformation to characterize hippocampus

shape changes related to clinical AD progression. First, we aim to

demonstrate the applicability of 3D Zernike transformations to char-

acterize hippocampus shape features. Second, we aim to evaluate hip-

pocampus shape changes over the time course of clinical AD

progression, as well as their relationships with hippocampus volume

changes.

2 | METHODS

2.1 | 3D Zernike transformation

The 2D Zernike transformation is based on the Zernike polynomials

defined on a unit disc D. It has been used extensively in imaging shape

feature extraction and pattern recognition (Gwo et al., 2019;

Papakostas et al., 2007; Wee & Paramesran, 2007). The coefficients

of the Zernike polynomial expansion of an object are called ZMs. ZMs

are complex numbers. The magnitude of ZM is rotationally invariant

and represents the shape features of the objects being analyzed. To

define the 3D version of Zernike polynomials, the unit disc D is

replaced by a unit ball B. Every point (x, y, z) in the unit ball B can be

represented by a spherical coordinate r, θ, ϕð Þ as shown in

Equation (1),

x, y, zð Þ¼ rsin θcosϕ, rsin θsinϕ, rcosθð Þ: ð1Þ

where

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p
,

θ¼ cos�1 z
r
,

ϕ¼ sin�1 yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p : ð2Þ

Canterakis introduced the first algorithm to calculate 3D Zernike

moments (3DZMs) (Canterakis, 1999), where the 3DZMs were

expressed as the linear combination of geometric moments. These
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3DZMs were later described as shape descriptors for shape retrieval

(Novotni & Klein, 2004). Canterakis' algorithm has been applied to ter-

rain matching (Wang et al., 2018, 2019) and protein–protein interface

prediction (Daberdaku & Ferrari, 2018). However, Canterakis'

algorithm could only be used to compute ZM up to the order of

25, due to computational demand and instability. Hosny et al. intro-

duced a fast algorithm using eight ways of (anti-)symmetries (Hosny &

Hafez, 2012). To overcome the limitations on computational effi-

ciency and the maximum ZM order that can be computed reliably in

previous algorithms, Deng & Gwo proposed a new algorithm based on

a recursive approach to calculate 3D Zernike radial polynomials

(Deng & Gwo, 2020). This full algorithm to calculate the 3D Zernike

polynomial is described below.

The 3D Zernike polynomial Vm
nℓ r, θ, ϕð Þ is defined as the multipli-

cation of spherical harmonic Ym
ℓ θ, ϕð Þ and radial polynomial Rnℓ rð Þ as

below:

Vm
nℓ r, θ, ϕð Þ¼Ym

ℓ θ, ϕð ÞRnℓ rð Þ: ð3Þ

Ym
ℓ θ, ϕð Þ and Rnℓ rð Þ are computed separately. The spherical harmonic

Ym
ℓ θ, ϕð Þ of degree ℓ with order m is given by

Ym
ℓ θ, ϕð Þ¼ Km

ℓ P
m
ℓ cosθð Þcosmϕ if m≥0

Km
ℓ P

m
ℓ cosθð Þsinmϕ otherwise

�
: ð4Þ

where Pmℓ �ð Þ is the associated Legendre polynomial of degree ℓ,

given by

Pmℓ xð Þ¼ �1ð Þm 1�x2
� �m

2
dm

dxm
Pℓ xð Þð Þ: ð5Þ

and Km
ℓ is the normalizing factor given by

Km
ℓ ¼ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵm 2ℓþ1ð Þ ℓ�mð Þ!

ℓþmð Þ!

s
Where ϵm ¼ 1 if m≠ 0

2 otherwise

n
: ð6Þ

Let ~Pmℓ cosθð Þ¼Km
ℓ P

m
ℓ cosθð Þ be the normalized associated Legendre

polynomial, then Equation (4) is simplified to

Ym
ℓ θ, ϕð Þ¼ ~Pmℓ cosθð Þcosmϕ if m≥0

~Pmℓ cosθð Þsinmϕ otherwise

�
: ð7Þ

The spherical harmonics Ym
ℓ �ð Þ form an orthonormal basis for the Hil-

bert space L2 S2
� �

of the square-integrable functions over the unit

sphere S2. For any function f in L2 S2
� �

, f can be expressed as in

Equation (8) (Szeg}o, 1939):

f θ, ϕð Þ¼
X∞
ℓ¼0

Xℓ
m¼�ℓ

Cm
ℓ Y

m
ℓ θ, ϕð Þ, ð8Þ

where Cm
ℓ are the coefficients; ℓ is a nonnegative integer; m is an inte-

ger with jm j ≤ℓ. The computation procedures of ~Pmℓ cosθð Þ for degree

ℓ≤ℓmax are summarized as follows (Deng & Gwo, 2018;

Szeg}o, 1939):

1. Initialize ~P00 cosθð Þ¼
ffiffiffiffi
1
4π

q
, which is the normalizing factor for volu-

metric integration. Then iteratively calculate the following:

2. ~Pℓℓ cosθð Þ¼C3 sin θ ~Pℓ�1
ℓ�1 cosθð Þ for ℓ¼1,2,3,…,ℓmax

~Pℓ�1
ℓ cosθð Þ¼C1 cos θ ~Pℓ�1

ℓ�1 cosθð Þ

~Pmℓ cosθð Þ¼C1 cos θ ~Pmℓ�1 cosθð Þ�C2
~Pmℓ�2 cosθð Þ

for m¼0,1,::,ℓ�2

C¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ℓþ1
ℓþmð Þ ℓ�mð Þ

s
, C1 ¼C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℓ�1

p

C2 ¼C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓþm�1ð Þ ℓ�m�1ð Þ

2ℓ�3

r
, C3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℓþ1
2ℓ

r
: ð9Þ

For a Zernike polynomial of order n (a nonnegative integer), the

integer ℓ above needs to be ≤n and n�ℓ¼ even, while the integer m

needs to satisfy jmj≤ℓ. The 3D Zernike radial polynomial Rnℓ rð Þ in

Equation (3) was originally given in terms of Jacobi polynomials as

described in (Szeg}o, 1939), but different calculation methods of 3D

Zernike radial polynomial have been proposed (Deng & Gwo, 2020).

In our work, Rnℓ is computed recursively, similar to Kintner's p-method

in the case of 2D Zernike polynomials, shown in Equation (10)

(Deng & Gwo, 2018; Kintner, 1976). Here, the reconstruction error of

ZMs for orders greater than 20 is much smaller than that using Can-

terakis' method based on geometric moments.

Rnℓ rð Þ¼ K1r
2þK2

� �
Rn�2,ℓ rð ÞþK3Rn�4,ℓ rð Þ, ð10Þ

for n¼ℓþ4,ℓþ6,…,nmax

where the coefficients Ki are given by the following,

k0 ¼ n�ℓð Þ nþℓþ1ð Þ 2n�3ð Þ,

k1 ¼ 2n�1ð Þ 2nþ1ð Þ 2n�3ð Þ,

k2 ¼ �2nþ1ð Þ 4ℓ2þ4ℓþ1
2

� 	
�k1

2
,

k3 ¼� n�ℓ�2ð Þ nþℓþ1ð Þ 2nþ1ð Þ,

K1 ¼k1

k0
, K2 ¼k2

k0
, K3 ¼k3

k0
: ð11Þ

For this recursive formula, the following initial equalities are also

required:
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Rnn rð Þ¼ rn for n¼0,1,2,…, ð12Þ

and

Rn,n�2 rð Þ¼ nþ1
2

� 	
rn� n�1

2

� 	
rn�2 for n¼2,3,4,…: ð13Þ

Let f r, θ, ϕð Þ be a 3D image function within the unit ball B. The 3DZM

Zm
nℓ can be rationalized as the inner product of the image function

f r, θ, ϕð Þ and the basis function Vm
nℓ r, θ, ϕð Þ (Deng & Gwo, 2020), and

can be described as

Zm
nℓ ¼ 2nþ3ð Þ

ð ð ð
r, θ, ϕð Þ � B

f r, θ, ϕð ÞVm
nℓ r, θ, ϕð Þr2 sin θdr dθ dϕ: ð14Þ

Each moment within Order n corresponds to a

(2ℓþ1)-dimensional vector

*
Znℓ ðasÞ

*
Znℓ ¼ Z�ℓ

nℓ , Z
�ℓþ1
nℓ , � � �, Z0

nℓ, � � �, Zℓ�1
nℓ , Zℓ

nℓ

� �
: ð15Þ

The l2-norm of
*
Znℓ , denoted by

*
Znℓ




 


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXℓ
m¼�ℓ

jZm
nℓj2

vuut , ð16Þ

is rotationally invariant and can be used as the 3D shape descriptor

(or Zernike descriptor) of a 3D object. The total number of 3DZMs

and the dimension of the Zernike descriptor for an expansion up to

order n are given by Equation (17) and Equation (18) respectively:

Number of 3DZMs¼
Xn
i¼0

iþ2ð Þ2
4

$ %
: ð17Þ

Dimension of Zernike descriptor¼
nþ2
2ð Þ2 if order n is even

nþ3ð Þ nþ1ð Þ
4

if order n is odd

(
ð18Þ

The image object function f can be reconstructed with ZM order

M as fM below:

fM r, θ, ϕð Þ¼
XM
n¼0

X
ℓ

Xℓ
m¼�ℓ

Zm
nℓV

m
nℓ r, θ, ϕð Þ: ð19Þ

When M is large enough, the function fM can be used to approximate

the original image object function f (Deng & Gwo, 2018). For a binary

image object with the background represented by 0, the error rate Er

between the original f and the reconstructed fM can be calculated by

Er ¼

P
8 x, y, zð Þ

f x, y, zð Þ ⨁ fM x, y, zð Þð Þ
P

8 x, y, zð Þ
f x, y, zð Þ ,

where fM x, y, zð Þ¼ 1 if fM x, y, zð Þ≥0:5
0 otherwise

n
: ð20Þ

where ⨁ is exclusive disjunction and f x, y, zð Þ¼ 0 or 1. Based on

the error rate Er , an appropriate ZM order M can be chosen.

Overall, the calculation of 3DZMs is summarized as following:

First, the normalized associated polynomial ~Pmℓ cosθð Þ of the spherical

harmonic function is calculated using Equation (9). Second, the 3D

Zernike radial polynomial Rnℓ is calculated recursively using Equa-

tions (10)–(13). Then, the 3D Zernike polynomials can be obtained by

Equation (3). Finally, Equation (14) is used to generate 3DZMs, and

Equation (16) is used to generate the 3D Zernike descriptors. The 3D

spherical harmonics and Radial polynomials are illustrated in Figure 1.

The applicability of 3D Zernike descriptors to characterize the

shape of brain structures can be illustrated with the left and right hip-

pocampi and the right lateral occipital cortex (Figure 2a). In Figure 2a,

these three brain structures have been normalized to the same size.

The corresponding Zernike descriptors are plotted in Figure 2b. As

shown in Figure 2b, the magnitudes of Zernike descriptors of the left

and right hippocampi are nearly overlaid with each other in most

descriptor indices, but are notably different from those of the right

lateral occipital cortex, as expected.

2.2 | Subjects

Subjects who had at least 2 years of anatomical MRI data were

selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu/), resulting in 521 subjects when

we started this study. High-resolution whole-brain T1-weighted 3D

MR images of these subjects were used for this study. T1-weighted

3D MR images were acquired with a full-brain sagittal 3D IRFSPGR

(inversion recovery fast spoiled gradient-recalled) protocol on a 3T GE

scanner, or a sagittal 3D MPRAGE (magnetization prepared rapid

acquisition gradient recalled echo) protocol on a 3T Siemens or Philips

scanner with a voxel resolution of 1 � 1 � 1.2 mm3. All T1-weighted

volumetric images were processed through the FreeSurfer segmenta-

tion pipeline (Fischl et al., 2002). In this pipeline, the T1-weighted 3D

MR images were normalized to have a voxel size of 1 � 1 � 1 mm3

and a voxel signal intensity range of 0–255. The left and right hippo-

campi were segmented along with other brain regions. Subjects exhib-

ited significant motion artifacts often resulted in image segmentation

failure. All images and segmentation results were visually inspected by

a trained research assistant to ensure quality. Images with bad seg-

mentation quality were excluded from this study, resulting in a total

of 2683 high-quality T1-weighted 3D MR images available for analy-

sis. While the original data set contained 521 subjects in total, only

those who had high-quality T1-weighted 3D MR images at both base-

line and 24-month follow-up scans were included for statistical
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analyses. In addition, only two subjects changed from normal cogni-

tion to dementia within a time window of 2 years investigated in this

study. Thus, a category of conversion from normal aging to dementia

was not included in this study due to the lack of statistical power. The

total number of subjects included for statistical analysis was 428.

Based on the cognitive conditions assessed at baseline (Month 0) and

Month 24, subjects were divided into the following groups: Normal–

Normal cognition (N–N), Normal cognition–MCI (N–M), MCI–Normal

cognition (M–N), MCI–MCI (M–M), MCI–Dementia (M–D),

Dementia–Dementia (D–D) (Table 1). Table 1 also includes ApoE4 sta-

tus, Mini-Mental State Examination score, and brain amyloid level

measured via AV45 PET scan, as well as TAU and PTAU concentra-

tions measured in cerebrospinal fluid (CSF).

2.3 | Hippocampus shape normalization and
template generation

To compare the differences and changes in shapes of either the left or

right hippocampi of the subjects, the hippocampi need to be uniformly

resampled to a common size, logically, the approximate median size of

4000 voxels (voxel size = 1 mm3) in this work. The median size of the

left hippocampi of these subjects was found to be 3746 voxels, and

that of the right hippocampi was 3954 voxels. The following proce-

dure was applied to the left hippocampus and then repeated on the

right.

After resizing to 4000 voxels, a common reference template was

first created to compare with the hippocampus shape of an individual

subject. Specifically, this template was generated using an iterative

closest point (ICP) algorithm, integrating the hippocampus images

from the high-quality T1-weighted 3D MR images (total of 2683) from

the original 521 subjects. In the ICP algorithm, the source image is

transformed to match the reference image with 6-degree affine rigid-

body transformation. The algorithm iteratively minimizes the sum of

the distances of the source and reference point pairs, to achieve the

best match between two sets of data points. ICP is widely used for

aligning three-dimensional rigid shapes (Besl & McKay, 1992; Chen &

Medioni, 1992). After the boundary points of all resized hippocampi

from all subjects were identified, the hippocampus template (the left

and then the right one) was generated using the following steps:

Step 1: Initialize one resized hippocampus (at the common pre-

defined 4000-voxel size) from a subject as the reference

template.

Step 2: Match the boundary points of another resized hippocam-

pus to the template based on the ICP algorithm and generate the

F IGURE 1 (a) Spherical harmonics
Ym
ℓ θ, ϕð Þ of different degree l with order m

from �l to l are shown with image from
@2021 IEEE. Reprinted, with permission,
from Liu et al. (2019). (b) The radial
polynomials for order n = 0, 1, 2, and
3 are illustrated
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6-degree affine transformation matrix. Align this resized hippo-

campus to the template based on this transformation matrix.

Step 3: Repeat Step 2 to all resized individual hippocampus.

Step 4: After Step 3, all resized hippocampi have been aligned to

a common template. The average voxel signal intensity across

the resized hippocampi would produce the mean image with

voxel intensity values between 0 and 255.

Step 5: To generate a binary map to represent the hippocampus

shape, a threshold of 128 signal intensity is applied to the mean

image generated from Step 4. However, since the image size

becomes deviated from the pre-defined 4000-voxel volume size,

the average image volume is resized again to the 4000-voxel vol-

ume size as the last step to generate the final template. This final

template contains a smooth boundary and represents the whole

group (Figure S1).

2.4 | Shape feature extraction

To compute the 3DZMs of the hippocampus, a ZM order needs to be

determined. This decision can be based on the relationship between

ZM order and reconstruction error rate, described in Equation (20).

For the left hippocampus of a subject shown in Figure 3a, at a low ZM

order, such as 40, the error rate is high and a significant amount of

image details is missing. At a high ZM order, such as 200 in this exam-

ple, the error rate is low, and the reconstructed image looks similar to

the original image. A wide range of ZM orders can be used, depending

on the desired threshold of the error rate (Figure 3b). In this work, we

chose a ZM order of 200. At this ZM order, the reconstruction error

rates of the left and right hippocampi of this subject approach the pla-

teau of zero (Figure 3b). At this ZM order, the reconstruction error

rates of the left and right hippocampi of all 428 subjects at baseline

were (2.18 ± 0.60) � 10�2 and (2.19 ± 0.56) � 10�2, respectively.

The ZM order of 200 led to a Zernike descriptor with 10,201 dimen-

sions. To improve computational efficiency, principal component anal-

ysis (PCA) was applied to reduce the high dimensions associated with

the Zernike descriptor. To compute the principal components in an

unbiased manner, the Zernike descriptors of the hippocampi of the

high-quality T1-weighted 3D MR images (total of 2683) from the origi-

nal 521 subjects were combined to generate a covariance matrix, from

which the eigenvectors and eigenvalues were estimated. The eigen-

vectors corresponding to the 120 largest eigenvalues (expected to

F IGURE 2 (a) Three 3D brain structures (left hippocampus, right hippocampus and right lateral occipital cortex) were normalized to fit in the
cube of 70 � 70 � 70 voxels. (b) The magnitudes of 121 Zernike descriptors based on Zernike moment orders ≤20 of these three structures are
shown for comparison.
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TABLE 1 Subject demographics

Groupa N–N N–M M–N M–M M–D D–D

# of Subjects (Total: 428) 136 15 10 206 42 19

(F, M) (67, 69) (9, 6) (6, 4) (89, 117) (21, 21) (9, 10)

Age 72.4 ± 6.2 75.3 ± 6.5 68.7 ± 5.6 70.7 ± 7.3 71.1 ± 7.4 75.7 ± 9.0

ApoE4 status

(# of subjects

and %)

0 97 (71.3%) 10 (66.7%) 7 (70.0%) 119 (57.8%) 11 (26.2%) 4 (21.1%)

1 37 (27.2%) 4 (26.7%) 3 (30%) 69 (33.5%) 23 (54.8%) 12 (63.2%)

2 2 (1.5%) 1 (6.7%) 0 (0%) 18 (8.7%) 8 (19.0%) 3 (15.8%)

MMSE score Baseline 29.1 ± 1.2 28.7 ± 0.9 29.2 ± 0.4 28.4 ± 1.6 26.8 ± 1.7 22.5 ± 1.5

Month 24 29.1 ± 1.2 28.0 ± 1.6 29.7 ± 0.9 28.0 ± 2.1 (3) 23.8 ± 3.2 17.4 ± 4.4

Brain amyloid

(SUVR)

Baseline 1.09 ± 0.17 1.19 ± 0.19 1.12 ± 0.12 1.14 ± 0.18 (1) 1.43 ± 0.19 1.43 ± 0.24

Month 24 1.12 ± 0.22 (12) 1.17 ± 0.19 (3) 1.13 ± 0.15

(1)

1.16 ± 0.20 (34) 1.43 ± 0.19 (2) 1.43 ± 0.25 (2)

CSF TAU (pg/ml) Baseline 245.1 ± 93.3

(15)

250.1 ± 90.0

(2)

211.0 ± 50.9

(2)

256.2 ± 120.4

(15)

387.4 ± 156.0 420.1 ± 124.2

Month 24 250.4 ± 101.6

(58)

289.8 ± 114.0

(9)

268.5 ± 57.4

(6)

287.4 ± 133.8

(92)

443.5 ± 180.2

(18)

420.3 ± 128.0

(10)

CSF PTAU (pg/ml) Baseline 22.3 ± 9.3 (16) 22.7 ± 9.0 (2) 19.1 ± 5.1 (2) 24.0 ± 13.2 (15) 39.4 ± 17.5 42.5 ± 13.0

Month 24 23.3 ± 11.0 (59) 27.5 ± 12.3 (9) 26.3 ± 5.5 (6) 27.3 ± 15.1 (93) 44.0 ± 19.8 (18) 42.0 ± 13.3 (10)

Note: ApoE4 status: Carrier of 0, 1, or 2 ApoE4 alleles.

Brain amyloid: Average AV45 SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum.

CSF TAU and PTAU: TAU and PTAU proteins measured in CSF.

Brain amyloid, CSF TAU, and CSF PTAU: The numbers of missing data are indicated in parentheses.

Abbreviations: CSF, cerebrospinal fluid; D, dementia; M, mild cognitively impaired; MMSE, Mini-Mental State Examination; N, normal cognition.
aGroup shows the cognitive condition changed from baseline to Month 24.

F IGURE 3 Top-row images (a) illustrate the effects of back transformations at the Zernike moment (ZM) orders of 40, 80, 120, and 200 for
the left hippocampus of a subject. The error rates are indicated. Bottom-row plots (b) show the reconstruction error rates of this subject's two
hippocampi at different ZM orders. When the ZM order = 200, the error rates of the left and right hippocampi are 2.50 � 10�2 and 7.51 � 10�4,
respectively
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contain >89% of the total accumulative variance) were selected as the

principal components to compose the transformation matrix. The orig-

inal 10,201-dimension Zernike descriptor of the hippocampus of each

subject or the template was then projected to the 120 principal eigen-

vectors via this transformation matrix. Then the Euclidean distance

SM xð Þ at Month M (0 or 24) between the hippocampus Zernike

descriptor x of a subject after dimensionality reduction and the Zer-

nike descriptor μ of the template after dimensionality reduction is cal-

culated as

SM xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�μð ÞT x�μð Þ

q
:

The shape change from the baseline over 24 months can be quan-

tified as dS24 ¼ S24�S0. The corresponding hippocampus volume

change is dV24 ¼V24�V0.

2.5 | Statistical analyses

The percentages of changes in hippocampus shape and volume for

each group were calculated, and the shape and volume change distri-

butions were assessed. The Pearson correlations between the

changes in shape and volume of the hippocampus overall as well as

in each group were calculated. The Pearson correlations between

the baseline brain amyloid level (and similarly baseline CSF TAU and

PTAU concentrations) and the shape change of the hippocampus

over 24 months overall as well as in each group were calculated. The

Pearson correlations between the shapes of the left and right hippo-

campi at baseline and Month 24, as well as their changes over

24 months, were also calculated. A two-way ANOVA was applied to

assess whether there were significant shape changes over

24 months and interactions between different groups. In addition,

ANCOVA was applied to reveal whether shape changes over

24 months were influenced by the baseline shape measures, group

category, age, sex, ApoE4 status (negative and positive), baseline

brain amyloid level, and baseline CSF TAU and PTAU concentrations.

Each noncategory input was first normalized to the range of 0–1

based on its min–max range. Linear model fits were then examined

with the residual analysis Lme4 (version 1.1-27.1) package for statis-

tical computing environment R (version 3.6.3). Due to the small num-

ber of subjects in Groups N–M (n = 15) and M–N (n = 10), only the

N–N, M–M, M–D, D-D groups were included in the ANOVA and

ANCOVA analyses.

3 | RESULTS

The data analyses include 428 older adults with high-quality brain T1-

weighted 3D MR images at both baseline and 24 months, including

subjects with normal cognition (N), mild cognitive impairment (M or

MCI), and dementia (D or AD). Most subjects are in Groups N–N and

M–M (Table 1). Table 2 shows the percentage changes in hippocam-

pus shape and volume for each group and overall over 24 months, as

well as the correlation between the changes in shape and volume. The

highest % changes in both volume and shape occurred in the M–D

and D–D groups. There were overall significant correlations

(r = �.483 for the left and r = �.298 for the right) between hippo-

campus shape and volume changes. However, the significant correla-

tions only extended to the N–N and M–M groups, and partially to the

M–N group. The relationship between the shape and volume changes

for each group is illustrated in the scatter plots shown in Figures S3

TABLE 2 Hippocampus shape and volume % changes over 24 months and correlations between their changes

Group

Shape change (dS24) % Volume change (dV24) % r dS24%, dV24%ð Þ,p,CI0:95
Left Right Left Right Left Right

N–Na 1.54 ± 12.20 1.79 ± 13.92 �2.50 ± 5.21 �2.49

± 6.90

�0.414, 5.52 � 10�7, [�0.610,

�0.270]

�0.397, 1.76 � 10�6, [�0.590,

�0.250]

N–M 4.44 ± 10.70 4.26 ± 8.42 �3.46 ± 5.78 �3.49

± 4.65

�0.480, .070, [�1.089, 0.042] 0.264, .342, [�0.296, 0.836]

M–N 12.62

± 42.76

�3.51

± 10.77

�9.05

± 17.16

�1.01

± 4.44

�0.931, 8.98 � 10�5, [�2.409,

�0.927]

�0.161, .657, [�0.903, 0.579]

M–Ma 2.35 ± 11.49 2.23 ± 11.69 �3.28 ± 7.31 �2.66

± 7.45

�0.288, 2.70 � 10�5, [�0.434,

�0.159]

�0.235, 6.87 � 10�4, [�0.377,

�0.102]

M–D 7.53 ± 12.09 6.46 ± 11.84 �7.99 ± 6.02 �8.46

± 5.98

�0.246, .117, [�0.564, 0.063] �0.129, .416, [�0.443, 0.184]

D–D 10.04

± 12.82

2.96 ± 13.26 �8.79 ± 8.45 �9.12

± 6.31

�0.305, .204, [�0.805, 0.174] �0.337, .158, [�0.841, 0.139]

Overalla 3.25 ± 13.66 2.47 ± 12.52 �3.88 ± 7.30 �3.45

± 7.28

�0.483, 2.19 � 10�26, [�0.622,

�0.432]

�0.298, 3.32 � 10�10, [0.402,

0.212]

Note: r = the correlation coefficient between dS24% and dV24%.

CI0:95 denotes the 95% confidence interval on the Fisher's Z value of r.
aGroup with significant correlations observed in both left and right hippocampi.
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and S4. Different groups changed their hippocampus shapes in differ-

ent patterns (Figure 4). The N–N and M–M groups tended to shrink in

the central region. The M–D and D–D groups tended to enlarge at

the tails but also shrink in the central region. The shape change distri-

butions are shown in Figure 5. The M–D and D–D groups show the

highest changes in shape. The volume changes for different groups

are illustrated in Figure S2. The M–D and D–D groups show the high-

est decreases in volume.

Overall significant correlations between the baseline brain amy-

loid level and shape change over 24 months were found (r = .106 and

p = .029 for the left and r = .098 and p = .043 for the right), but not

within individual groups. Significant correlations between CSF

TAU/PTAU concentration and the shape change were not found.

Significant overall correlations between the shape characteristics

of the left and right hippocampi were found at both baseline and

Month 24 (Table 3). Significant correlations were also found in Groups

of N–N, M–M, and M–D, and partially in D–D. The overall correla-

tions between the shape changes of the left and right hippocampi

over 24 months were significant. These significant correlations in

shape changes were found in Groups M–M and M–D (Table 3,

Figure S5).

ANOVA showed significant group differences on the shape

changes over 24 months for the left hippocampus (p = 2.24 � 10�5)

and approaching significance for the right hippocampus

(p = 5.20 � 10�2). Significant differences were found between most

group pairs for the left hippocampus, except between Groups N–N

F IGURE 4 The regions affected over 24 months can be visualized via color coding on the mean left (L) and right (R) hippocampi for different
groups. The color coding shows changes from the centroids in mm. Groups are categorized by the changes of cognitive conditions over
24 months with N = normal, M = mild cognitive impairment, and D = dementia.

F IGURE 5 The
distributions of shape changes
over 24 months (dS24) in the
left (a) and right (b) hippocampi
for each group. Groups are
categorized by the changes of
cognitive conditions over
24 months with N = normal,
M = mild cognitive impairment,
and D = dementia. Significant
pair-wise comparisons are
indicated: *significant (p < .05)
and ** highly

significant (p < .01)
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and M–M, and between Groups M–D and D–D. For the right hippo-

campus, significant differences were only found between Groups N–

N and M–D and between Groups M–M and M–D (Table 4, Figure 5).

Further ANCOVA demonstrated significant associations between the

S24 of the left and right hippocampus and group category, age, as well

as S0, but not sex, ApoE4 status, baseline brain amyloid level, and

baseline CSF TAU and PTAU concentrations (Table 5).

4 | DISCUSSION

In this study, we used 3DZMs to characterize hippocampus shape fea-

tures and shape changes over 24 months in 428 older adults, includ-

ing subjects with normal cognition, MCI, and clinical diagnosis of AD

dementia. We found significant overall correlations between volume

and shape changes over 24 months for both left and right hippocampi.

These correlations were mainly driven by the N–N and M–M groups,

in which the hippocampus volume reductions were relatively slow

(Table 2). These results suggest that at a slower rate of hippocampal

volume reduction, changes in both volume and shape occur in a corre-

lated manner. However, in conditions of higher rates of volume reduc-

tions, such as in the M–D and D–D groups, the changes in volume

and shape no longer remain in correlation. Because the M–N group

contains only 10 subjects in this study, this group is too small to be

conclusive regarding the relationship between hippocampal volume

and shape changes.

Overall, the shapes of the left and right hippocampi in older sub-

jects changed at a similar pace. However, these trends did not hold

across all cognitive conditions. In the M–D group, hippocampal vol-

ume reductions occurred at relatively fast rates, �7.99 ± 6.02% for

the left and � 8.46 ± 5.98% for the right hippocampi (Table 2). Corre-

spondingly, the shapes of the left and right hippocampi also changed

at a rapid pace (Table 2) and the shape changes of the left and right

hippocampi were correlated to each other (Table 3). In the D–D

group, where hippocampal volume reductions also occurred fast,

�8.79 ± 8.45% for the left and � 9.12 ± 6.31% for the right hippo-

campus (Table 2). However, the shape of the right hippocampus chan-

ged more than that of the left hippocampus (a mean of 10.0%

vs. 2.96%) and their changes were not found significantly correlated

to each other anymore (Table 3). Overall, the left and right hippocampi

appear to change their shapes in a similar magnitude until the subject

reaches a state of dementia.

ANOVA demonstrated that shape changes were significantly

higher in the D–D and M–D groups compared to the N–N and M–M

groups. The volume changes of the N–N and M–M groups were also

less than half of the M–D and D–D groups (Table 2). These results

suggest that both the hippocampal shape and volume were quite sta-

ble in the N–N and M–M groups. ANCOVA further demonstrated that

TABLE 3 The correlations between the shapes of left and right hippocampi over 24 months

Group

r, p, CI0.95

S0 S24 dS24

N–N 0.286, 7.14 � 10�4, [0.125, 0.465] 0.218, .011, [0.052, 0.392] 0.110, .204, [�0.060, 0.280]

N–M 0.396, .144, [�0.147, 0.984] 0.448, .094, [�0.084, 1.047] �0.038, .893, [�0.604, 0.528]

M–N �0.221, .539, [�0.966, 0.516] �0.373, .289, [�1.132, 0.349] 0.220, .542, [�0.517, 0.964]

M–M 0.377, 2.35 � 10�8, [0.259, 0.534] 0.582, 4.22 � 10�20, [0.529, 0.804] 0.213, 2.14 � 10�3, [�0.078, 0.354]

M–D 0.517, 4.57 � 10�4, [0.258, 0.886] 0.679, 7.58 � 10�7, [0.514, 1.142] 0.497, 8.20 � 10�4, [0.231, 0.859]

D–D 0.301, .211, [�0.180, 0.800] 0.618, 4.77 � 10�3, [0.232, 1.212] 0.445, .056, [�0.012, 0.968]

Overall 0.457, 1.98 � 10�23, [0.398, 0.588] 0.572, 1.33 � 10�38, [0.556, 0.746] 0.226, 2.43 � 10�6, [0.134, 0.325]

Note : Sx denotes the Euclidean distance between the shape feature of the hippocampus measured at Month x and the template.

dS24 ¼ S24�S0. r = the correlation coefficient between the left and right hippocampi.

CI0:95 denotes the 95% confidence interval on the Fisher's Z value of r. Significance ones are highlighted in bold.

TABLE 4 Compare the hippocampus shape changes over 24 months between groups

Between groups

Left hippocampus Right hippocampus

t Value p t Value p

N–N vs. M–M .70 .4818 .61 .5449

N–N vs. M–D 3.48 6.31 � 10�4** 2.65 8.88 � 10�3**

N–N vs. D–D 3.68 3.24 � 10�4** .89 .3732

M–M vs. M–D 3.29 1.15 � 10�3** 2.48 .0137*

M–M vs. D–D 3.57 4.21 � 10�4** .69 .4930

M–D vs. D–D .91 .3668 .76 .4518

*Significant (p < .05).**Highly significant (p < .01).
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hippocampal shape at Month 24 is significantly associated with the

group category, age, and baseline shape, but not with sex. These find-

ings suggest that disease conditions and age likely influence longitudi-

nal hippocampal shape changes, consistent with the observations

discussed above. Overall significant correlations between the baseline

brain amyloid level and hippocampus shape change over 24 months

were found, but not within individual groups. Significant correlations

between CSF TAU/PTAU concentration and the shape change were

not found. Our ANCOVA analyses did not find significant influence on

the hippocampus shape change by ApoE4 status, baseline brain amy-

loid level, and baseline CSF TAU and PTAU concentrations. Given the

exploratory nature of these simple correlation analyses, the relation-

ship between changes in hippocampus shape and the established AD

biomarkers remains to be further evaluated.

To improve 3DZM computation efficiency and stability over pre-

vious approaches (Canterakis, 1999; Hosny & Hafez, 2012), we have

applied the following strategies: For better computational stability, we

applied recursive approaches in both spherical harmonics and radial

polynomials (Deng & Gwo, 2020). For better computational efficiency,

we elected a ZM order of 200 to achieve a high level of accuracy

without exceeding available computational resources. We might be

able to further reduce the ZM order with a small compromise on the

reconstruction accuracy to achieve the goal of characterization of hip-

pocampus shape features. For example, at ZM order of 100, the left

and right hippocampus reconstruction error rates of the total 428 sub-

jects at baseline were (9.26 ± 1.47) � 10�2 and (9.10 ± 1.35) � 10�2,

respectively, which may be sufficient to differentiate shape differ-

ences among the disease groups in this study. The second strategy

was to apply PCA to reduce the dimension of the ZM descriptor from

10,201 to a much more manageable 120. To confirm the validity of

choosing 120 principal components to reduce the dimension of the

ZM descriptor, we repeated the above analyses with 30 principal

components (expected to contain >80% of the total accumulative

variance), equivalently a 30-dimension ZM descriptor. The overall

conclusion was not changed, but the levels of significance in statistical

comparisons were reduced. This verification also implies the validity

of our dimension reduction strategy to improve computation effi-

ciency in handling large 3D Zernike transformed data sets. Zernike

transformation, similar to Fourier transformation, is a general mathe-

matical approach that can be used to quantify the overall shape fea-

tures as well as the image signal intensity of a complicated object.

However, besides the potential challenges in computational efficiency

and stability, this approach has limitations in representing specific por-

tions of an object although it still may reveal regional shape changes

of an object (Figure 4). The subject distribution also posed limitation

on some analyses. While there are 428 subjects in this study, the dis-

tribution is heavily tilted to two of the four groups (the N–N and M–

M groups), and thus making classification analysis such as support

vector machines inappropriate. The D–D group has the smallest size

of 19. To further address the effect of the large difference in group

sizes on our results, for the four groups we carried comparisons on,

we randomly selected 19 subjects in each of the other three groups,

and re-ran the between-group comparisons on shape changes

(Table 4). We ran 100 trials. For the significant findings in Table 4,

while we could not find significance for every trial, as expected, we

did find large numbers of trials (25–81 for the highly significant ones

and 15 for the significant one) reaching significance. Overall, we have

confidence in the results we have reached.

In this study, we demonstrated the applicability of using 3D Zer-

nike transformation to characterize hippocampus shape features in

older adults who have different cognitive conditions. We found that

the shape of both the left and right hippocampi changed slowly in

cognitively normal older adults and patients with MCI and that shape

changes were correlated with changes in hippocampal volume under

these conditions. However, when a clinical diagnosis of AD dementia

occurs, both volume and shape changes of the hippocampus appear

TABLE 5 The effects of cognitive group, sex, age, baseline shape, ApoE4, brain amyloid, cerebrospinal fluid (CSF) TAU, and CSF PTAU on
hippocampus shape over 24 months

Left hippocampus Right hippocampus

SS DF F value p SS DF F value p

C Group 4.990 � 10�2 3 7.392 8.09 � 10�5*** 3.841 � 10�2 3 2.767 4.169 � 10�2*

Sex 1.000 � 10�5 1 .005 .945 2.000 � 10�5 1 .005 .943

Age 2.941 � 10�2 1 13.070 3.428 � 10�4*** 5.758 � 10�2 1 12.447 4.729 � 10�4***

S0 1.226 1 544.736 < 2.20 � 10�16*** 1.647 1 356.107 < 2.20 � 10�16***

ApoE4 status 5.610 � 10�3 1 2.494 .115 1.685 � 10�2 1 3.644 .0571

Brain amyloid 6.100 � 10�4 1 .269 .604 4.700 � 10�4 1 .102 .750

CSF TAU 3.000 � 10�4 1 .015 .902 4.000 � 10�5 1 .009 .924

CSF PTAU 0.000 1 6.0 � 10�4 .980 .000 1 2.0 � 10�4 .988

Note: C Group = cognitive group N–N, M–M, M–D, and D–D; DF = degree of freedom; S0 = shape at baseline, SS = sum of square.

ApoE4 status: 0 (negative) or 1 (positive with 1 or 2 alleles).

Brain amyloid: Average AV45 SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum at baseline.

CSF TAU and PTAU: TAU and PTAU proteins measured in CSF at baseline.

All noncategory inputs (age, S0, amyloid, TAU, and PTAU) had a min–max normalization before statistical analysis.

*Significant (p < .05).***Highly significant (p < .001).
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to be accelerated and changes in shape and volume were no longer

correlated. Interestingly, we also found that hippocampal shrinkage

appeared to occur mainly in the central region in the N–N and M–M

groups while it may enlarge at the hippocampal tails and shrink in the

central region in the M–D and D–D groups. This observation may sug-

gest the presence of region-specific neurobiological mechanisms

underlying the hippocampal shape and volume changes associated

with clinical AD progression. Finally, the magnitude of hippocampus

shape change was associated with age and disease conditions further

suggesting that hippocampal shape features may reveal the underlying

neurodegenerative process of clinical AD dementia.

5 | CONCLUSION

Taken together, this study represents the first attempt to apply 3D

Zernike transformation to characterize the shape and shape changes

of the hippocampus over the time course of clinical AD. The findings

of this study suggest that the characterization of hippocampus shape

features may serve as a novel imaging marker to monitor clinical AD

progression and reveal the underlying neurobiology associated with

hippocampal volume reduction in older adults.
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