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Abstract. Cutaneous leishmaniasis is a very complex disease involving multiple factors that limit its emergence and
spatial distribution. Prediction of cutaneous leishmaniasis epidemics in Tunisia remains difficult because most of the epi-
demiological tools used so far are descriptive in nature and mainly focus on a time dimension. The purpose of this work
is to predict the potential geographic distribution of Phlebotomus papatasi and zoonotic cutaneous leishmaniasis caused
by Leishmania major in Tunisia using Grinnellian ecological niche modeling. We attempted to assess the importance of
environmental factors influencing the potential distribution of P. papatasi and cutaneous leishmaniasis caused by L. major.
Vectors were trapped in central Tunisia during the transmission season using CDC light traps (John W. Hock Co.,
Gainesville, FL). A global positioning system was used to record the geographical coordinates of vector occurrence points
and households tested positive for cutaneous leishmaniasis caused by L. major. Nine environmental layers were used as
predictor variables to model the P. papatasi geographical distribution and five variables were used to model the L. major
potential distribution. Ecological niche modeling was used to relate known species’ occurrence points to values of envi-
ronmental factors for these same points to predict the presence of the species in unsampled regions based on the value of
the predictor variables. Rainfall and temperature contributed the most as predictors for sand flies and human case distri-
butions. Ecological niche modeling anticipated the current distribution of P. papatasi with the highest suitability for spe-
cies occurrence in the central and southeastern part of Tunisian. Furthermore, our study demonstrated that governorates
of Gafsa, Sidi Bouzid, and Kairouan are at highest epidemic risk.

INTRODUCTION

Leishmania parasites are the causative agents of the leish-
maniases, a group of protozoan diseases transmitted to mam-
mals, including humans, by female phlebotomine sand flies.
The disease is endemic in 98 countries with an estimated

global prevalence of 12 million cases. The annual incidence
of visceral leishmaniasis is estimated to be between 0.2 and
0.4 million cases, whereas cutaneous leishmaniasis affects
between 0.7 and 1.2 million people each year.1 Leishmaniases
constitute a worldwide health problem with new emerging foci
due to climate and ecological changes, which are affecting the
geographic distribution of leishmaniasis vectors.2 In arid and
semi-arid areas of the Mediterranean basin, zoonotic cutane-
ous leishmaniasis (ZCL) is caused by the parasitic protozoan
Leishmania major and is mainly transmitted by the predomi-
nant sand fly vector, Phlebotomus papatasi.3 The latter was
formally identified as the main vector of ZCL in Tunisia,4

while rodents Psammomys obesus and Meriones spp. serve as
the potential reservoir hosts.5

In Tunisia, cutaneous leishmaniasis is still a serious health
problem with thousands of cases reported every year.6 Since
its first emergence as an epidemic in Kairouan in 1982,4 the
disease has spread in several parts of the country, particu-
larly in the central and southern parts where 15 of 24 gover-
norates were considered as endemic in 2006.7

Control of cutaneous leishmaniasis is mainly based on sur-
veillance of incident cases and treatment. The primary preven-
tion and prediction of the occurrence of epidemics remains a

challenge because transmission is zoonotic and involves mul-
tiple factors while the tools used so far are descriptive and
focus on a very limited time dimension.5,7 Studies carried out
to elucidate the spatiotemporal dynamics of the disease are
based on time series analysis of the incidence.5 However,
transmission of cutaneous leishmaniasis and its spread is
influenced by environmental factors affecting the reservoir
and vector geographic distributions such as climate and land
use.8 The relative importance of these factors has not been
rigorously evaluated in Tunisia. During the last decade,
many studies used ecological niche modeling to analyze and
predict spatial patterns and distributions of vector-borne dis-
eases such as malaria, West Nile virus infection, encephalitis,
Lyme disease, lymphatic filariasis, and leishmaniasis.9–11

However, limited studies have been undertaken to assess the
distribution of leishmaniasis vectors in North Africa9,12 using
an ecological niche modeling approach.
The goals of this study were 1) to predict the geographic

distribution of P. papatasi and cutaneous leishmaniasis caused
by L. major using ecological niche modeling, 2) to assess the
relative importance of environmental factors influencing the
spatial distribution of P. papatasi and L. major, and 3) to esti-
mate the population at risk of cutaneous leishmaniasis infec-
tion caused by L. major.

MATERIALS AND METHODS

Study area. Tunisia is located in the extreme north of the
African continent and covers 163,610 km2 (N 37°20′59″-
30°14′26″, E 7°31′29″-11°35′ 4″). It borders Algeria to the
west, Libya to the south, and the Mediterranean Sea on the
north and east sides. It includes a contrasted relief with
mountainous regions in the north where the Atlas range con-
tinues from Algeria, coastal plains along Tunisia’s eastern
Mediterranean coast, and the desert in the southern region.
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The elevation ranges from sea level, in the coastal plain,
to 1,544 m, on the highest peak of the Chambi Mountain on
the Tunisian dorsal. The climate varies from sub-humid in the
northeastern region to a desert climate in the south of the
country; annual precipitation ranges from 1,500 mm to less than
200 mm, respectively. The major difference between the north-
ern region and the rest of the country is due to the Tunisian
dorsal mountains, which separate the region with a Mediterra-
nean climate from the arid region influenced by the desert.
The administrative boundary of Tunisia was divided into

417,690 cells of 1 × 1-km resolution as described below in
section Predictor variables. The 1-km2 cell size was chosen
because it approximated the sand flies’ maximum flight dis-
tance, which is estimated to be 1 km.13

Presence data. This study used both P. papatasi and
L. major occurrences obtained from intensive sampling across
Tunisia. Vector presence data were obtained from surveys
conducted by the Pasteur Institute of Tunis. Sand fly data
were collected from 112 sampling sites representing eight
governorates (Beja, Gafsa, Kairouan, Kebili, Mahdia, Sfax,
Sidi Bouzid, and Sousse) across Tunisia using CDC light
traps (John W. Hock Co., Gainesville, FL). The sand flies
were collected for three consecutive nights per week during
cutaneous leishmaniasis transmission season between May
and September 2012. Identification of sand fly species was
based on morphological criteria using Croset and Lewis
keys.14,15 During the same surveys, confirmed human cases
were obtained from health facilities, which included addresses
of households with parasitologically confirmed cases of local-
ized cutaneous leishmaniasis caused by L. major. Geographical
positions of vector locations (P. papatasi) based on the trap
position and the household addresses of the confirmed para-
sitological patients were recorded using a global positioning
system. A total of 86 and 210 locations of P. papatasi and cuta-
neous leishmaniasis occurrence cases were collected, respec-
tively (see Supplemental Appendices 1 and 2, respectively).

The study protocol was assessed by an independent scien-
tific review committee and approved by the ethical committee
of the Pasteur Institute of Tunis, whereby the head of house-
holds provided their written informed consent to be enrolled
in the study. Permission to record household geographical
locations and install traps on private properties was also sought
from the head of households. The study was approved by the
Primary Health Care Direction of the Ministry of Health.
Predictor variables. Twenty-four environmental layers were

used as predictor variables, which were obtained from three
different sources as described in Table 1. Nineteen climatic
data layers representing annual trends, seasonality, and limit-
ing environmental factors with a spatial resolution of about
1 km2 were collected from the WorldClim global database.16

Elevation, slope, aspect, and compound topographic index
were derived from the GTOPO30 global digital elevation
model,17 with a horizontal grid spacing of 30 arc seconds
(∼1 km). Global land cover coverage was retrieved from the
European Space Agency Global Cover Portal13 with 300-m
pixel resolution. All environmental layers were imported into
ArcGIS 10.1 software (Redlands, CA).18 Various processing
tools were used to 1) project the layers in the UTM Zone 32N
coordinate system, 2) resample to 1-km2 resolution, 3) clip to
an area encompassing the administrative boundaries of Tunisia,
and 4) convert layers to American Standard Code for Infor-
mation Interchange format as long as this is the only exten-
sion that MaxEnt (Princeton, NJ) uses as input.
To avoid highly correlated and redundant information,

we performed Pearson correlation tests for each pairwise
combination of the 24 environmental variables.19 Pairs of
variables with a correlation coefficient ≥ 0.9 and/or vari-
ables with a percent contribution to the model fitting less
than 1% were discarded from our model calibration. For
highly correlated variables, when possible, we preferred
extreme variables (i.e., minimum, maximum) over mean
variables, since the biological behavior of vectors is highly

TABLE 1
Description and sources of environmental variables collected for the model

Environmental variables Abbreviation Unit Source

Annual mean temperature BIO1 °C WorldClim
Mean diurnal range (mean of monthly (max temperature − min temperature)) BIO2 °C WorldClim
Isothermality (BIO2/BIO7) (×100) BIO3 – WorldClim
Temperature seasonality (standard deviation × 100) BIO4 °C WorldClim
Max temperature of warmest month BIO5 °C WorldClim
Min temperature of coldest month BIO6 °C WorldClim
Temperature annual range (BIO5–BIO6) BIO7 °C WorldClim
Mean temperature of wettest quarter BIO8 °C WorldClim
Mean temperature of driest quarter BIO9 °C WorldClim
Mean temperature of warmest quarter BIO10 °C WorldClim
Mean temperature of coldest quarter BIO11 °C WorldClim
Annual precipitation BIO12 mm WorldClim
Precipitation of wettest month BIO13 mm WorldClim
Precipitation of driest month BIO14 mm WorldClim
Precipitation seasonality (coefficient of variation) BIO15 mm WorldClim
Precipitation of wettest quarter BIO16 mm WorldClim
Precipitation of driest quarter BIO17 mm WorldClim
Precipitation of warmest quarter BIO18 mm WorldClim
Precipitation of coldest quarter BIO19 mm WorldClim
Elevation Elevation m Derived from GTOPO30
Slope Slope % Derived from GTOPO30
Aspect Aspect ° Derived from GTOPO30
Compound topographic index CTI – Derived from GTOPO30
Land cover Land cover – European Space Agency
Max = maximum; min = minimum.
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affected by seasonal extremes of temperature and rainfall
compared to annual averages.20

Population data. Demographic data by district from the
2004 national census were obtained from the National Insti-
tute of Statistics. Later, a density population map was com-
puted using ArcGIS 10.1 by dividing the area of each district
by the respective population number. The final map repre-
sents an estimate of the number of people by ∼1-km pixel.
The population at risk estimate was assessed by counting the
sum of the population (from the population map) in the area
of the predicted vector presence by district using a zonal sta-
tistics function.
Ecological niche modeling. The Grinnellian ecological niches

of P. papatasi and L. major were estimated using the maxi-
mum entropy approach implemented in the MaxEnt v3.3.3
software.21 Maxent is freely downloadable at http://www.cs
.princeton.edu/~schapire/maxent/. By eliminating duplicate
occurrence points within the same pixel, P. papatasi and
cutaneous leishmaniasis caused by L. major were reduced to
76 and 124, presence points, respectively, which were ran-
domly partitioned into 70% training data and 30% test data.
The software was used with its default parameters with

10,000 as the maximum number of background absences,
0.00001 convergent thresholds, and 500 as the maximum num-
bers of iterations, as suggested by Phillips and others22 and a
logistic output presenting a continuous presence probability
ranging from 0 to 1. A probability threshold representing the
10th percentile training presence points was selected as a cut-
off probability used to convert continuous probability maps
into binary maps (presence/absence) as suggested by Phillips
and others.23

To account for irregular sampling of densely sampled areas,
poorly sampled areas, and unsampled regions, because of
feasibility constraints particularly for entomological measure-
ments, we created a sampling bias file that was included in
the Maxent settings. The bias file consisted of weighting the
whole study area based on the species records as described
by Elith and others.24 The weights are assigned to back-
ground points depending on their distance from the different
occurrence points, so that both the background data and spe-
cies presences become biased in the same manner leading to
more valid estimates.23

Evaluation of model performance. In this study, the area
under the curve (AUC) of the receiver operating characteris-
tic (ROC) was used as a threshold independent performance
criterion. The ROC curve is a graphical plot illustrating the
accuracy of a binary model by varying discrimination thresh-
olds in which the true positive rate is plotted on the y axis
and false positive rate is plotted on the x axis. Hosmer and
Lemeshow25 ranked model classification as random or with
no discrimination when the AUC = 0.5, as acceptable when
the AUC ranges from 0.7 to 0.8, as excellent when the AUC
is between 0.8 and 0.9, and as outstanding when the AUC
> 0.9. A model with a large area under the ROC curve indi-
cates that the model is able to accurately predict presence
and absence.
To assess concurrent validity of the model outputs, maxi-

mum Cohen’s kappa coefficient was used as a threshold-
dependent performance criterion. It is considered as the best
possible accuracy achieved when varying the probability
threshold. This same probability threshold was used to con-
vert probability maps into binary maps. Compared with the

percent of correct classification, kappa is a measure of cate-
gorical agreement that describes the difference between the
observed and chance agreements, which can lead to a better
evaluation of the model performance.20

Cohen’s kappa coefficient was derived from the following
equation:

Kappa ¼
TPþ TNð Þ � TPþ FNð Þ TPþ FPð Þ

þ FPþ TNð Þ FNþ TNð Þ
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where FP is a commission error or false positive when a spe-
cies is predicted as present by the model where it is absent,
FN the omission error or false negative when a species is
predicted as absent by the model where it is present, TP the
true positive when a species is predicted as present by the
model where it is present, TN the true negative when the spe-
cies is predicted absent by the model where it is absent, and
n the total number of observations used for validation.
Model performance is considered as poor when the kappa

value is < 0.40, good when between 0.40 and 0.75, and excel-
lent when > 0.75.26

As MaxEnt is a presence-only model, it uses background
points to evaluate the model performance. It consists of
taking a random sample of pixels from the study area, known
as pseudo-absence points and using them in place of absences
during modeling.27

RESULTS

Suitable habitat for P. papatasi and the geographical distri-
bution of cutaneous leishmaniasis cases caused by L. major
were mapped based on Maxent ecological niche modeling
(Figure 1 A–D). For P. papatasi, nine variables describing
climatic (maximum temperature of warmest month BIO5,
minimum temperature of coldest month BIO6, mean temper-
ature of wettest quarter BIO8, mean temperature of warmest
quarter BIO10, precipitation seasonality BIO15, precipitation
of wettest quarter BIO16, and precipitation of driest quarter
BIO17) and topographic (slope and elevation) variability in
the study area were retained in the final model. By contrast,
BIO8, BIO17, BIO5, BIO15, BIO16, and elevation were sig-
nificantly associated with the presence of human cases of
L. major (Table 2).
Table 2 shows that for the two models, when we discard

one variable from the model, the AUC remains almost the
same around 85% for the vector and 99% for human cases,
which shows a good model performance. This does not mean
that all variables contribute equally to the model performance.
Indeed, as revealed in the last column (AUC with only the
variable) of Table 2, the different variables contribute differ-
ently to the AUC. For example, the AUC in the model for
P. papatasi ranged from 0.54 to 0.76 when we used the slope
or the precipitation seasonality alone as predictor variables,
respectively. Similarly, the same finding was noticed when
modeling cutaneous leishmaniasis caused by L. major with
an AUC varying from 0.74, when the aspect was used alone
as a predictor, to 0.98, when the distribution probability of
P. papatasi was used alone in the model.
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Although topographic variables affect vector and human
disease distributions, the contribution of elevation and slope
to the model fitting was 19.2% for P. papatasi. Nevertheless,
only 10.1% of the contribution was associated with elevation
in the L. major model.
On the other hand, for P. papatasi, the main explanatory

parameters were the precipitation of the driest quarter
(26.3%), the mean temperature of the wettest quarter (20.7%),
the maximum temperature of the warmest month (14%),

and topographic variables (19.2%) with an overall explana-
tion of the variance of 80.2%. For L. major human cases, the
most important variables were mean temperature of wettest
quarter (48.2%), precipitation of driest quarter (18.6%), maxi-
mum temperature of warmest month (15.6%), and elevation
(10.1%) with an overall explanation of the variance of 92.5%.
AUC values were greater than 0.9 indicating that the models

performed better than random and have good robustness.
Kappa values for the training data are greater than 0.75,

FIGURE 1. Ecological niche modeling for Phlebotomus papatasi and Leishmania major in Tunisia using the MaxEnt model. (A) Continuous
occurrence probability map of P. papatasi in Tunisia. Warm colors indicate high probability of occurrence and cool colors indicate low probability
of occurrence; (B) continuous occurrence probability map of L. major in Tunisia. Warm colors indicate high probability of disease occurrence
and cool colors indicate low probability of disease occurrence; (C) binary presence/absence map of P. papatasi in Tunisia. Values of P. papatasi
presence probability below the cutoff threshold (0.235) were classified as absent and values of P. papatasi presence probability above the cutoff
threshold (0.235) were classified as present. Yellow points indicate occurrence points of P. papatasi used to run the model. (D) Binary presence/
absence map of L. major in Tunisia. Values of L. major presence probability below the cutoff threshold (0.217) were classified as absent and
values of L. major presence probability above the cutoff threshold (0.217) were classified as present. Yellow points indicate occurrence points of
cutaneous leishmaniasis cases caused by L. major used to run the model.
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which is a good ratio for the true classification that is not
affected by chance agreement. Kappa values for the test data
are slightly lower than values for the training data, which can
be explained by the difference in the sample size for each
dataset (70% training, 30% test). This result is not surprising
given that data used for training the model are expected to
provide better performance.
Figure 1A and B show the potential geographic distribu-

tion of human cases of P. papatasi and L. major, respectively.
For the P. papatasi ecological niche model, 74 presence points
were located within the area suitable for the P. papatasi geo-
graphical distribution, and only 2 points fell outside the pre-
dicted presence areas (2.6%). Furthermore, only three
presence cases were predicted as absences and fell outside the
region forecasted as suitable for human cases of L. major,
which represents only 1.4% of the whole sample.
The population at risk map is presented in Figure 2. It rep-

resents 26% of the total population for the governorates
affected by the disease in Tunisia and where MaxEnt pre-
dicted P. papatasi as present (846,938 inhabitants). The pop-
ulation estimated to be at risk in the governorates of
Kairouan, Sidi Bouzid, and Gafsa, the most endemic for
ZCL, represents 87% of the total population at risk.

DISCUSSION

In agreement with previous studies using ecological niche
modeling,9,10,12,28,29 this study accurately predicted the spatial
distribution of cutaneous leishmaniasis. To our knowledge,
this is the first time that the MaxEnt model was used for this
purpose in Tunisia. This tool was successfully developed and
adapted to the context of this disease showing strong results.
Indeed, it confirmed the geographical distribution of P. papatasi
in the governorates of Kairouan, Sidi Bouzid, Gafsa, Kébili,
and Tozeur. Surprisingly, the model predicted that the north-
western side of Sfax, the western part of Mahdia, the southern
part of Zaghouan, and the western side of Gabès are at high
risk for the emergence of cutaneous leishmaniasis in Tunisia.

All these geographical areas neighbor the classic focus of
cutaneous leishmaniasis and constitute potential extension
zones of the transmission cycle. Indeed, movements of host
reservoirs are responsible for the spread of the transmission
cycle as demonstrated by Ghawar et al.30 using rodent telem-
etry. MaxEnt ecological niche modeling of the cutaneous
leishmaniasis vector in Tunisia corroborates other findings in
the same region.31–33 Moreover, the whole area predicted as
suitable for disease occurrence is included in the area fore-
casted as having all the suitable conditions for P. papatasi
presence (Figure 1C and D). This confirms previous work
demonstrating that P. papatasi is the main zoonotic cutaneous
leishmaniasis vector in Tunisia.4,34 Indeed, one of the criteria
suggested by Claborn35 for incriminating vectors for disease
transmission is that the specific sand fly geographic distribu-
tions must coincide with the distribution of human cases.
This study revealed that most of the variability is explained

by temperature and precipitation; the role of altitude
appeared to be important because of its indirect effect on
temperature. In the following sections, the importance of
each factor is discussed.
Temperature. Ambient temperature is one of the most

important factors affecting developmental times and survival
of sand flies.36 Guzmán and Tesh37 examined P. papatasi
endurance under different laboratory temperatures. They con-
cluded that the survival of adult sand flies was not detected at
temperatures below 15°C. An earlier study conducted by

TABLE 2
Predictor variables retained for modeling the geographical distribution

of Phlebotomus papatasi and cutaneous leishmaniasis caused by
Leishmania major

Variable
Percent

contribution
AUC without
the variable

AUC with only
the variable

P. papatasi BIO17 26.30 0.84 0.75
BIO8 20.70 0.85 0.62
BIO5 14.00 0.85 0.67
Elevation 10.90 0.85 0.63
Slope 8.30 0.86 0.54
BIO10 5.20 0.85 0.78
BIO6 5.10 0.85 0.67
BIO15 5.00 0.86 0.76
BIO16 4.6 0.85 0.69

Cutaneous
leishmaniasis
caused by
L. major

BIO8 48.2 0.99 0.96
BIO17 18.6 0.99 0.94
BIO5 15.6 0.99 0.88
Elevation 10.1 0.99 0.81
BIO15 7.5 0.99 0.93
Slope 5.6 0.99 0.74
BIO16 0.5 0.99 0.92

AUC = area under the curve. Predictor variables retained for modeling the geographical
distribution of P. papatasi and cutaneous leishmaniasis cases caused by L. major with the
percentage of the contribution in the final model, sample average, and the AUC or receiver
operating characteristic with and without the variable considering the remaining variables.

FIGURE 2. Population at risk of cutaneous leishmaniasis caused
by Leishmania major by district.
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Theodor38 reported that adult P. papatasi developed cold
paralysis at 10°C and that all insects maintained at this tem-
perature died within 19 days.
This study showed that the mean temperature of the wet-

test quarter significantly contributes to P. papatasi model
fitting with 20.7%. The mean temperature of the wettest
quarter varied from 3.9°C to 22.2°C over the whole study
area; it only ranged from 9.4°C to 22.1°C in the area
suspected as being suitable habitat for P. papatasi. However,
this confirms the previous author’s conclusions suggesting
that low temperatures negatively affect P. papatasi longevity.
There is a relatively large difference between the value of
minimal temperatures for P. papatasi resilience suggested by
Guzmán and Tesh37 (15°C) compared with our value (8.2°C).
This discrepancy might be explained by the differences
between field and laboratory conditions or sand fly species.
Indeed, contrary to laboratory conditions, temperatures in
the field cannot be maintained constant for a long period.
Moreover, sand flies spend most of their lives in protected
refuges, such as caves, wells, animal burrows, cracks in the soil,
domestic animal shelters, cracked walls, and leaf litter,39,40

which protects them from long exposure to climatic extremes
such as low temperatures.
Similar results were found by González and others11 using

the MaxEnt model to predict the distribution of two leish-
maniasis vectors in North America. They concluded that
mean temperatures of the wettest quarter and the minimum
temperature of the coldest month are the variables that con-
tributed the most to the model fitting of Lutzomyia anthophora
and Lutzomyia diabolica, respectively.
Precipitation. The effect of rainfall on sand fly abundance

and leishmaniasis incidence has been widely studied.7,41–45

Nevertheless, the findings of various studies differ widely.
Indeed, Gálvez and others44 concluded that higher densities
of leishmaniasis vectors are associated with lower annual
mean precipitation in Spain. According to a previous study
conducted by Elnaiem and others,42 annual rainfall appears
to be the most important predictive variable positively affect-
ing the probability of the presence of leishmaniasis among the
vector and the host in Sudan.
Several authors suggest that higher precipitation enhances

the growth of plants, which provides more food and burrows
for reservoir rodents, thus offering ideal sand fly habitats.9,46

Our study demonstrated that P. papatasi occurs only in areas
where precipitation during the driest quarter is below 37 mm.
In fact, intense summer rainfall can cause the flooding of
rodent burrows affecting most P. papatasi breeding sites in
Tunisia. It seems that most of the annual precipitation occurs
during the wet winter season in the Mediterranean basin,
which positively affects leishmaniasis vector abundance. On
the other hand, extreme dry season precipitation negatively
affects vector presence. This finding corroborates the results
of Toumi and others,7 who found a negative association
between rainfall above 37.34 mm and zoonotic cutaneous
leishmaniasis incidence in the same study area.
Altitude. According to ecological niche modeling in this

study, P. papatasi and leishmaniasis cases occurred exclu-
sively in locations at low altitudes (< 520 m). This finding is
in agreement with previous findings.42,47,48 In addition, other
studies on the ecology of sand flies showed the importance
of altitude on the distribution of sand fly species9,49–52; how-
ever, it seems that elevation does not directly affect the geo-

graphical distribution of P. papatasi. In fact, altitude is closely
related to abiotic factors (such as temperature, moisture, and
rainfall) and biotic factors (such as the distribution of the
main sand fly host Psammomys obesus and vegetation). At
higher altitudes, the temperature is lower (according to the
thermal gradient at a rate of −0.6°C/100 m), precipitation
increases and vegetation changes.53

Population at risk. The population at risk seems to corrob-
orate records of cutaneous leishmaniasis cases from the
National Control Program for Leishmaniasis as shown by
statistics from the Tunisian health ministry6 (see Table 3).
Indeed, the number of cutaneous leishmaniasis cases from
1998 to 2007 in the governorates of Sidi Bouzid, Kairouan,
and Gafsa represents the majority of cases recorded in the
country (77%). Nevertheless, our study estimates that
Kairouan is the governorate with the highest population at
risk, while the ministry statistics show that Sidi Bouzid has
the highest population infected by cutaneous leishmaniasis
(18,508 cases between 1998 and 2007). This discrepancy can
be explained by the fact that the reporting bias is the lowest
in Sidi Bouzid where awareness is very high for ZCL and a
long tradition of research and intervention has been in place
since 1990. Our estimate is based on the vector distribution
and climatic variables, while the disease occurrence in humans
is highly related to others factors, such as the presence of par-
asite reservoirs and socioeconomic aspects, and, particularly,
the past history of disease in the community (herd immunity),
which play a major role in shaping the geographic boundaries
of the incidence of the human disease.
For the same reasons, we predicted that 21,183 inhabitants

in the governorate of Gabès, mainly in the district of Menzel
El Habib and Al-Hamma, are at risk; no leishmaniasis cases
were reported until 2007 in these districts and cases have
started to emerge recently. Areas predicted to be suitable for
vector dispersal where no cutaneous leishmaniasis cases were
reported need special attention from health authorities
because human disease is particularly severe in emerging foci
among naive populations.
This study was based on valid information for the confirma-

tion of presence data for P. papatasi and human disease of
cutaneous leishmaniasis caused by L. major from field obser-
vations and a large sample size. It confirmed the importance
of environmental and climate factors on the distribution of
leishmaniasis and demonstrated the utility of niche modeling
for the prediction of the geographic spread of leishmaniasis.

TABLE 3
Population at risk for cutaneous leishmaniasis

Governorate Population at risk Population
Cutaneous leishmaniasis

cases 1998–2007

Kairouan 353,599 542,609 10,443
Sidi Bouzid 234,010 395,506 18,508
Gafsa 146,878 323,709 15,249
Kebili 49,860 143,218 3,617
Mahdia 44,805 377,853 2,306
Sfax 22,829 855,256 3,800
Gabès 21,183 342,630 –
Tozeur 8,617 97,526 3,014
Zaghouan 936 160,963 12
Sousse 1,611 544,413 642
Total 884,328 3,783,683 57,591

Total population according to the Tunisian National Census 2010 and cutaneous leish-
maniasis cases reported to health authorities between 1998 and 2007 by governorate.
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Although our model performed well, several authors have
criticized the use of the AUC to assess model performance,54,55

since it overestimates model performance when no absence
data are used. For this reason, in future research, we recom-
mend using the partial AUC to assess model performance,
as described by Peterson and others.56

Despite some limitations of the tool to predict the presence
of the vector in some areas particularly in the south, ecological
niche modeling should be considered in the future as a valu-
able tool in addition to experimental laboratory studies for a
better understanding of the biology of vector species. It can
also be very useful for studies predicting emerging foci and
exploring the impact of climate change scenarios on the
dynamics of vectors and diseases.
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