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ABSTRACT: A fast, simple, yet robust method to calculate
protein entropy from a single protein structure is presented here.
The focus is on the atomic packing details, which are calculated by
combining Voronoi diagrams and Delaunay tessellations. Even
though the method is simple, the entropies computed exhibit an
extremely high correlation with the entropies previously derived by
other methods based on quasi-harmonic motions, quantum
mechanics, and molecular dynamics simulations. These packing-
based entropies account directly for the local freedom and provide
entropy for any individual protein structure that could be used to
compute free energies directly during simulations for the generation of more reliable trajectories and also for better evaluations of
modeled protein structures. Physico-chemical properties of amino acids are compared with these packing entropies to uncover the
relationships with the entropies of different residue types. A public packing entropy web server is provided at packing-
entropy.bb.iastate.edu, and the application programing interface is available within the PACKMAN (https://github.com/
Pranavkhade/PACKMAN) package.

■ INTRODUCTION
Entropy plays a crucial role in identifying a protein’s lowest free
energy conformation(s) in the course of structure prediction or
modeling. Apart from these applications, entropy can also be key
in providing insights into protein mechanisms, particularly for
the role of disordered binding regions or intrinsically disordered
proteins1 and many other aspects of protein dynamics,
mechanism, and interactions. Entropies are particularly
important for assessing the effects of protein binding for both
small ligands and to other proteins, where there are usually
changes in entropy upon binding.2−5 Unfortunately, almost all
the current simulations or sampling of protein conformations
ignore entropy, relying solely on energetics.
There have been many proposed methods to calculate

entropies of biomolecules6−11 that are based on molecular
dynamics (MD) as well as discussions of experimental ways to
measure entropies.4,12,13 Many of these approaches calculate
entropy by using MD or other simulations specifically to
compute the fluctuations of atoms around their mean
positions.14−18 There is also quasiharmonic analysis (QHA)
that approximates a probability distribution as a multi-
dimensional Gaussian distribution derived from the coordinate
fluctuations of atoms around their average positions in an MD
simulation, yielding both vibrational frequencies and entro-
pies19−23 or methods that use multiple conformations from
NMR ensembles or MD trajectories to calculate entropies.24

The statistical distributions of torsion angles from MD
simulations have also been used to calculate entropies.25−27

One multiscale entropy calculation28 even usedMD simulations

to obtain seven different contributing terms for the molecule,
residue, and atomic levels to treat entropy as a sum of the
different types of entropies. However, these methods all rely on
relatively computationally expensive processes such as MD or
other simulations. Another backbone entropy calculation
method is Popcoen,29 which does not directly rely on MD for
entropy calculations. Instead, it is a neural network model
trained on 961 protein MD simulations. Problems existing in
MD, such as potential functions, parameter bias, butterfly effect,
and possibly too short simulations, are also limitations for
Popcoen. However, ignoring the entropies during the
simulations is not the proper thing to do. Entropies should be
explicitly included as a term that affects the trajectory pathway,
and collecting data during a simulation for subsequent analysis
does not accomplish this. Our entropy computation could
enable the rapid evaluation of entropies for each conformation
along a trajectory, so it would directly influence the trajectory
and could be built into MD as a major improvement in MD
methods.
All these previous methods rely on complex approaches and

statistics to calculate a molecular property that has not been
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readily calculated for proteins. Experimental validation is not
usually possible, so this cannot be used to determine which
methods are more accurate than the others. Thus, there is a need
for a simpler yet statistically robust method that can compute
protein entropies in a far simpler way without relying on MD or
more complex considerations ex post facto.
It may be important for some cases to consider entropies in

terms of energy landscapes. If the sampling for entropy
evaluation is performed locally on this surface, then one would
be considering only conformations within a local basin.
Sampling over the entire landscape means considering the
collective entropies over all such basins. Clearly, using the
present method only considers a highly localized set of
conformations. The overarching question is whether this yields
a sufficient sample or not. If the jumps between basins have high
intervening barriers and are thus rare, this should be a valid
approach; otherwise, a broader sample of conformations would
be required. The sampling from MD should provide a test of
whether this local sampling is sufficient. Indeed, as will be seen,
there is excellent agreement between our results and entropies
derived from MD simulations, so this permits us to conclude
that local sampling should usually be sufficient. This suggests
that performing this type of entropy evaluation on fly during the
simulation could be an important way to improve MD
simulations.
We know that there are limited numbers of favorable protein

folds30 mainly because of the stability of their hydrophobic
interactions.31−33 Because of these limited folds, the patterns in
the protein structures have been used to analyze protein
stability,34 motion,35 evolution, and function. Protein packing is
another such concept that reflects the patterns within protein
structures. We have seen that disturbances in protein packing
because of mutations of different sizes and characteristics can
lead to disrupted functions.36 Therefore, we believe that protein
packing can yield insights into protein stability as characterized
by entropies. Over the past several years, we have investigated
protein packing37 as an important consideration for dynam-
ics,38,39 where we have demonstrated that hinges in proteins can
be identified immediately from the static structure to be
localized within the least densely packed regions. The present
study aims to examine protein packing as the basis for protein
entropy. Similar to the use of Delaunay tessellations to model
protein packing, Voronoi diagrams40 have also commonly been
used41−44 to characterize protein geometry. In this study, we
employ a technique similar to packing fraction45 or packing
density46 that has been used in polymer and liquid entropy
characterizations to calculate protein entropies directly, as
pioneered by Henry Eyring and extensively utilized by Flory.47

Unlike all other entropy calculation methods, this method does
not rely on any statistical considerations and instead is simply a
measure of how much space is available within a static protein
structure to move locally. Therefore, these data are free of most
types of bias since they are based on single protein structures and
their geometries only, and even though a complete sampling of
these free volumes cannot occur completely independently,
nonetheless, the underlying assumption of independence is an
excellent one, as we will see.
In this study, we introduce a concept of “packing entropy” that

is based on the packing fraction, which is defined as the volume
occupied by the amino acid divided by the total volume available
to the amino acid in a static structure. As shown below, the
packing-based entropy has a high Pearson correlation coefficient
with other completely different methods that use quasi-

harmonic motion, quantum mechanics, simulations, and
statistical distributions of backbone torsional angles along with
other variables. We have, in addition, carried out one MD
simulation to thermally denature a protein and analyzed the
entropies over time and temperature. The present study
demonstrates that the packing entropy of a single protein
structure is usually sufficient to provide an excellent value of
conformational entropy. There is an underlying assumption that
a given structure does not undergo large-scale rearrangements.
This approach is general and could be applied to any structure,
including RNA or DNA and not just proteins.

■ MATERIALS AND METHODS
Example Proteins.We have used three different datasets in

this study. Dataset 1 is a set of high-quality, diverse structures
used to collect various statistics related to protein packing
entropies, whereas Datasets 2 and 3 are obtained from different
publications so that a direct comparison with the already
published methods can be made.

Dataset 1. This dataset of proteins has been obtained from
the Pisces server,48 with the PDB IDs that are used as listed in
Table S1. A total of 2079 unique protein-chain combinations are
included in this dataset. This data is mainly used for deriving
various statistics about protein packing entropy. The parameters
for this collection are listed in Table 1

Dataset 2. This dataset of proteins is obtained from our
previous study on entropies,49 with the PDB IDs listed in Table
S2. This dataset can be found in the Supporting Information of
the noted publication. The original authors generated this data
to compare their method with other existing and well-
established entropy calculation methods. This dataset is
comprised of 30 examples that are used to compare packing
entropies against those from Schlitter,16 Andricioaei18 method,
and FoldX.29

Dataset 3. This dataset of proteins is obtained from the
Chakravorty et al. study,28 and the PDB IDs for the proteins are
listed in Table S3. The authors have shown this data (the PDB
IDs and corresponding entropy values) in the form of graphs in
the referenced publication. The numerical entropy data shown
was shared by the original authors. The original data contains 14
different terms (7 translational + 7 rotational) of entropy that we
summed, as was done by those authors, for the comparison with
the present packing entropies. This dataset includes 73 examples
that are used to compare against the packing entropies from the
QHA and MCC28 methods.
All datasets are downloaded from the Protein Data Bank

(PDB).50

Residue Entropy Calculation.We calculate the entropy by
using the packing fraction45 of the residues. The packing fraction
is the ratio of the volume occupied by the atoms of amino acid j,

Table 1. Pisces Web Server48 Culling Parameters

parameter Value

percent sequence identity ≤15
resolution 0.0−1.5 Å
R-factor <0.3
sequence length 40−10,000 residues
non-X-ray entries Excluded
CA-only entries Excluded
cull PDB by chain True
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Vo(Rj) to the volume available, in the actual protein structure, to
the amino acid j, Va(Rj), as identified in the Voronoi diagram.
Voronoi Tessellation. Voronoi tessellations or diagrams/

polygons in 2D are also known as Dirichlet tessellations or
Thiessen polygons.51 They occur in nature in bubbles, dried-up
wetlands, skin color patterns on a giraffe, and so forth and have
been studied and applied extensively. In 2D space, given a set of
distinct 2D points (pi), a Voronoi diagram is a set of vertices and
edges such that each Voronoi vertex is always equidistant to all of
the three closest neighboring points (Figure 1A). The point that
lies inside the “Voronoi cell” formed by the Voronoi vertices and
edges around a particular atom is always closer to that atom than
to any other atom in the Voronoi diagram. Also, the Voronoi
edges are equidistant to both points that are being separated by
it. We are interested in the Voronoi vertices obtained because
they are used to calculate the volumes Va(Rj) using convex hulls.

Convex Hull. Given points p in 2D space, a convex hull is a
polygon that contains all the points in p on the surface or inside
the polygon and all the angles of the polygons are less than 180°.
This is extended into 3D space here, with the polygon replaced
by a polyhedron and 3D points replacing 2D points. TheConvex
hull of the Voronoi points is calculated to obtain the Va(Rj), and
the convex hull of all the points in the particular residue is
calculated to obtain Vo(Rj).

Creating Boundaries for Voronoi Diagrams. Voronoi
diagrams have boundaries stretching to infinity for most exterior
points. This can cause a problem for the surface atoms of the
proteins. To deal with this problem, we generate an arbitrary
point cloud of 30 points (can be changed as a user parameter)
around the surface protein atoms with a radial distance of 2 ×
(1.4 Å + van der Waal’s atomic radius52) in such a way that no
other atom in the protein is closer to any point in the generated
cloud of points. This creates the Voronoi boundaries for the

Figure 1. Voronoi diagram is generated for all atoms and after that atoms belonging to the same residue are combined (A) Voronoi diagram of a
hypothetical example of an all-atom 2D structure; each cell is around an atom; lines separating (Voronoi edges) any two hypothetical atoms are
equidistant from both atoms. Each pattern represents a Voronoi cell group (atoms belonging to the same residue). (B) Logic behind the Voronoi
border determination in 2D space. The border points to limit the Voronoi diagrams should be generated at twice the distance of addition of the probe
radius (usually solvent) and van derWaals radius. (C) Example of 3DVoronoi diagram; a Voronoi cell in 3D is derived identical to 2D; however, except
that Voronoi edges are replaced by Voronoi planes. The gray-colored structure is an amino acid chain, and the blue points represent the border points
described in the Methods section to trim the Voronoi diagram. The red lines represent the Voronoi plane boundaries.

Figure 2. Packing entropy values (X-axis) are plotted against the packing fraction interval (Y-axis). This shows a non-linear relationship between
entropy and packing fraction, as shown in eq 3.
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atoms on the surface of the residue, as shown in Figure 1B.
Doing this creates a boundary around the Voronoi diagrams, and
volume-based analysis becomes more manageable. The choice
of 30 points around each atom has been chosen so that there will
be a sufficiently fine boundary around the protein that limits the
outside of the 3DVoronoi diagram. The same concept explained
in Figure 1B is easily extended to 3D structures, as shown in
Figure 1C. Please read the PACKMAN documentation about
generating these point clouds around each surface atom and
adjusting the corresponding parameter.
Volume and Entropy Calculation. After this boundary is

fixed, the Voronoi diagram40 for all atoms in the protein along is
calculated. In the Voronoi diagram, each atom will have a
Voronoi tessellation/cell with multiple faces (planes), with each
face being a boundary with a neighboring tessellation/cell
surrounding itself so that the shared boundary between the
neighbor atoms’ tessellation will be equidistant from both atoms.
To calculate the volume available to the residueVa(Rj) in protein
i, we sum the volume of the convex hulls53 built from the
Voronoi boundary points (Voronoi vertices) of the atoms
belonging to the same residue (Kj) as shown in eq 1. Since each
atom’s Voronoi boundaries will be equidistant from its
neighbors, it will provide a good estimate of the volume
available for each atom to move.

V R V k( ) ( )j
k

K

a
1

j

∑=
= (1)

The occupied volume of the residue j (in protein i) Vo(Rj) is
the volume of the Convex Hull53 formed by all-atoms in the
residue j. After obtaining the Va(Rj) and Vo(Rj), we can calculate
the packing fraction for the residue j PF(Rj) as

R
V R

V R
PF( )

( )

( )j
j

j

o

a
=

(2)

The packing fraction of the residue j will measure how tightly
it is packed in the protein structure. If the nearer PF(Rj) is 1, it is
packed denser, and a value close to 0 indicates that the residue is
sparsely packed and has much more room to move around. The
packing fraction is then used to calculate the packing entropy for
the residue j S(Rj), as shown in eq 3, where R is the gas constant.

S R R R( ) log ( PF( ))j j10= − (3)

It is important to note that this relationship between the
packing fraction and packing entropy has the non-linear form
shown in Figure 2.
The total packing entropy of the protein can be calculated by

summing all the entropies of the individual residues of the
protein as shown in eq 4, where n is the number of residues in the
protein.

S S Rtotal packing entropy ( ) ( )
j

n

j
1

∑=
= (4)

Entropy Calculation for Multiple Conformations. This
calculation can also be applied to any or all of the multiple
structures from NMR structures or MD trajectories. If we
consider F separate structures taken from an NMR structure of
an MD trajectory, we can calculate an average as shown in eq 5,
where Rfj is the jth residue in the f th structure.

R
F

V R

V R
PF( )

1 ( )

( )j
f

F
fj

fj1

o

a
∑=

= (5)

After this, the residue and protein entropies can be calculated
with eq 4. It is important to note that the packing entropy for all
the residues S(Rfj) and the protein f (Sf) can be calculated by
treating each frame (time step) in the simulation as a separate
structure; this can provide valuable insights into the motion and
the mechanism of a protein as shown in Supporting Information
Movie 1.

Figure 3. Total Entropy vs SASA. The R2 score of the linear regression model (shown as a dotted line) is 0.6828. Pearson’s correlation coefficient is
0.826 for the same data. The values are provided in Table S4.
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Entropy Units. The packing entropy for each residue is
multiplied by gas constant (R) and takes on its units. The
packing entropy units here are taken as Joules degrees Kelvin−1

mol−1.We have compared the results with several other methods
such as Schlitter, Andricioaei, Multiscale Cell Correlation
(MCC), and QHA entropies that also used these same units.
Only Entropy Differences Are Meaningful. It is

important to note is that when entropy is considered, only the
entropy differences are meaningful, such as those between the
total entropies of two different conformers of the same protein.
We can compare different frames of an MD simulation or
members of an NMR ensemble or even pairs of conformers
generated from elastic network models to assess the entropy
difference; more importantly, multiple conformers can also be
analyzed in the presence of a ligand to obtain more information
about entropy change in the process.
Protein L Denaturation Simulation. We carried out

denaturation simulations of Protein L to compare with the
results from Rocco et al.54 for denaturation. We made slight
changes to the simulation parameters (not the simulation box
dimensions). Instead of 30 nanoseconds, we simulated the
protein for 100 nanoseconds with thermal annealing from 300 to
550 K over 100 nanoseconds. Apart from the duration of the
simulation, the rate of change in temperature, and the total time
for the simulation, there is no change from the Rocco et al.
procedure.54 The ultimate goal is to follow the entropy during
the denaturation of the protein.

■ RESULTS AND DISCUSSION
Protein L Denaturation Analysis.The denaturation of the

protein was carried out to learn how well the Voronoi packing
entropy can capture the increases in entropy of the protein
during denaturation. Movie 1 was produced by taking 50 frames
from our simulation. We can see from Movie 1 that as the
temperature and time increase for protein L, the entropy

increases and we observe the peak in entropy at model 38
(indexed from 0). The data for each frame is also available in
Table S4. We also calculate Pearson’s correlation coefficient for
the solvent accessible surface area (SASA) and packing entropy
that is equal to 0.826, and the linear regression model R2 value
shown in Figure 3 is 0.683. This means that the more exposed
the surface area, the higher is its entropy, as would be expected as
per the “hydrophobic effect”.5,31,55

We have collected the values across all proteins in Dataset 1. It
is clear from Figure 4A,B that certain amino acids tend to have
specific packing fraction and entropy values depending on the
amino acid type. We can see from the bar plots that the highest
packing fraction and lowest entropy value is for tryptophan,
which means, on average, that tryptophan tends to pack more
densely than the other kinds of amino acids. As expected, glycine
and alanine have the highest packing entropy values. Another
notable entropic observation is for leucine; perhaps, because it
has ∼36 k observations, its range of entropy values is relatively
limited compared to the ranges for the other amino acids.
Cysteine is an interesting case because it often forms a covalent
bond with another cysteine. However, its packing entropy still
has an extremely wide range of values, suggesting that chemically
bonded cysteine pairs introduce rigidity that is not always so well
accommodated within a given protein structure or that unlinked
cysteine together with the covalently linked ones combine to
have higher variability in entropy.
The packing fraction range lies between 0 to 0.1 for all of the

amino acid types. This means that the occupied volume is less
than 10% of the available volume. This, in some sense, is an
artifact of the model’s characteristics; the occupied volume is
generated based on the fraction of the convex hull of all atoms of
the residues, which because of its convex character, systemati-
cally overestimates to some extent the actual volumes, and the
available volume is calculated using the Voronoi diagram that
extends to 2*(solvent radius + van der Waal’s radius). The

Figure 4. Box plots of residue type packing fractions and the corresponding packing entropies. The number of occurrences of the different types of
amino acids in Dataset 1 for each residue is noted in parentheses following each amino acid three-letter code on Y-axis in both A and B. (A) Highest
median value of packing fraction is around 0.05, which means that even for one of the largest amino acids, there is usually a significant volume available
tomove around and the relative difference in the volume occupied by the amino acids is reflected in the graph, together with overall higher variances for
the larger amino acids. (B) There is a general trend for smaller amino acids to have higher entropies as well, with the high value for glycine being
particularly notable. This means that they pack less tightly than the larger amino acids; these extreme values for glycine may reflect its frequent
appearance on the surface and in turns, but also its lack of any side chain degrees of freedom, which suggests that side-chain flexibility is important to
achieve the higher packing densities. Also, the means for most amino acid types lie between 10 and 30 J ° K−1 mol−1. Entropy for each type of amino
acid.
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critical information here is that the range of packing fractions are
different for different amino acids, and many of them are
distinct, although overlapping, in their ranges, as seen in Figure
4.
Comparison with Other Methods. We compared our

results with well-established NMA and Quasi-harmonic

methods, and the results are shown in Table S2. We obtained
a 0.979 Pearson correlation coefficient with Schlitter entropies
and 0.978 Pearson correlation coefficient with Andricioaei
entropies (calculated using the appropriate columns in Table
S2). Comparison of the methods with one another is listed in
Table 2 along with the dataset used. It is important to note that

Table 2. Comparison of Entropies Calculated by Different Methodsa

compared methods

Pearson’s correlation
coefficient (without
normalization)

Spearman rank-order correlation
coefficient (without normalization)

Pearson’s correlation
coefficient (with
normalization)

Spearman rank-order correlation
coefficient (with normalization)

Schlitter entropies−
Andricioaei entropies
(Dataset 2)

1 1 0.999 0.998

Schlitter entropies−Foldx
entropies (Dataset 2)

0.991 0.981 0.873 0.575

Andricioaei entropies−Foldx
entropies (Dataset 2)

0.99 0.981 0.863 0.565

Schlitter entropies−Packing
entropies (Dataset 2)

0.979 0.932 0.939 0.856

Andricioaei entropies−
Packing entropies
(Dataset 2)

0.978 0.932 0.931 0.843

Foldx entropies−Packing
entropies (Dataset 2)

0.983 0.947 0.959 0.734

QHA entropies−MCC
entropies (Dataset 3)

0.985 0.988 0.954 0.685

QHA entropies−Packing
entropies (Dataset 3)

0.86 0.861 0.899 0.723

MCC entropies−Packing
entropies (Dataset 3)

0.885 0.881 0.935 0.672

Schlitter entropies−NRES
(Dataset 2)

0.996 0.989 0.933 0.824

Andricioaei entropies−NRES
(Dataset 2)

0.996 0.989 0.925 0.811

Foldx entropies−NRES
(Dataset 2)

0.997 0.992 0.965 0.773

Packing entropies−NRES
(Dataset 2)

0.984 0.95 0.998 0.988

MCC entropies−NRES
(Dataset 3)

0.989 0.987 0.965 0.69

QHA entropies−NRES
(Dataset 3)

0.967 0.973 0.925 0.713

Packing entropies−NRES
(Dataset 3)

0.906 0.915 0.993 0.99

aThe dataset used is noted in the bracket. NRES means the number of residues in the proteins for which the total entropy of the protein structure is
calculated (length of the proteins). Normalized entropies are obtained by dividing the total entropy of the protein by 3N − 6, where N is the
number of heavy atoms in that protein.

Figure 5. Comparison of entropies for the set of 30 proteins from Dataset 2. All entropies are in J ° K−1 mol−1. (A) Packing entropy compared with
Schlitter QM entropies.16 (B) Packing entropy compared with Andricioaei MD entropies.18 (C) Packing entropies compared with FoldX Entropies.58

High correlations are observed for all cases as shown in Table 2.
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the Schlitter entropies are calculated using computer simu-
lations and a quantum-mechanical approach, the Andricioaei
entropies are calculated using the Quasi-harmonic method
based on the covariance matrix obtained from MD, and our
packing entropies are based only on a single conformation
without carrying out any simulations. We also compared the
results with the FoldX58 entropies (Sidechain + Backbone) and
obtain a Pearson correlation coefficient of 0.978. The linear
correlation between the different entropies with the packing
entropies can be seen clearly in Figures 5 and 6.
It is important to note that the total entropy correlation

between different methods may not be the best way to check the
performance of the method because we demonstrate in Table 2
that all of the methods’ total entropies are highly correlated with
the length of the protein with the help of Pearson’s correlation
coefficient. However, we can use the total entropy to compare

the proteins of the same lengths/different conformations of the
same proteins.
We also compared our packing entropies with the MCC

entropies, where we obtained a Pearson correlation coefficient of
0.939, and QHA entropies, where we obtained a Pearson
correlation of 0.924 (calculated using corresponding entropy
columns fromTable S3). Both data are the sum of all the entropy
terms from the Chakravorty et al. study.28 The comparison is
tabulated in Table S3.

Normalized Entropies. We normalized the total entropies
for dataset 2 and dataset 3 with 3N− 6 whereN is the number of
heavy atoms. The results after the normalization are shown in
Table 2, Figures 7, and 8. After the normalization, unlike before
(Figures 5 and 6), we see that the entropies still are linear but
form clusters instead of being evenly distributed along the
diagonal. This might be because of the removed length bias with
the normalization. We investigated both the Dataset 2 and 3 to

Figure 6.Comparison of entropies for the set of 73 proteins fromDataset 3 from the same study. All entropies are in J K−1 mol−1. (A) Packing entropies
compared with QHA.28 (B) Packing entropies compared with MCC.28

Figure 7. Comparison of entropies for the set of 30 proteins from Dataset 2. All entropies are in J ° K−1 mol−1. Normalized entropies are obtained by
dividing the total entropy of the protein by 3N− 6, whereN is the number of heavy atoms in that protein. (A) Normalized packing entropy compared
with Normalized Schlitter QM entropies.16 (B) Normalized packing entropy compared with Normalized Andricioaei MD entropies.18 (C)
Normalized packing entropies compared with normalized FoldX entropies.58 High correlations are observed for all cases as shown in Table 2.
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find the subfigure with distinct cluster. We observed that
normalized FoldX entropy (Dataset 2, presented in Figure 7)
had visually distinct clusters forming when compared to the
normalized packing entropy. We selected three examples each
from both the clusters by sorting, and the examples can be seen
in Figure 9A,B. We can see that there is no significant difference
between the A and B figures, except we see more beta sheets in B
and alpha helices in A. However, it is not a significant difference

to notice. This might be because of the small number of
examples in Dataset 2. Therefore, we decided to investigate
Dataset 3 with 73 examples, where the MCC method had two
distinct clusters. We followed the same procedure as described
above. The Dataset 3 normalized entropy comparison can be
seen in Figure 10, where we clearly see the low entropy cluster
consisting of alpha helices and high entropy clusters being
dominated by beta sheets. This could be because of the fact that

Figure 8.Comparison of entropies for the set of 73 proteins fromDataset 3 from the same study. All entropies are in J K−1 mol−1. Normalized entropies
are obtained by dividing the total entropy of the protein by 3N − 6, where N is the number of heavy atoms in that protein. (A) Normalized packing
entropies compared with normalized QHA.28 (B) Normalized packing entropies compared with normalized MCC.28

Figure 9. Subset of examples in Dataset 2 that are selected from individual clusters as seen in Figure 7C by sorting with normalized FoldX and
normalized packing entropy values. (A) Structures sorted from low to high with normalized entropy appear as data points on the bottom left side of
Figure 7C (B). Structures sorted from high to low with normalized entropy appear as data points on the bottom left side of Figure 7C.
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alpha helices have more interhelical contacts and therefore
usually used by densely packed proteins such as hemoglobin.
Hydrophobicity and Kidera Factor Entropies. We also

compare the packing entropies with the amino acid hydro-
phobicities on the Kyte−Doolittle scale56 for Dataset 1, as
shown in Figure 11. We observe regions with high density in
various parts of the plot. This is significant andmight be useful in
the future if an empirical entropy model was developed for the

packing entropies; such a model could be made continuous with
respect to the hydrophobicity/other amino acid factors strongly.
Also, this plot could have the same utility as detecting outliers on
the Ramachandran plot to assess protein quality.
We have further investigated the packing entropy with 10 best

Kidera factors57 covering 86% variance as explained in the
Kidera factors paper for the same purpose as the hydrophobicity
comparison. Like hydrophobicity, Kidera factors are also
sequence-based physical properties that can provide an
informative landscape like the Ramachandran plot. The results
are shown in Figure 12.

Comparison with B-Factors. We have compared the
packing entropy for each residue in Dataset 1 using the Pearson
correlation coefficient. We have compared the B-factors in four
different ways: (1) by adding the B-factors for all the atoms in
each residue, (2) by taking themedian ofB-factors of all atoms in
the residue, (3) by taking the mean of B-factors for all atoms in a
residue, and (4) by comparing Cα atom B-factors with the
packing entropies. The detailed results from these comparisons
are in Table S5. We observe correlations as high as 0.76 (higher
B-factors are usually associated with higher entropies) for the Cα
atom B-factors and above 0.70 for many other types of
comparisons. We see a trend where the sum of B-factors is
anti-correlated (−0.78) with the entropy for collagens and other
fibrous proteins. We see similar values for the mean and median
B-factor similarities with the Cα B-factors. However, it is
important to note that B-factors may also depend on
intermolecular interactions in the crystal.

Utility of Packing Entropy. The packing entropy’s most
significant attribute is that they do not depend on any statistical
distribution/model or simulation. This creates an opportunity
for energy-entropy simulations/conformer generation software
to apply them without relying on any biased methods. Also, it is
important to note that protein packing information could be as
important as the torsional angle distributions or other
parameters used for the protein dynamics.

Figure 10. Subset of examples in Dataset 3 that are selected from individual clusters as seen in Figure 8 by sorting with normalized MCC and
normalized packing entropy values. (A) Structures sorted from low to high with normalized entropy appear as data points on the bottom left side of
Figure 8C (B). Structures sorted from high to low with normalized entropy appear as data points on the bottom left side of Figure 8C.

Figure 11.Contour plot of the packing entropy vs hydrophobicity. The
data displayed is for 396,783 residues, and consequently, the contours
are fairly smooth. Several noticeable peaks are observed on the different
spectrum of hydrophobicity.
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Although this method’s strength is mainly distribution-
independent, it is also possible to derive a distribution of
protein packing entropies and use them as a contribution to the
additive entropies of a system term in a hybrid approach. In the
future, we will incorporate packing entropy into the entropy
model built by Chakravorty et al.28 as an additional term to the
seven different entropy terms to explore this approach. Their
method calculates all entropy terms and treats all the individual
entropy terms as an additive. This means that packing entropy
could easily be one more term that could be added to the others
to obtain the total entropy of a protein.
In considering various critical aspects of this study, it is

possible that certain Voronoi tessellation(s) have extreme acute
angles that would lead to overestimates of volumes. However,
these overestimates might not be a serious error since acute
angles mean that a slight change in the neighboring atom’s
location could drastically affect the calculated Voronoi
tessellation volume.
The packing entropy could also be useful to study mutations

from the free volume perspective in terms of fitting additional
atoms into the structure. If a bulky amino acid such as
tryptophan was replaced by a much smaller amino acid, this
would disturb the cohesion/hydrophobic core and would likely
change the dynamics. There have been large-scale studies on
such mutations.59 The relative change in the entropy after
mutation could provide an estimate of the disturbance to protein
cohesion. The same observation could be made for replacing
smaller with other larger amino acids and their effect on
function.60 It can also be helpful for enzyme design techniques
where entropies are used.61

We are trying to explore whether packing entropy can be used
to investigate the disordered regions in proteins. This is a
particularly difficult challenge because of the absence of
structural data for the disordered region. However, as a
hypothesis, regions of the proteins with consistently high
packing entropies could serve to identify the disordered regions.
Schlitter et al.16 concluded that the time taken by simulations

is a major drawback to the entropy calculation process. This
difficulty is presently a problem for all simulation-based

methods. However, the present packing entropies show that
the entropy calculation does not have to rely on values derived
from the simulations themselves. Simulation databases, such as
the MoDEL database,62 have trajectories of duration of 10 ns,
and the μMoDEL database has results for 30 proteins extending
from 0.1 up to 1 μs for the nMoDEL subset. This indicates that
any simulation-based entropies will be limited to a specific
timescale. Therefore, obtaining the entropies that are simu-
lation-independent will be difficult to achieve.
The present method relies only on a single structure, which is

its major advantage; it means that this consideration is
independent of the method used to evaluate the entropies,
which could be carried out by methods other than the ones used
here. Also, reliance on eq 3 could likewise be changed.
This method is freely available as a web server at packing-

entropy.bb.iastate.edu, and the application programing interface
is also available in the PACKMAN package (https://github.
com/Pranavkhade/PACKMAN).
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Figure 12. Packing entropy (X-axis) compared with various Kidera factors (Y-axis).
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(23) Li, D.-W.; Brüschweiler, R. In silico Relationship between
Configurational Entropy and Soft Degrees of Freedom in Proteins and
Peptides. Phys. Rev. Lett. 2009, 102, 118108.
(24) Gyimesi, G.; Závodszky, P.; Szilágyi, A. Calculation of
Configurational Entropy Differences from Conformational Ensembles
Using Gaussian Mixtures. J. Chem. Theory Comput. 2017, 13, 29−41.
(25) Edholm, O.; Berendsen, H. J. C. Entropy Estimation from
Simulations of Non-Diffusive Systems. Mol. Phys. 1984, 51, 1011−
1028.
(26) Zhang, J.; Liu, J. S. On Side-Chain Conformational Entropy of
Proteins. PLoS Comput. Biol. 2006, 2, No. e168.
(27) Towse, C.-L.; Akke, M.; Daggett, V. The Dynameomics Entropy
Dictionary: A Large-Scale Assessment of Conformational Entropy
across Protein Fold Space. J. Phys. Chem. B 2017, 121, 3933−3945.
(28) Chakravorty, A.; Higham, J.; Henchman, R. H. Entropy of
Proteins Using Multiscale Cell Correlation. J. Chem. Inf. Model. 2020,
60, 5540−5551.
(29) Goethe, M.; Gleixner, J.; Fita, I.; Rubi, J. M. Prediction of Protein
Configurational Entropy (Popcoen). J. Chem. Theory Comput. 2018, 14,
1811.
(30)Maynard Smith, J. Natural Selection and theConcept of a Protein
Space. Nature 1970, 225, 563−564.
(31) Dill, K. A. Dominant Forces in Protein Folding. Biochemistry
2002, 29, 7133−7155.
(32) Chothia, C. Principles That Determine the Structure of Proteins.
Annu. Rev. Biochem. 1984, 53, 537−572.
(33) Kuntz, I. D.; Kauzmann, W. Hydration of Proteins and
Polypeptides. Adv. Protein Chem. 1974, 28, 239−345.
(34) Harpaz, Y.; Gerstein, M.; Chothia, C. Volume Changes on
Protein Folding. Structure 1994, 2, 641−649.
(35) Jernigan, R. L.; Kloczkowski, A. Packing Regularities in Biological
Structures Relate to Their Dynamics. Methods Mol. Biol. 2007, 350,
251−276.
(36) Eriksson, A. E.; Baase, W. A.; Zhang, X. J.; Heinz, D. W.; Blaber,
M.; Baldwin, E. P.; Matthews, B. W. Response of a Protein Structure to
Cavity-Creating Mutations and Its Relation to the Hydrophobic Effect.
Science 1992, 255, 178−183.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00999
ACS Omega 2022, 7, 20719−20730

20729

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+L.+Jernigan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0996-8360
https://orcid.org/0000-0003-0996-8360
mailto:jernigan@iastate.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pranav+M.+Khade"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0756-9828
https://orcid.org/0000-0002-0756-9828
https://pubs.acs.org/doi/10.1021/acsomega.2c00999?ref=pdf
https://doi.org/10.1016/S1093-3263(00)00138-8
https://doi.org/10.1063/1.4978893
https://doi.org/10.1063/1.4978893
https://doi.org/10.1146/ANNUREV.BIOPHYS.36.040306.132550
https://doi.org/10.1146/ANNUREV.BIOPHYS.36.040306.132550
https://doi.org/10.1146/ANNUREV-BIOPHYS-060414-034042
https://doi.org/10.1146/ANNUREV-BIOPHYS-060414-034042
https://doi.org/10.1073/PNAS.1621154114
https://doi.org/10.1073/PNAS.1621154114
https://doi.org/10.1016/S0959-440X(97)80028-0
https://doi.org/10.1016/S0959-440X(97)80028-0
https://doi.org/10.2174/138920309788452209
https://doi.org/10.2174/138920309788452209
https://doi.org/10.2174/138920309788452209
https://doi.org/10.1021/cr800551w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr800551w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1195
https://doi.org/10.1002/wcms.1195
https://doi.org/10.1016/j.jmgm.2015.09.010
https://doi.org/10.1016/j.jmgm.2015.09.010
https://doi.org/10.1016/j.jmgm.2015.09.010
https://doi.org/10.1016/J.SBI.2007.03.016
https://doi.org/10.1016/J.SBI.2007.03.016
https://doi.org/10.1016/J.SBI.2007.03.016
https://doi.org/10.1039/C9CP02504A
https://doi.org/10.1039/C9CP02504A
https://doi.org/10.1021/ACS.JCTC.8B00100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ACS.JCTC.8B00100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ACS.JCTC.8B00100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pro.5560041101
https://doi.org/10.1002/pro.5560041101
https://doi.org/10.1021/ma50003a019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma50003a019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0009-2614(93)89366-p
https://doi.org/10.1016/0009-2614(93)89366-p
https://doi.org/10.1002/1097-0134(20010401)43:1<45:AID-PROT1016>3.0.CO;2-N
https://doi.org/10.1002/1097-0134(20010401)43:1<45:AID-PROT1016>3.0.CO;2-N
https://doi.org/10.1002/1097-0134(20010401)43:1<45:AID-PROT1016>3.0.CO;2-N
https://doi.org/10.1063/1.1401821
https://doi.org/10.1063/1.1401821
https://doi.org/10.1021/ct0500904?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct0500904?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500684w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500684w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00563?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00563?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4996847
https://doi.org/10.1063/1.4996847
https://doi.org/10.1103/PhysRevLett.102.118108
https://doi.org/10.1103/PhysRevLett.102.118108
https://doi.org/10.1103/PhysRevLett.102.118108
https://doi.org/10.1021/acs.jctc.6b00837?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00837?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00837?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00268978400100661
https://doi.org/10.1080/00268978400100661
https://doi.org/10.1371/journal.pcbi.0020168
https://doi.org/10.1371/journal.pcbi.0020168
https://doi.org/10.1021/acs.jpcb.7b00577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.7b00577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.7b00577?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00611?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00611?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/225563a0
https://doi.org/10.1038/225563a0
https://doi.org/10.1021/BI00483A001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.bi.53.070184.002541
https://doi.org/10.1016/S0065-3233(08)60232-6
https://doi.org/10.1016/S0065-3233(08)60232-6
https://doi.org/10.1016/S0969-2126(00)00065-4
https://doi.org/10.1016/S0969-2126(00)00065-4
https://doi.org/10.1385/1-59745-189-4:251
https://doi.org/10.1385/1-59745-189-4:251
https://doi.org/10.1126/science.1553543
https://doi.org/10.1126/science.1553543
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00999?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(37) Liang, J.; Dill, K. A. Are Proteins Well-Packed? Biophys. J. 2001,
81, 751.
(38) Khade, P. M.; Kumar, A.; Jernigan, R. L. Characterizing and
Predicting Protein Hinges for Mechanistic Insight. J. Mol. Biol. 2020,
432, 508.
(39) Scaramozzino, D.; Khade, P. M.; Jernigan, R. L.; Lacidogna, G.;
Carpinteri, A. Structural compliance: A new metric for protein
flexibility. Proteins 2020, 88, 1482.
(40) Aurenhammer, F. Voronoi diagrams-a survey of a fundamental
geometric data structure. ACM Comput. Surv. 1991, 23, 345.
(41) Poupon, A. Voronoi and Voronoi-Related Tessellations in
Studies of Protein Structure and Interaction. Curr. Opin. Struct. Biol.
2004, 14, 233−241.
(42) Cazals, F. Revisiting the Voronoi Description of Protein-Protein
Interfaces. Protein Sci. 2006, 15, 2082.
(43) Andronov, L.; Orlov, I.; Lutz, Y.; Vonesch, J.-L.; Klaholz, B. P.
ClusterViSu, aMethod for Clustering of Protein Complexes by Voronoi
Tessellation in Super-Resolution Microscopy. Sci. Rep. 2016, 6, 24084.
(44) Gerstein, M.; Tsai, J.; Levitt, M. The Volume of Atoms on the
Protein Surface: Calculated from Simulation, Using Voronoi
Polyhedra. J. Mol. Biol. 1995, 249, 955.
(45) Kumar, V. S.; Kumaran, V. Voronoi Cell Volume Distribution
and Configurational Entropy of Hard-Spheres. J. Chem. Phys. 2005,
123, 114501.
(46) Richards, F. M. The Interpretation of Protein Structures: Total
Volume, Group VolumeDistributions and Packing Density. J. Mol. Biol.
1974, 82, 1−14.
(47) Flory, P. J. Principles of Polymer Chemistry; Cornell University
Press, 1953.
(48) Wang, G.; Dunbrack, R. L. PISCES: A Protein Sequence Culling
Server. Bioinformatics 2003, 19, 1589−1591.
(49) Sankar, K.; Jia, K.; Jernigan, R. L. Knowledge-Based Entropies
Improve the Identification of Native Protein Structures. Proc. Natl.
Acad. Sci. U.S.A. 2017, 114, 2928−2933.
(50) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.;Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235−242.
(51) THIESSEN, A. H. PRECIPITATION AVERAGES FOR
LARGE AREAS. Mon. Weather Rev. 1911, 39, 1082−1089.
(52) Bondi, A. VanDerWaals Volumes and Radii. J. Phys. Chem. 1964,
68, 441−451.
(53)Delaunay, B. Sur La Sphere Vide. Izv. Akad. Nauk SSSR, Otd.Mat.
Estestv. Nauk 1934, 7, 793−800.
(54) Rocco, A. G.;Mollica, L.; Ricchiuto, P.; Baptista, A.M.; Gianazza,
E.; Eberini, I. Characterization of the Protein Unfolding Processes
Induced by Urea and Temperature. Biophys. J. 2008, 94, 2241−2251.
(55) Sturtevant, J. M. Heat Capacity and Entropy Changes in
Processes Involving Proteins. Proc. Natl. Acad. Sci. U.S.A. 1977, 74,
2236−2240.
(56) Kyte, J.; Doolittle, R. F. A Simple Method for Displaying the
Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105−132.
(57) Kidera, A.; Konishi, Y.; Oka, M.; Ooi, T.; Scheraga, H. A.
Statistical Analysis of the Physical Properties of the 20 Naturally
Occurring Amino Acids. J. Protein Chem. 1985, 4, 23−55.
(58) Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.;
Serrano, L. The FoldX Web Server: An Online Force Field. Nucleic
Acids Res 2005, 33, W382.
(59) Gray, V. E.; Hause, R. J.; Fowler, D. M. Analysis of Large-Scale
Mutagenesis Data To Assess the Impact of Single Amino Acid
Substitutions. Genetics 2017, 207, 53.
(60) Loo, T. W.; Clarke, D. M. Functional Consequences of Glycine
Mutations in the Predicted Cytoplasmic Loops of P-Glycoprotein. J.
Biol. Chem. 1994, 269, 7243−7248.
(61) Xie, W. J.; Asadi, M.; Warshel, A. Enhancing Computational
Enzyme Design by a Maximum Entropy Strategy. Proc. Natl. Acad. Sci.
U.S.A. 2022, 119, No. e2122355119.
(62)Meyer, T.; D’Abramo,M.; Hospital, A.; Rueda, M.; Ferrer-Costa,
C.; Pérez, A.; Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.;
Gelpí, J. L.; Orozco, M. MoDEL (Molecular Dynamics Extended

Library): A Database of Atomistic Molecular Dynamics Trajectories.
Structure 2010, 18, 1399−1409.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00999
ACS Omega 2022, 7, 20719−20730

20730

https://doi.org/10.1016/S0006-3495(01)75739-6
https://doi.org/10.1016/j.jmb.2019.11.018
https://doi.org/10.1016/j.jmb.2019.11.018
https://doi.org/10.1002/prot.25968
https://doi.org/10.1002/prot.25968
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
https://doi.org/10.1016/j.sbi.2004.03.010
https://doi.org/10.1016/j.sbi.2004.03.010
https://doi.org/10.1110/ps.062245906
https://doi.org/10.1110/ps.062245906
https://doi.org/10.1038/srep24084
https://doi.org/10.1038/srep24084
https://doi.org/10.1006/jmbi.1995.0351
https://doi.org/10.1006/jmbi.1995.0351
https://doi.org/10.1006/jmbi.1995.0351
https://doi.org/10.1063/1.2011390
https://doi.org/10.1063/1.2011390
https://doi.org/10.1016/0022-2836(74)90570-1
https://doi.org/10.1016/0022-2836(74)90570-1
https://doi.org/10.1093/bioinformatics/btg224
https://doi.org/10.1093/bioinformatics/btg224
https://doi.org/10.1073/pnas.1613331114
https://doi.org/10.1073/pnas.1613331114
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1175/1520-0493(1911)39<1082b:pafla>2.0.co;2
https://doi.org/10.1175/1520-0493(1911)39<1082b:pafla>2.0.co;2
https://doi.org/10.1021/j100785a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1529/biophysj.107.115535
https://doi.org/10.1529/biophysj.107.115535
https://doi.org/10.1073/PNAS.74.6.2236
https://doi.org/10.1073/PNAS.74.6.2236
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1007/BF01025492
https://doi.org/10.1007/BF01025492
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1534/genetics.117.300064
https://doi.org/10.1534/genetics.117.300064
https://doi.org/10.1534/genetics.117.300064
https://doi.org/10.1016/S0021-9258(17)37274-5
https://doi.org/10.1016/S0021-9258(17)37274-5
https://doi.org/10.1073/pnas.2122355119
https://doi.org/10.1073/pnas.2122355119
https://doi.org/10.1016/j.str.2010.07.013
https://doi.org/10.1016/j.str.2010.07.013
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00999?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

