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Abstract: The objective detection of muscle fatigue reports the moment at which a muscle fails to
sustain the required force. Such a detection prevents any further injury to the muscle following
fatigue. However, the objective detection of muscle fatigue still requires further investigation. This
paper presents an algorithm that employs a new fatigue index for the objective detection of muscle
fatigue using a double-step binary classifier. The proposed algorithm involves analyzing the acquired
sEMG signals in both the time and frequency domains in a double-step investigation. The first step
involves calculating the value of the integrated EMG (IEMG) to determine the continuous contraction
of the muscle being investigated. It was found that the IEMG value continued to increase with
prolonged muscle contraction and progressive fatigue. The second step involves differentiating
between the high-frequency components (HFC) and low-frequency components (LFC) of the EMG,
and calculating the fatigue index. Basically, the segmented EMG signal was filtered by two band-pass
filters separately to produce two sub-signals, namely, a high-frequency sub-signal (HFSS) and a
low-frequency sub-signal (LFSS). Then, the instantaneous mean amplitude (IMA) was calculated for
the two sub-signals. The proposed algorithm indicates that the IMA of the HFSS tends to decrease
during muscle fatigue, while the IMA of the LFSS tends to increase. The fatigue index represents the
difference between the IMA values of the LFSS and HFSS, respectively. Muscle fatigue was found to
be present and was objectively detected when the value of the proposed fatigue index was equal to
or greater than zero. The proposed algorithm was tested on 75 EMG signals that were extracted from
75 middle deltoid muscles. The results show that the proposed algorithm had an accuracy of 94.66%
in distinguishing between conditions of muscle fatigue and non-fatigue.

Keywords: electromyography; fatigue; fatigue index; muscle; non-fatigue

1. Introduction

Fatigue is defined as the inability of the respective muscles to contract and perform
a specific procedure over a long period of time [1,2]. This inability happens because of
the reduction of the central motor drive of the muscle, which reduces the amount of force
being produced, and consequently results in the experience of pain and fatigue [3].

Despite the fact that the assessment of muscle fatigue based on an analysis of the
surface electromyography (sEMG) signal has been intensively discussed and understood [4],
the objective detection of muscle fatigue still requires further investigation [5]. In medical
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terms, muscle fatigue is detected either subjectively or objectively [6]. The subjective
detection of muscle fatigue is reported by the individuals themselves, when no type of
measurement is applied [6]. However, the objective detection of muscle fatigue requires the
application of a specific type of measurement to detect the fatigue, which, in the case of this
study, involves an analysis of the sEMG signals [7]. Consequently, the objective detection
of muscle fatigue disregards any subjective reports by individuals [7], and, furthermore,
it identifies the level of exhaustion of the muscle [8]. Hence, the objective detection of
muscle fatigue is able to prevent post-fatigue injuries caused by over-training by athletes
and rehabilitation exercises for stroke patients [9,10].

In surface electromyography (sEMG), electrical signals from a muscle are captured
by electrodes attached directly to the surface of the skin. The acquired sEMG signal must
be accurately processed and analyzed to interpret the information contained within. The
method of processing and analyzing is determined based on the dedicated purpose of
the extracted sEMG signal [11]. Currently, EMG is analyzed either in a time domain or
frequency domain. An analysis of the EMG in a time domain involves extracting several
amplitude-time dependent features, such as the root mean square (RMS) [12], integrated
EMG (IEMG) [13], absolute rectified value (ARV) [14], log detector (LOG) [15], waveform
length (WL) [16], zero crossing (ZC) [17], slope sign change (SSC), etc. [18]. Time domain
features are mostly employed to provide fine controls for prostheses and rehabilitation
robots [19–21]. However, analyzing in a frequency domain involves extracting power-
frequency dependent features, such as the mean frequency (MNF), median frequency
(MDF) [18], total power (TTP) [13], etc. [16]. Frequency domain features are mostly dedi-
cated to the assessment of muscle fatigue [4]. The analysis of the EMG in both domains for
the purpose of controlling and assessing fatigue has been well studied, and several papers
have been published on the subject [5,11,22].

For an EMG-based fatigue analysis, static and dynamic exercises are usually performed
to activate the skeletal muscles of the body and force them to reach fatigue levels. For
example, a dumbbell curl exercise is performed to activate the biceps and triceps [8].
Dumbbells of various weights, such as 5 kg, 6 kg, and 8 kg, are used to accelerate the
progress of fatigue. It has been suggested that fatigue occurs once the subject can no longer
perform the dumbbell curl activity [8,23]. Moreover, a hand muscle developer can be
used to activate the forearm muscles [24], while the scapular plane is considered as an
efficient posture for activating the middle deltoid muscle [25]. To conclude, whether static
or dynamic exercises are performed, fatigue occurs once the muscle can no longer perform
the activity. The next section reviews the literature and the related algorithms that were
suggested for the objective detection of muscle fatigue.

Literature Review and Motivation

Only a few types of research were suggested for the objective detection of muscle
fatigue. Karthick and his colleagues [26] used the support vector machine classifier to
classify fatigue and non-fatigue conditions, where an accuracy of 91% was achieved. The
aforementioned study proposed the use of the extended modified B-distribution method of
analysis to extract four features, namely, the singular value decomposition (SVD)-based
entropy, kurtosis, mean frequency, and median frequency.

Fernando proposed an algorithm that combines two EMG features, namely, the mean
frequency (MNF) and absolute rectified value (ARV), to objectively detect fatigue in the
biceps muscle [23]. The MNF/ARV ratio is calculated and regarded as an index of muscle
fatigue, where the aforementioned ratio gradually decreases as fatigue progresses [23].
Fatigue exists once the ratio reaches a specific baseline, which is defined as the inverse
value of the MNF/ARV. As reported by the authors, the initial values of the MNF and ARV
are taken as the reference values for the baseline to eliminate individual differences. Kiryu
and his colleagues also used the MNF and ARV features to objectively detect fatigue [27].
The correlation coefficient between MNF and ARV is taken as an index of fatigue. The
conversion of the correlation coefficient from positive to negative is regarded as a sign of
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muscle fatigue. The aforementioned algorithms have their own drawbacks that are either
related to the computation time or to individual differences.

The mean power frequency (MNP) was proposed as a muscle fatigue index by [2,8].
The study suggested that a high-frequency spectrum tends to transform to a low-frequency
spectrum with the progression of fatigue. The opposite behavior takes place when the
muscle recovers, where the low-frequency spectrum tends to transform to a high-frequency
spectrum. This study, however, only showed how to assess fatigue, which is widely
identified by further frequency domain features, such as the MNF and MDF [16].

However, refs. [28,29] followed a different technique to detect muscle fatigue. They
suggested that the frequency spectrum of the EMG can be classified into three regions,
namely, low-frequency components (LFC) (20–45 Hz), intermediate-frequency components
(IFC) (46–80 Hz), and high-frequency components (HFC) (81–350 Hz). The power spectrum
of each component is calculated and their behavior is monitored. It was suggested that
during fatigue, the power of the LFC increases, while that of the HFC decreases [30].
Fatigue occurs when the power of the LFC is equal to the power of the HFC [23]. However,
such a classification of EMG frequency bands has its own drawbacks. For instance, the
LFC could have a higher power than the HFC without there being any progress in fatigue.
Furthermore, fatigued and non-fatigued muscles cannot be differentiated based on the
aforementioned study [23].

In terms of classifying the EMG frequency bands, refs. [31,32] suggested that the
frequency spectrum of the EMG can be classified into two regions, namely, low-frequency
components (LFC) (20–46.7 Hz) and high-frequency components (HFC) (150–350 Hz),
where the amplitude of the LFC tends to increase during fatigue, while the amplitude of
the HFC tends to decrease. Similarly, ref. [13] further classified the frequency spectrum into
four regions that lie within the following bands, namely, 24–56 Hz, 63–96 Hz, 104–136 Hz,
and 144–800 Hz. However, an accurate identification of the muscle fatigue index was not
explained in the aforementioned studies.

The rest of the paper is arranged as follows: Section 2 explains the materials and
method in detail, including the proposed fatigue index; Section 3 discusses the results;
while Section 4 concludes the study.

2. Materials and Method

This section explains the identification of the sample size, the appropriate muscle that
was subjected to fatigue, and how fatigue was induced. Furthermore, the experimental
setup, signal processing, the proposed classifier and the fatigue index will also be clarified.
The following subsections explain the study in detail.

2.1. Sample Size

Identifying the optimum sample size is considered as an important step in testing
the efficiency of any proposed algorithm. Ref. [33] Proposed an equation to calculate the
required sample size. This equation is mathematically represented as follows:

N =
4 (Zcrit)

2ρ(1− ρ)

D2 (1)

where N is the number of required samples (sample size), and Zcrit is the significance
criterion representing the value at which the difference is considered to be statistically
significant. The Zcrit was identified by [33] and set to a value of 1.96. Finally, ρ is the
proportional estimate of the preliminary studies. Therefore, the mean accuracy of the
preliminary studies was first calculated (Table 1).

Considering that 95% was the chosen confidence interval with an interval of ±10%,
hence D was equal to 0.2. Consequently, the sample size was calculated as follows:

N =
4 (1.96)2 0.89(1− 0.89)

0.22
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N = 37.6 ≈ 38 (number of required samples).

Table 1. Mean accuracy of the reviewed preliminary EMG studies.

Ref Accuracy %

[34] 88.4
[35] 90
[36] 90
[37] 93.5
[38] 94
[39] 79.4

Mean (µ) = 89.21

2.2. Choosing the Appropriate Muscle and Fatigue Classification

The deltoid muscles are the large muscles covering the shoulder, and their functions
are to abduct, adduct, flex, and extend the upper extremities [25,40]. The deltoid muscles
consist of three main muscles, namely, the anterior deltoid, middle deltoid, and posterior
deltoid [40]. However, the middle deltoid muscle contributes to most of the movements in
the upper limbs, and is responsible for elevating the upper limbs, which makes it susceptible
to rapid fatigue [41]. Therefore, the middle deltoid muscle was chosen to evaluate the
proposed algorithm for the objective detection of muscle fatigue. Localized muscle fatigue
has been classified into four grades of fatigues [42] as follows:

I. Slight muscle cramp or tightening.
II. Sustained muscle cramp with a sort of painful feeling.
III. A continuous feeling of burning pain.
IV. Further painful feeling and lack of ability to maintain the activity.

Hence, a specific protocol was proposed to ensure that the middle deltoid muscle
reached fatigue level, where the subject could no longer maintain the protocol. It should
be noted that muscle pain and localized muscle fatigue are all alternatives to muscle
fatigue [32].

2.3. Preparation of Subjects and Protocol Performance

As explained in the section on sample size, 38 subjects were selected for participation
in this study. Their right and left middle deltoid muscles were tested with the proposed
algorithm. The mean age of the participants was 34.2 ± 8.5 years. At the start of the study,
the participants reported no injuries or pain in their middle deltoid muscle. However,
the third subject reported moderate pain in her right middle deltoid, and, hence, was
excluded from the experiment. Ultimately, 75 sEMG samples extracted from 75 middle
deltoid muscles were included in this study.

The experimental protocol involved requesting all subjects to sit on a chair and perform
two types of movements in relation to the middle deltoid muscle as follows:

I. Muscle in Non-fatigue Condition: The subjects were asked to relax their middle
deltoid muscles by performing no action (Figure 1A) and, simultaneously, the sEMG
signal was recorded. This procedure was aimed at evaluating the performance of the
proposed algorithm in detecting the non-fatigued muscle. Despite that the subjects
performed no action in this posture, the middle deltoid muscle still played an impor-
tant role in stabilizing the shoulder joint [40,43]. Eventually, the middle deltoid was
not fully relaxed and exhibited a sort of sEMG signal.

II. Muscle in Fatigue Condition: The subjects were asked to elevate their upper limbs
and keep them in the scapula plane with a 2 kg weight clutched on their forearms
(Figure 1B). The subjects were encouraged to perform this activity until they could no
longer maintain this posture, whereby the muscle was considered to have reached
fatigue level. It should be noted that the weight was added to accelerate the generation
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of fatigue. This procedure was aimed at evaluating the performance of the proposed
algorithm with regard to the objective detection of muscle fatigue.

Figure 1. Protocol for performing the two muscle states: (A) non-fatigued muscle, and
(B) fatigued muscle.

The subjects were allowed to rest for five minutes in between sessions to relax their
middle deltoid muscles [25,44]. Moreover, the scapula plane was chosen because of its
efficiency in activating the middle deltoid muscle [25,42]. The aforementioned protocol
was approved by the Ethics Committee of Universiti Putra Malaysia, Selangor, Malaysia
with reference number (JKEUPM-2021-263).

2.4. Acquisition of the sEMG and Hardware Setup

A Myoware muscle sensor was placed on the middle deltoid muscle and used to
collect the sEMG signals. The Myoware sensor was previously investigated and displayed
its ability to convert the electrical activity in the muscle to an analogue signal [45]. Table 2
summarizes the parameters of the chosen sensor.

Table 2. Parameters of the Myoware muscle sensor.

Parameter Detail

Input Impedance 110 GΩ
Supply Voltage 3.3 V

Common Mode Rejection Ratio (CMRR) 110
Gain Adjustable

This chosen sensor is characterized by its three bio-potential pins, two of which are
differential pins and one a reference pin. The three pins were connected to Covidien dis-
posable electrodes (H124SG) for better acquisition of the sEMG signals [46]. As shown
in Figure 1, the two differential electrodes of the sensor were attached in a straight line
over the belly of the middle deltoid [47,48]. However, the reference electrode was attached
to a different tissue, which was the anterior deltoid muscle in the case of this study [45].
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Furthermore, the skin was first shaved and cleaned with alcohol prior to the application of
the Covidien electrodes [49], while a tie was used to ensure that the electrode attachments
were fixed on the muscle [24]. The guidelines of the International Society of Electrophysiol-
ogy and Kinesiology (ISEK) [50] and those of the European Recommendations for Surface
Electromyography (SENIAM) [51] were followed for better acquisition of the sEMG signals.

The analogue signal that was obtained was then digitized using the Data Acquisition
system (USB6001 DAQ system) produced by National Instruments. The digitized signal was
sent to a PC for further analysis. The USB6001 DAQ system is characterized by a resolution
of 14 bits and sampling frequency of 20,000 samples/s. However, the acquired analogue
signal was sampled at a frequency of 2000 Hz, which ultimately prevented Nyquist aliasing
and reduced the computation time. The experimental setup and configuration are shown
in Figure 2.

Figure 2. Experiment Setup and Configuration.

2.5. Pre-Processing of sEMG Signal

The digitized sEMG signal was recorded using an analogue input recorder applica-
tion provided by Matlab (2018). The recorded sEMG signal was processed and filtered
as follows:

I. The DC offset was first eliminated. Matlab provides an efficient function for removing
the DC level that the raw EMG data is mounted on [52].

II. A nonzero-lag second order Butterworth IIR band-pass filter with a cut-off frequency
of 25–350 Hz was applied to extract the beneficial EMG frequencies [20,31,44]. A
Butterworth filter was selected as it provides a maximum flat response among the
cut-off frequencies [52].

III. A nonzero-lag second order Butterworth IIR band-stop filter, with a cut-off frequency
of 47–53 Hz, was also applied to eliminate the 50 Hz power line frequency.

Figure 3 shows the steps for the processing and filtering of the raw EMG signal.
Next, a proper segmentation was applied to the processed and filtered EMG signal

prior to the application of the proposed algorithm. The segmentation process was an
important step to show how the fatigue progressed with time. A rectangular window of 3 s
and an overlap of 1.5 s were used to segment the recorded raw EMG data. In other words,
the entire EMG signal that was recorded was segmented into 3 s windows, after which the
proposed algorithm was applied to these segments. Such a segmentation was chosen to
provide real-time monitoring of muscle fatigue [53].

2.6. Double-Step Binary Classifier and Fatigue Index

The proposed algorithm involved analyzing the acquired sEMG signal in the time and
frequency domains, respectively. The first step in analyzing the sEMG in the time domain
using the proposed classifier involved the extraction of a time-domain feature, specifically
the integrated EMG (IEMG). The IEMG is characterized by a low computation time, and
can be represented as follows:

IEMGi = ∑N−1
n=0 |EMGn | (2)

where i denotes the number of segments, and N represents the length of the segment.
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It was previously proven that the IEMG gradually increases with the progress of
muscle fatigue [54,55]. Therefore, the IEMG value was used to detect the progress of
fatigue by comparing its current value with its initial value. The initial value of the IEMG
(IEMGinitial) was the IEMG value of the first segment, whereas the current value of the
IEMG (IEMGcurrent) referred to the IEMG value of the subsequent segments. Once the
IEMGcurrent exceeded the IEMGinitial, the second step of the classifier was performed.

Figure 3. Steps for the processing and filtering of the raw EMG signal.
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The second step involved analyzing the acquired sEMG signal in the frequency do-
main to differentiate between the high-frequency and low-frequency components of the
EMG signal. Basically, the segmented EMG signal was filtered by two band-pass filters
separately to produce two sub-signals, namely, a high-frequency sub-signal (HFSS) and
a low-frequency sub-signal (LFSS). Then, the instantaneous mean amplitude (IMA) was
calculated for the two sub-signals to ultimately obtain the fatigue index, which represents
the difference between the IMA values of the LFSS and HFSS, respectively.

The boundaries of the high-frequency components (HFC) and low-frequency compo-
nents (LFC) of the EMG had to be identified first for the accurate extraction of the HFSS
and LFSS. The high-frequency components of the EMG had been previously identified to
be in the range of 80–350 Hz [29]. Consequently, the LFC lay in the range of 25–79 Hz,
which was also in agreement with the literature [13]. Furthermore, the mean frequency
(MNF) and median frequency (MDF) were calculated to ensure an accurate identification
of the frequency bands of the EMG. The MNF and MDF were chosen for their property in
identifying the central frequency [16,56]. For instance, the MNF is the sum of the product
of the EMG power spectrum and the frequency divided by the total sum of the power
spectrum. In addition, the MDF is the frequency that divides the spectrum of the EMG
into two regions with equal amplitudes [16]. The MNF and MDF are mathematically
represented as follows:

MNFi =
n

∑
k=1

fkPk /
n

∑
k=1

Pk (3)

∑m
k=1 Pk = ∑n

m Pk =
1
2 ∑n

k=1 Pk (4)

MDFi = f m (5)

where n denotes the length of the segment, Pk denotes the power spectrum value at bin, k,
m denotes the frequency associated with the median frequency (fm), and i the number of
segments [16,57].

Therefore, the mean frequency (MNF) and the median frequency (MDF) of the first
EMG segment in fatigue condition for all the subjects were calculated (Table 3). This shows
that MNF and MDF values mostly fell within the 75–85 Hz range, which confirmed that
80 Hz could be used as the frequency of separation between the HFC and LFC.

Once the frequency ranges for the LFC and HFC had been identified, each segment of
the segmented EMG was filtered by two nonzero-lag fourth-order Butterworth band-pass
filters. The first band-pass filter had a cut-off frequency of 25–79 Hz, and was used to
extract the LFSS, while the second band-pass filter had a cut-off frequency of 80–350 Hz,
and was used to extract the HFSS.

At this stage, each segment was filtered, and the LFSS and HFSS were successfully
extracted. Then, the fast Fourier transform (FFT) was applied to these sub-signals to
produce the LFSSf and HFSSf, respectively [58].

On applying the FFT to the LFSS and HFSS, which had been previously extracted from
the original acquired EMG, a complex point was produced. Each complex point embraced
real and imaginary parts. Then, the proposed algorithm calculated the instantaneous mean
amplitude (IMA), as shown in Equations (6) and (7).

IMALFSS f i =
∑N−1

n=0 | LFSS fi[n] |
N

(6)

IMAHFSS f i =
∑N−1

n=0 | HFSS fi[n] |
N

(7)
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Table 3. MNF and MDF values for deltoid muscle in fatigue condition.

Reference Middle Deltoid
Muscle

Mean
Frequency
(MNF) Hz

Median
Frequency
(MDF) Hz

Reference Middle Deltoid
Muscle

Mean
Frequency
(MNF) Hz

Median
Frequency
(MDF) Hz

Subject 1
Left muscle 85 73

Subject 20
Left muscle 79 72

Right muscle 84 76 Right muscle 85 76

Subject 2
Left muscle 83 77

Subject 21
Left muscle 78 70

Right muscle 98 90 Right muscle 84 78

Subject 3
Left muscle 88 80

Subject 22
Left muscle 84 76

Right muscle Not-Examined Not-Examined Right muscle 86 78

Subject 4
Left muscle 85 70

Subject 23
Left muscle 83 75

Right muscle 84 73 Right muscle 79 74

Subject 5
Left muscle 88 79

Subject 24
Left muscle 87 79

Right muscle 89 80 Right muscle 72 68

Subject 6
Left muscle 77 72

Subject 25
Left muscle 75 70

Right muscle 89 84 Right muscle 85 75

Subject 7
Left muscle 69 67

Subject 26
Left muscle 86 80

Right muscle 65 63 Right muscle 83 75

Subject 8
Left muscle 89 80

Subject 27
Left muscle 93 86

Right muscle 83 77 Right muscle 83 75

Subject 9
Left muscle 86 73

Subject 28
Left muscle 89 77

Right muscle 96 89 Right muscle 83 76

Subject 10
Left muscle 89 81

Subject 29
Left muscle 77 73

Right muscle 90 83 Right muscle 86 78

Subject 11
Left muscle 86 75

Subject 30
Left muscle 85 80

Right muscle 92 85 Right muscle 90 80

Subject 12
Left muscle 87 80

Subject 31
Left muscle 89 82

Right muscle 89 82 Right muscle 84 75

Subject 13
Left muscle 88 78

Subject 32
Left muscle 82 74

Right muscle 93 84 Right muscle 84 76

Subject 14
Left muscle 83 74

Subject 33
Left muscle 81 75

Right muscle 81 73 Right muscle 85 74

Subject 15
Left muscle 82 74

Subject 34
Left muscle 86 74

Right muscle 84 79 Right muscle 83 76

Subject 16
Left muscle 86 75

Subject 35
Left muscle 85 78

Right muscle 85 76 Right muscle 83 76

Subject 17
Left muscle 82 74

Subject 36
Left muscle 93 88

Right muscle 87 77 Right muscle 79 73

Subject 18
Left muscle 81 74

Subject 37
Left muscle 89 82

Right muscle 92 86 Right muscle 80 72

Subject 19
Left muscle 80 72

Subject 38
Left muscle 87 76

Right muscle 87 81 Right muscle 84 76

Eventually, the fatigue index, representing the IMA of the LFSS minus the IMA of the
HFSS, was calculated using Equation (8) below:

Fatigue_Index =IMALFSS f i − IMAHFSS f i (8)

where N denotes the length of the segment, and i denotes the current segment.
Then, a decision was made based on the values of the Fatigue_index as follows:

Fatigue_Index =

{
≥ 0 f atigue level reached

< 0 Otherwise
(9)
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Equation (8) shows that the objective detection of muscle fatigue was determined by
the value of the fatigue index. Figure 4 summaries the steps of the proposed algorithm. A
fatigue report counter was added at the end of the algorithm to record the fatigue indices
of the analyzed EMG segments, and to assign them as fatigue or non-fatigue segments
throughout the session, as shown in the next section.

Figure 4. Flow chart of the proposed algorithm.

The proposed algorithm indicated that the IMA of the LFSS started at its minimum
value in the first segment and tended to increase with the progression of fatigue. In
contrast, the IMA of the HFSS started at its maximum value in the first segment and tended
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to decrease with the progression of fatigue. Therefore, the fatigue index was transformed
from a negative value to a positive value throughout the fatigue progression. Muscle
fatigue was found to have occurred and was objectively detected when the value of the
proposed fatigue index was equal to or greater than zero. In other words, fatigue was
reached when the IMA of the LFSS was equal to or greater than the IMA of the HFSS.
Furthermore, the increase in the fatigue index was a clear indication of progressive fatigue.
Moreover, if there was no change in the fatigue index, this would indicate that the muscle
was relatively not experiencing progressive fatigue.

Consequently, the accuracy of the proposed algorithm was evaluated based on its
ability to produce a zero or positive fatigue index once the subjects reported fatigue. As the
sEMG signal was segmented prior to the calculation of the fatigue index, the algorithm was
therefore said to be accurate if it was able to produce a zero or positive fatigue index in the
last segment, when the individual reported fatigue. Furthermore, the first segments should
produce a negative fatigue index and be assigned as non-fatigue. Thus, the analyzed data
that were extracted from the fatigue condition were used to evaluate the accuracy of the
algorithm, and this will be explained in the next section.

3. Results and Discussion

A representation of the non-fatigued and fatigued filtered sEMG signal is shown in
Figure 5. The variations between the non-fatigued and fatigued sEMG signals depend
on the physiological parameters of the muscle, including the motor unit recruitment,
fiber firing rate, fiber type, and the conduction velocity. The amplitude and frequency of
the acquired sEMG signal were the main EMG characteristics that were affected by the
aforementioned parameters [26].

Figure 5. Non-fatigue and fatigue filtered sEMG signal.
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As the proposed algorithm involved the extraction of time and frequency features
from the acquired sEMG signal, the analyses in the time and frequency domains were
therefore shown, respectively. First, the double-step binary classifier calculated the value of
the integrated EMG (IEMG) to detect the initial contraction of the investigated muscle. The
linear regression technique was used to identify the slope behavior of the IEMG throughout
the progression of fatigue. Table 4 shows the slope values of the IEMG for the non-fatigue
and fatigue conditions of all the subjects. It was clearly shown that the IEMG exhibited a
positive slope in muscle fatigue condition.

Table 4. Slopes of IEMG for fatigue and non-fatigue conditions.

Reference Middle
Deltoid Muscle

Slope’s Value
Non-Fatigue

Slope’s Value
Fatigue Reference Middle Deltoid

Muscle
Slope’s Value
Non-Fatigue

Slope’s Value
Fatigue

Subject 1
Left muscle −0.0018 0.038

Subject 20
Left muscle −0.00011 0.037

Right muscle −0.0038 0.4 Right muscle −0.00004 0.045

Subject 2
Left muscle −0.00016 0.14

Subject 21
Left muscle −0.0002 0.203

Right muscle −0.0002 1.4 Right muscle −0.00234 0.038

Subject 3
Left muscle −0.00081 0.15

Subject 22
Left muscle −0.0018 0.04

Right muscle Not-Examined Not-Examined Right muscle −0.0007 0.8

Subject 4
Left muscle −0.0021 0.057

Subject 23
Left muscle −0.00016 0.16

Right muscle −0.0016 0.074 Right muscle −0.0002 1.8

Subject 5
Left muscle −0.00021 0.0014

Subject 24
Left muscle −0.00009 0.6

Right muscle −0.00001 0.014 Right muscle −0.0021 0.1

Subject 6
Left muscle −0.00015 0.33

Subject 25
Left muscle 0.0008 0.08

Right muscle −0.00008 0.28 Right muscle −0.00021 0.002

Subject 7
Left muscle −0.0017 0.15

Subject 26
Left muscle −0.0056 0.023

Right muscle −0.0014 0.098 Right muscle −0.00078 0.23

Subject 8
Left muscle −0.0046 0.048

Subject 27
Left muscle −0.0067 0.28

Right muscle −0.0043 0.053 Right muscle −0.0067 0.18

Subject 9
Left muscle −0.0013 0.27

Subject 28
Left muscle −0.009 0.1

Right muscle −0.00008 0.09 Right muscle −0.0067 0.05

Subject 10
Left muscle −0.005 0.087

Subject 29
Left muscle −0.0021 0.06

Right muscle −0.0073 0.09 Right muscle 0.0034 0.15

Subject 11
Left muscle −0.0002 0.024

Subject 30
Left muscle −0.00076 0.1

Right muscle −0.00023 0.059 Right muscle −0.0099 0.02

Subject 12
Left muscle −0.0044 0.027

Subject 31
Left muscle −0.00045 0.96

Right muscle −0.000013 0.0044 Right muscle −0.0002 0.024

Subject 13
Left muscle −0.00067 0.036

Subject 32
Left muscle −0.0045 0.033

Right muscle −0.0026 0.21 Right muscle −0.0045 0.03

Subject 14
Left muscle −0.00001 0.039

Subject 33
Left muscle −0.344 0.005

Right muscle −0.000005 0.022 Right muscle −0.00067 0.068

Subject 15
Left muscle −0.000007 0.045

Subject 34
Left muscle −0.00045 0.2

Right muscle −0.00057 0.024 Right muscle −0.00001 0.04

Subject 16
Left muscle −0.00023 0.02

Subject 35
Left muscle −0.004 0.05

Right muscle −0.00012 0.019 Right muscle −0.0067 0.05

Subject 17
Left muscle −0.0009 0.047

Subject 36
Left muscle −0.00057 0.033

Right muscle −0.0022 0.019 Right muscle −0.00023 0.02

Subject 18
Left muscle −0.0033 0.085

Subject 37
Left muscle −0.0067 0.03

Right muscle −0.00067 0.011 Right muscle −0.0006 0.06

Subject 19
Left muscle −0.0006 0.05

Subject 38
Left muscle −0.000046 0.035

Right muscle −0.0003 0.05 Right muscle −0.0000078 0.019
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The paired two-tail t-test was applied to identify the statistical difference between the
IEMG slopes for both the fatigue and non-fatigue conditions of all subjects. At a confidence
interval of 95%, the null hypothesis was rejected if the p-value was less than 0.05. Hence,
the p-value was calculated and found to be 0.035, which indicated that there was a statistical
difference between the two conditions in terms of the IEMG values. Furthermore, Figure 6
shows the behavior of the IEMG value while the deltoid muscle was in the non-fatigue and
fatigue condition.

Figure 6. IEMG behavior of the deltoid muscle in non-fatigue and fatigue states.

Second, the double-step binary classifier calculates the fatigue index based on the
values of the instantaneous mean amplitude (IMA) of high-frequency and low-frequency
sub-signals (HFSS and LFSS). Therefore, it was better to show how the IMA of the HFSS and
LFSS behaved during the two muscle fatigue conditions (non-fatigue and fatigue). Figure 7
shows the IMA of both the HFSS and LFSS when the middle deltoid was in non-fatigue
and fatigue conditions. In the non-fatigue condition, it was clearly shown that the IMA
values of both the HFSS and LFSS were totally separated and the fatigue index exhibited a
negative value. Hence, the fatigue did not progress. As mentioned in the previous section,
even though the subjects performed no action while in the non-fatigue state, the middle
deltoid muscle still played an important role in the stabilization of the shoulder joint, and
ultimately produced a sort of sEMG signal.
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Figure 7. The IMA of the HFSS (red line) and LFSS (blue Line) of the middle deltoid muscle in non-fatigue condition (top) and in fatigue condition (bottom).
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When in a fatigue state, Figure 7 shows that the magnitude of the IMA for both the
HFSS and LFSS started to change and intersected at some point, which indicated the
presence of fatigue. In other words, the fatigue index was transformed from a negative to a
positive value because of the rapid decrease in the IMA of the HFSS and an increase in the
IMA of the LFSS. The transformation in the fatigue index indicated the objective detection
of muscle fatigue.

Furthermore, Figure 7 shows that the right middle deltoid required a longer time than
the left middle deltoid to experience fatigue for the same subject. Despite the fact that the
left deltoid muscle experienced fatigue at 50 s, the IMA values of both the HFSS and LFSS
continued to change, where the IMA of the HFSS continued to decrease while the IMA of
the LFSS continued to increase after the onset of fatigue. This was attributed to the ability
of the subject to resist fatigue for a further period after the onset of fatigue.

Figure 7 shows that the scapular plane of the upper limb accelerated the progress of
muscle fatigue. Moreover, adding weights to the forearm substantially affected the IMA of
both the HFSS and LFSS.

In terms of numbers, the fatigue indices in fatigue condition for each subject in the
first and last segments (when their muscles had reached the fatigue level) are shown in
Table 5.

Table 5 emphasizes that the fatigue index of all the subjects started with a negative
value at the beginning of the session and was transformed to a positive value at the end
of the session, when the fatigue level was reached. Although subjects 8, 12, 16, 22, and 32
reported the presence of fatigue in their middle deltoid muscles at the end of the session,
their fatigue index was not transformed to a positive value. Thus, the behavior of the IMA
of both the LFSS and HFSS for the aforementioned subjects was investigated. Figure 8
shows that the IMA values of both the HFSS and LFSS of subject 8 started to change, but
had yet to intersect. In other words, the fatigue index started with a negative value and
continued to increase throughout the session; however, it was not transformed to zero or to
a positive value.

Figure 8. Behavior of IMA of the HFSS (red line) and LFSS (blue line) of the left middle deltoid
muscle of subject 8 in fatigue condition.

Table 5 also shows that the participants exhibited different timelines prior to the onset
of fatigue. In other words, the participants varied in their ability to withstand fatigue
throughout the session. Consequently, the proposed algorithm was able to objectively
detect the fatigue despite individual variations.
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Table 5. Fatigue indices in fatigue condition.

Reference Middle Deltoid
Muscle

Fatigue Index Value
Time Consumed (s) Reference Middle Deltoid

Muscle

Fatigue Index Value
Time Consumed (s)First Segment

(No Fatigue)
Last Segment

(Fatigue Reached)
First Segment
(No Fatigue)

Last Segment
(Fatigue Reached)

Subject 1
Left muscle −0.682 0.063 25

Subject 20
Left muscle −0.438 0.068 41

Right muscle −0.648 0.072 31 Right muscle −0.398 0.045 56

Subject 2
Left muscle −0.468 0.006 33

Subject 21
Left muscle −0.425 0.041 44

Right muscle −0.248 0.003 60 Right muscle −0.438 0.009 68

Subject 3
Left muscle −0.314 0.010 70

Subject 22
Left muscle −0.145 0.019 94

Right muscle Not-Examined Not-Examined Not-Examined Right muscle −0.245 0.067 100

Subject 4
Left muscle −0.122 0.021 94

Subject 23
Left muscle −0.488 0.017 67

Right muscle −0.142 0.096 100 Right muscle −0.134 0.003 83

Subject 5
Left muscle −0.300 0.020 51

Subject 24
Left muscle −0.257 0.001 85

Right muscle −0.266 0.004 113 Right muscle −0.490 0.011 95

Subject 6
Left muscle −0.239 0.002 109

Subject 25
Left muscle −0.130 0.023 53

Right muscle −0.558 0.001 115 Right muscle −0.290 −0.023 34

Subject 7
Left muscle −0.126 0.033 67

Subject 26
Left muscle −0.290 0.027 42

Right muscle −0.253 0.050 75 Right muscle −0.309 0.012 54

Subject 8
Left muscle −0.203 −0.053 12

Subject 27
Left muscle −0.463 0.018 80

Right muscle −0.326 0.022 20 Right muscle −0.523 0.017 85

Subject 9
Left muscle −0.363 0.027 85

Subject 28
Left muscle −0.285 0.008 49

Right muscle −0.450 0.012 92 Right muscle −0.137 0.062 76

Subject 10
Left muscle −0.431 0.005 45

Subject 29
Left muscle −0.389 0.010 70

Right muscle −0.428 0.071 83 Right muscle −0.652 0.023 76

Subject 11
Left muscle −0.358 0.020 73

Subject 30
Left muscle −0.398 0.023 81

Right muscle −0.454 0.003 75 Right muscle −0.378 0.034 89

Subject 12
Left muscle −0.424 −0.012 65

Subject 31
Left muscle −0.289 0.028 59

Right muscle −0.473 0.023 66 Right muscle −0.478 0.035 69

Subject 13
Left muscle −0.479 0.037 61

Subject 32
Left muscle −0.145 0.012 65

Right muscle −0.518 0.012 74 Right muscle −0.537 −0.059 59

Subject 14
Left muscle −0.396 0.019 56

Subject 33
Left muscle −0.405 0.047 60

Right muscle −0.439 0.033 67 Right muscle −0.407 0.063 72

Subject 15
Left muscle −0.427 0.009 58

Subject 34
Left muscle −0.537 0.059 59

Right muscle −0.363 0.045 64 Right muscle −0.469 0.033 85
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Table 5. Cont.

Reference Middle Deltoid
Muscle

Fatigue Index Value
Time Consumed (s) Reference Middle Deltoid

Muscle

Fatigue Index Value
Time Consumed (s)First Segment

(No Fatigue)
Last Segment

(Fatigue Reached)
First Segment
(No Fatigue)

Last Segment
(Fatigue Reached)

Subject 16
Left muscle −0.415 −0.079 52

Subject 35
Left muscle −0.425 0.006 63

Right muscle −0.340 0.023 92 Right muscle −0.526 0.032 78

Subject 17
Left muscle −0.352 0.016 52

Subject 36
Left muscle −0.397 0.048 49

Right muscle −0.523 0.002 78 Right muscle −0.465 0.063 65

Subject 18
Left muscle −0.392 0.098 52

Subject 37
Left muscle −0.324 0.055 59

Right muscle −0.560 0.003 69 Right muscle −0.372 0.034 73

Subject 19
Left muscle −0.521 0.004 49

Subject 38
Left muscle −0.426 0.056 64

Right muscle −0.482 0.022 65 Right muscle −0.293 0.036 70
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For the purpose of an accurate evaluation and in considering each sEMG signal as
having segments of length N, the fatigue indices of the first and last three sEMG segments
of all the subjects in fatigue condition were calculated. A fatigue index with a negative
value was an indication of non-fatigue, while a zero or positive value was an indication of
fatigue, as shown in Table 6.

Table 6. Accuracy of the proposed algorithm.

Reference Middle Deltoid
Muscle

Segments Fatigue Classification

1st Seg. 2nd Seg. 3rd Seg. (N−2)th Seg. (N−1)th Seg. Nth Seg.

Subject 1
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 2
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue Fatigue

Subject 3
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Not-Examined Not-Examined Not-Examined Not-Examined Not-Examined Not-Examined

Subject 4
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 5
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 6
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 7
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 8
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 9
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 10
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 11
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 12
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 13
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 14
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 15
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 16
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 17
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 18
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 19
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 20
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue
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Table 6. Cont.

Reference Middle Deltoid
Muscle

Segments Fatigue Classification

1st Seg. 2nd Seg. 3rd Seg. (N−2)th Seg. (N−1)th Seg. Nth Seg.

Subject 21
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 22
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 23
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 24
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 25
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue

Subject 26
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 27
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 28
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 29
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 30
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 31
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 32
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue

Subject 33
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 34
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 35
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 36
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Subject 37
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue Fatigue

Subject 38
Left muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Right muscle Non-fatigue Non-fatigue Non-fatigue Non-fatigue Non-fatigue Fatigue

Table 6 shows that the first segments produced a negative fatigue index, thereby
indicating that no fatigue had occurred yet. However, most of the last segments produced
a positive fatigue index, and ultimately fatigue was reached. The results of the last two
segments, either fatigue or non-fatigue, were considered for the mathematical calculation
of the sensitivity, specificity, positive predictive value, and accuracy of the algorithm. The
non-fatigue state at the (N − 1) segment represents a true negative (TN) classification of the
proposed algorithm, while the fatigue state at the (N) segment represents a true positive
(TP) classification. Consequently, the fatigue and the non-fatigue states in the (N − 1) and
(N) segments represent the false positive (FP) and false negative, respectively. As shown in
Table 6, the last two segment embrace a total of 70 TP, 72 TN, 3 FP, and 5 FN. The following
are the mathematical representations of the aforementioned characteristics:
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Sensitivity =
TP

TP + FN
= 0.9333 ≈ 93% (10)

Speci f icty =
TN

TN + FP
= 0.96 = 96% (11)

Positive Predictive Value =
TP

TP + FP
= 0.9589 ≈ 96% (12)

Accuracy =
TN + TP

TN + TP + FN + FP
= 0.9466 ≈ 95% (13)

As mentioned in the earlier section on the literature review, various classifiers were
used in an attempt to objectively detect fatigue. Thus, Table 7 shows a comparison between
the proposed algorithm and other algorithms to emphasize the differences in terms of the
employed classifier, and the accuracy obtained.

Table 7. Comparison between the proposed algorithm and three available algorithms.

Reference Type of Employed Classifier Obtained Accuracy

[59] Support Vector Machine (SVM) 85.5%

[60] Multilayer Perceptron (MLP) 86%

[26] Support Vector Machine (SVM) 91.39%

[61] Linear Discriminant Analysis (LDA) 88.41%

Our work Double-Step Binary Classifier 94.66%

As shown in Table 7, the proposed algorithm showed the highest accuracy in compari-
son to previous studies. It should be noted that non-adult individuals were excluded from
the study as the skeletal muscles of adults and non-adults may respond differently [62]. For
instance, the small-sized muscles of non-adults could result in less accurate EMG signals.
Moreover, the ability of non-adults to withstand the fatigue in comparison to adults [62].

The calculation of the IEMG value as the first step in the proposed algorithm was
considered as an important procedure to accurately identify the fatigue condition. The
importance of this step came from its ability to distinguish between relaxed and contracted
muscles. Relaxed muscles exhibit no significant EMG and have a different power spectrum
than contracted muscles [11,63]. This could ultimately affect the second step (fatigue index
calculation) of the proposed classifier. More specifically, the first step of the proposed
algorithm was fully aimed at ensuring that only the EMG signals that were extracted
from the contracted muscles were analyzed by the second step of the proposed classifier.
Applying only the second step on signal acquired from relaxed muscle could produce false
positive fatigue index. In this study, however, the middle deltoid muscle was investigated,
which exhibits a sort of contraction in both non-fatigue and fatigue conditions that helps in
stabilizing the shoulder joint [40].

Consequently, the second step of the proposed algorithm was applied on a relaxed
muscle’s signal to practically approve the necessity of the first step. Ref. [64] have clarified
that biceps are virtually silent and eventually can be considered relaxed when the elbow
is extended. Hence, the bicep signals at the relaxed state of eight subjects (Figure 9) were
acquired and analyzed only by the second step of the proposed algorithm. Figure 10 shows
how the IMA values of HFSS and LFSS fluctuate and intersect, which ultimately produces
a false positive fatigue index throughout the session.

Several factors were precisely considered to ensure that the results obtained were
reliable. First, the weight was clutched on the forearm instead of being held by the hand
to avoid fatigue in the hand muscles prior to fatigue in the deltoid muscles. Holding the
weight by the hand would incline the subject to report an uncomfortable feeling caused by
fatigue in the hand muscles.
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Figure 9. Acquiring the signal from the bicep muscle at relaxed state.

Figure 10. Behavior of IMA of the HFSS (red line) and LFSS (blue line) of the biceps at relaxed state.

Second, special attention was also given to the Myoware muscle sensor to ensure that
the sEMG signal acquired would be accurate. For instance, the two main electrodes of the
sensor were placed on the belly of the muscle and in a straight position, while the reference
electrode was placed on the bony or different tissue [47,48]. The wrong attachment of the
sensor could substantially affect the accuracy and strength of the acquired signal.

Third, it was reported that the loose attachment between the sensor and the muscle
could dramatically affect the acquired signal because of any sudden movement of the
loosened sensor [46]. Therefore, a tie was applied to prevent the sensor from being loosely
attached to the muscle.

Finally, the sampling frequency was another issue that had to be accurately identified
prior to the processing of the acquired signal [65]. The highest frequency of the EMG was
identified and found to be 400 Hz. Hence, the minimum sampling frequency had to be no
less than 800 Hz to prevent Nyquist aliasing. Despite the fact that increasing the sampling
frequency above the Nyquist rate could provide more information about the acquired
signal, a higher sampling frequency would compromise the real-time processing [66].

4. Conclusions

An algorithm employing a new fatigue index was proposed for the objective detection
of muscle fatigue. The proposed algorithm analyzed the acquired sEMG signal in the time
and frequency domains to extract the IEMG and IMA features, respectively to ultimately
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identify the fatigue index. It was found that a gradual increase in the IEMG value was a
clear indication of muscle contraction. Furthermore, the instantaneous mean amplitude
(IMA) of the high-frequency sub-signal (HFSS) and low-frequency sub-signal followed
different behaviors. The IMA of the HFSS tended to decrease during the progression
of fatigue, while the IMA of the LFSS tended to increase. Thus, the fatigue index was
identified as the difference between the IMA values of the LFSS and HFSS, respectively.
Muscle fatigue was found to be present and was objectively detected when the value of the
proposed fatigue index was equal to or greater than zero.
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