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Abstract
Background: Observed co-expression of a group of genes is frequently attributed to co-regulation by shared 
transcription factors. This assumption has led to the hypothesis that promoters of co-expressed genes should share 
common regulatory motifs, which forms the basis for numerous computational tools that search for these motifs. While 
frequently explored for yeast, the validity of the underlying hypothesis has not been assessed systematically in 
mammals. This demonstrates the need for a systematic and quantitative evaluation to what degree co-expressed 
genes share over-represented motifs for mammals.

Results: We identified 33 experiments for human and mouse in the ArrayExpress Database where transcription 
factors were manipulated and which exhibited a significant number of differentially expressed genes. We checked for 
over-representation of transcription factor binding sites in up- or down-regulated genes using the over-representation 
analysis tool oPOSSUM. In 25 out of 33 experiments, this procedure identified the binding matrices of the affected 
transcription factors. We also carried out de novo prediction of regulatory motifs shared by differentially expressed 
genes. Again, the detected motifs shared significant similarity with the matrices of the affected transcription factors.

Conclusions: Our results support the claim that functional regulatory motifs are over-represented in sets of 
differentially expressed genes and that they can be detected with computational methods.

Background
Patterns of differential gene expression in organisms are
known to result from a complex and dynamic gene regu-
latory network, where the interactions between tran-
scription factors (TFs) and their target genes take center
stage. Therefore, the activation or deactivation of TFs in
specific signaling pathways triggers up- or down-regula-
tion of their direct targets. Those effects have been sub-
ject of numerous studies dealing with different signaling
pathways such as development and hormone signaling [1-
4]. For some of these processes, it is well understood how
TFs directly transform regulatory signals into gene
expression levels by binding to proximal or distal promot-
ers of genes.

The roles of TFs in regulating gene expression have
been widely observed in microarray experiments, in
which TF genes were knocked out, over-expressed, or
stimulated with ligands [5-21]. These studies generally
investigated the change of gene expression induced by
altering the activity of certain TFs and approved the roles
of TFs in gene expression. Furthermore, computational
studies have also demonstrated that genes with common
regulatory binding sites are more likely to have similar
expression profiles [22,23]. The importance of TFs in
gene expression regulation naturally raises the question
to what degree differential expression of genes under dif-
ferent conditions indicates the presence of shared regula-
tory motifs. If so, this provides a useful theoretical
foundation for novel motif prediction and functional
studies. Indeed, it has been a widely used and accepted
hypothesis that co-expressed genes share common regu-
latory motifs. It serves as a useful working hypothesis in
many scenarios, and numerous computational tools for
regulatory motif discovery built with considerable suc-
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cess on this hypothesis [24-36]. While it has been fully
explored and approved in yeast [37-39], little is known
about the applicability of this working hypothesis for
mammals.

Considering the rather anecdotal basis for its accep-
tance, the hypothesis of co-expressed genes sharing com-
mon regulatory motifs calls for a systematic evaluation.
In fact, microarray experiments in public databases are
now widely available, providing expression profiles of
thousands of genes under numerous different conditions
on a genome-wide scale. As these data are a popular basis
for regulatory motif discovery, there is a big demand for a
systematic evaluation of the underlying hypothesis.

In this work, we analyzed differentially expressed genes
in microarray experiments from the ArrayExpress
database [40] that were related to transcription factor
activity modifications. We particularly analyzed such
experiments, where the perturbation was aimed at a tran-
scription factor. This setting allows us to test whether we
are able to recover binding sites of the altered transcrip-
tion factor from the differential genes alone. This is
clearly not trivial because the set of differential genes will
encompass a whole cascade of up- or down-regulated
genes due to the initial perturbation. Although the
microarray database contains many more experiments
from which co-expressed genes could be derived, we
focus on the ones where we know the identity of the
causal transcription factor, such that we can evaluate the
success rate of our recovery method.

We study two approaches toward checking whether the
binding sites of the affected TFs are over-represented in
the differentially expressed genes. In the first approach,
we use oPOSSUM[25] to analyze the over-representation
of Jaspar matrices [41,42], which represent profiles of
binding sites derived from known TF binding sites.
Among these matrices, we focus our attention on the
matrices corresponding to the affected TFs, which we will
hence refer to as target matrices throughout the rest of
this paper. We apply oPOSSUM to evaluate the over-rep-
resentation of target matrices in the promoter regions of
differentially expressed genes according to a probabilistic
scoring scheme. The second approach we investigate is
based on de novo predictions using Weeder[43]. This
motif finding tool computes de novo motif predictions,
which allow us to compare the similarity between those
predictions and matrices in the Jaspar database. High
similarity suggests that affected TF binding sites were
recovered in de novo prediction. Figure 1 shows the basic
workflow of these two approaches.

Methods
Description of TF binding sites
Recognition of TF binding sites in promoter regions of
differentially expressed genes was performed by detect-

ing over-represented position frequency matrices
(PFMs), which were taken from the publicly available
Jaspar database [41,42]. This database contains a set of
138 matrices representing experiment-determined bind-
ing profiles, including 101 matrices for vertebrate TFs.
We used percent similarity scores, predicted by Jaspar
web-interfaced tool for similarity comparison of different
Jaspar matrices [44]. Percent similarity has a maximal
score of 100%, which indicates the highest similarity.

Microarray experiment selection and analysis
To obtain a set of suitable microarray experiments, we
searched the ArrayExpress database for experiments
with modified TF activity. We searched the TFs against
the ArrayExpress database [40]. We verified the rela-
tionship of the TFs with the associated experiments by
inspecting the literature references or experiment
descriptions, and selected those experiments where TFs
or their genes were modified by the experimental meth-
ods. The TF activity modifications we encountered
included gene knockout, transgenic over-expression,
ligand stimulation or stimulation by mimicking the action
of transcription factor, among others.

Most of the microarray experiments in the ArrayEx-
press database provide both raw and processed (or nor-
malized) data. In this work, we preferably chose the
former. Raw data were normalized by RMA [45], a popu-
lar normalization method for Affymetrix data, with

Figure 1 The pipeline for over-representation evaluation of TF 
binding sites. (a) and (b) TF binding sites were described with the ma-
trices in Jaspar Database; (c) experiments with modified TF activity 
were selected from the ArrayExpress Database and (d) analyzed 
with computational methods for differentially expressed genes; (e) 
and (f) over-represented motifs or matrices were predicted using 
Weeder and oPOSSUM and those motifs (h) or matrices (g) were 
compared with the target matrices to check whether the binding sites 
of affected TFs were recovered.
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default parameter setting, as implemented in the R affy
package. Then, the SAM [46] method was used for differ-
ential expression analysis and p-value was assigned to
each gene for its significance of differentially expression.
We sorted genes with ascending p-value as a gene list. In
next step, we would choose the top n genes for over-rep-
resentation and de novo prediction analysis, where n was
an parameter for input gene number, e.g. set to n = 100, n
= 200 or n = 400. For many of the experiments SAM did
not return any differentially expressed genes with certain
arbitrary cutoff. In search of the reason for this we stud-
ied the quality of the experiments from the database. In
principle, microarray experiments involve a number of
steps that are prone to errors, which may significantly
distort the outcome of subsequent analysis. We studied
primarily two criteria for the quality of an experiment.
The first one was based on scatter plots, in which the
averaged normalized expression level of one condition
was plotted against that of another condition. For a
meaningful microarray experiments, most of genes lies
around diagonal line while differentially expressed genes
are recognized by their distance to the main diagonal
[47]. Another criterion for the quality of an experiment is
the distribution of the p-value computed by SAM. Infor-
mative experiments should show a distribution of p-val-
ues which is roughly uniform in general with an increase
or a peak for small p-values [48]. For all experiments, we
inspected both scatter plot and p-value histogram and
excluded experiments that did not obey the above crite-
ria. All these plots are available in Additional file 1.

Over-representation of Jaspar matrices
Numerous tools for finding over-represented regulatory
motifs in differentially expressed genes are available [49].
Among them, we employed oPOSSUM[24,25] for over-
representation analysis. oPOSSUM is a tool that combines
the phylogenetic footprinting method with statistical
approaches for identifying over-represented Jaspar
matrices in a set of co-expressed genes; it takes gene IDs
as input and ranks matrices by two scores to describe
their over-representation significance, namely the z-score
and the Fisher-score.

While there is no systematic comparison between the
performance of different over-representation analysis
tools, we relied on the oPOSSUM tool for several reasons.
First of all, oPOSSUM is relatively fast if the number and
lengths of promoters are within reasonable bounds. Fur-
thermore, oPOSSUM can handle long promoter
sequences ranging from -20, 000 bp to +20, 000 bp
around the transcription start site (TSS) and takes into
account TF binding sites throughout this full range. As
another advantage over other over-representation analy-
sis tools, oPOSSUM uses phylogenetic footprinting to
improve performance. Finally, the authors of oPOSSUM

validated its performance with NF-κB microarray experi-
ments and random sampling data in a setting that is simi-
lar to ours [24].

The oPOSSUM tool allows the user to specify a number
of parameters, including species, Jaspar matrices, level
of conservation (background conservation), matrix
match threshold, promoter length, and display option.
For most of the tested cases, top 30% conservation, 85%
matrix match threshold and 200 input sequences with -
2000 to +2000 bp around the TSS (+1 bp) were good
choices (see Additional file 2). We set those parameters
for all the experiments as default parameter setting.
Whenever we did not find the target matrices to be over-
represented under those settings, we manually tried dif-
ferent setting of promoter number and length to check
whether target matrices would rank among the over-rep-
resented matrices. We followed the suggestion by the
authors of oPOSSUM that motifs with a z-score exceeding
10 and a Fisher-score below 0.01 could be considered sig-
nificantly over-represented [25]. However, when the tar-
get matrices satisfied only one of the above cutoffs, we
would treat it as weakly over-represented. Hence, for each
experiment, according to the z-scores and Fisher-scores,
target matrices would be categorized as either signifi-
cantly over-represented (S), weakly over-represented
(W), or not over-represented (N).

De novo prediction of motifs
To further study over-representation of target matrices in
promoter regions of co-expressed genes, we predicted
over-represented motifs using de novo motif finding
methods. In choosing an appropriate de novo motif find-
ing tool among the numerous available approaches, we
followed the systematic evaluation by Tompa et al. [50],
which found the Weeder tool [43] particularly successful
in the context of binding site discovery. Using the same
settings as with oPOSSUM (promoters of 200 top ranking
differential genes, -2000 to +2000 bp around the TSS), we
further analyzed all experiments using Weeder. Each run
of Weeder predicted 10 motif profiles by default. We
then compared the similarity between those motifs and
the Jaspar target matrices using the Jaspar web-
interface tool [44] and recorded the percent similarity
score for the most similar pairs.

Results and Discussion
Microarray analysis
We searched the ArrayExpress database for experi-
ments involving hybridizations that differed in loss or
gain of the function of a specific TF. We retrieved 88
microarray experiments for human and mouse. Those
experiments cover a whole bandwidth of methods to
modify the activity of TFs; at least 59 experiments involve
methods that decreased the activity of TFs such as gene
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knockout or RNAi. In more than 34 experiments, TF
activity was increased by techniques such as ligand stim-
ulation, or transgenic over-expression. A summary of TF
activity modifications used is given in Additional file 3.

In the process of eliminating low-quality experiments,
we excluded 11 experiments that either had only one rep-
lication, or where our standard analysis procedure
reported errors without clear reason. For the remaining
experiments, we manually assessed the microarray qual-
ity based on scatter plots and p-value frequency distribu-
tion (see Additional file 1). Whenever the scatter plot or
p-value distribution was obviously unreasonable, which
indicates some problems of the underlying experiment,
we excluded them from further step. As a result, the dif-
ferentially expressed genes in 33 out of the 77 experi-
ments were used for over-representation and de novo
analysis. The following TFs were perturbed in those 33
experiments: cMyc, ESRalpha, irf1, HNF4a, nmyc, Myf,
FoxQ, Myb NFkappaB2, AIbZIP, HiF1, Cepba, Evi1,
Foxa2, CREB, PPARg2, p53, PPARalpha, PPARI, USF1,
IRF6, HMGA2, STAT2, e2f2, HNF1a, Mef2c, Gata-1,
KLF15, Nkx2.5 and Gata-3. They are associated with 30
target matrices in the Jaspar database. We summarize
those TFs and their target matrices in Table 1. In the next
step of our work, we would evaluate the over-representa-
tion of those target matrices in promoter regions of dif-
ferentially expressed genes. According to the
classification of Jaspar matrices by Sandelin and Was-
sserman, these TFs cover nine out of the 11 TF classes
identified in [41] (see Additional file 4). Besides of the
matrices falling into these nine familial profiles, another
eight out of 30 target matrices remain unclassified in the
scheme by Sandelin and Wasserman.

A case-study for over-representation
In order to illustrate our procedure, we take an exemplary
in-depth look at the estrogen receptor α (ERα). The estro-
gen receptor (ER) is a ligand-dependent TF that can be
activated by estrogen; ER can recognize short DNA
sequences, the so-called estrogen response elements
(EREs) (5'-GGTCAnnnTGACC-3') in the proximal and
distal promoters of genes and regulates gene expression
[51]. Here we used the microarray experiment supplied
by Lin et al. in the ArrayExpress database (ArrayEx-
press ID E-GEOD-11352) [8]. In their work, cells in a
estrogen-receptor positive breast cancer cell line (MCF7)
were either exposed to 10 nM estradiol (a sex hormone,
the major estrogen of human) or control only. Then sam-
pled cells were prepared for microarray analysis at the
time-points of 12, 24 and 48 hours; each sample hybrid-
ization was repeated three times. In this way, the authors
obtained 18 hybridizations. We used SAM for differential
expression and all the genes were assigned with p-values,
which indicated the significance of differentially expres-

sion. We then sorted those genes according to their p-val-
ues and formed a gene list. The top n up-or down-
regulated genes were selected as input of oPOSSUM anal-
ysis.

In the Jaspar database, we identified matrix ESR1 as a
profile for ERα binding sites. Figure 2 shows the output of
oPOSSUM with different gene numbers. In this example,
we used the top 100 and top 200 up-regulated genes,
respectively, of gene list as input to oPOSSUM, with back-
ground conservation of 30% and sequences from -2, 000
to +2, 000 bp around the TSS. Under both conditions,
oPOSSUM found ESR1 as a top ranked matrix under both
the Fisher-score and the z-score, which satisfied the
thresholds for significant over-representation. This dem-
onstrates that ER binding sites are indeed over-repre-
sented in differentially expressed gene promoters, and
that this over-representation can be recovered computa-
tionally.

Beside ESR1, we also found other matrices, such as Ar,
TLX1-NFIC and NFKB1. However, those matrices were
not as significantly over-represented as ESR1. Since fre-
quently several transcription factors are involved in regu-
lating gene expression [52-56], it is conceivable that the
additional matrices are reflections of interacting TFs
rather than false positive discoveries. Without further
experimental evidence, however, it is hard to tell in gen-
eral, even if they are only weakly over-represented.

As it turned out, input promoter number and promoter
length had a great influence on the sensitivity of oPOS-
SUM. Hence, we used the ESR1 matrix as a showcase to
evaluate different parameter settings for oPOSSUM. The
following points summarized our findings:

1. ESR1 can be detected as over-represented in a wide
range of promoter lengths from 4000 bp to 7000 bp.
One possible reason for this is that ER can bind to
proximal promoters as well as distal ones [8]. How-
ever, the region stretching from -2000 bp to +2000 bp
around the TSS is the preferred region.
2. ESR1 can be found significantly over-represented in
up-regulated genes under different numbers of up-
regulated genes, ranging between 40 and 800 genes.
For the down-regulated genes, ESR1 was found to be
over-represented when the gene number was greater
than 400, however, at a very low level of significance.

The importance of parameter settings for the perfor-
mance of oPOSSUM might indeed reflect properties how
a specific TF regulates its targets. For example, the ESR1
matrix was recognized as significantly over-represented
by oPOSSUM in promoters ranging from -2000 bp to
+2000 bp around the TSS, but not in the range of -2000 to
0 bp around the TSS, which might indicate the distribu-
tion of TF binding sites in promoter regions. Indeed, this
had already been addressed specifically for the ER tran-
scription factor by Lin et. al. Their Chip-PET experiment
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Table 1: Transcription factors and their Jaspar target matrices.

Experiment Name TF Name JasparClass Jaspartarget matrices

E-GEOD-10954 cMyc bHLH-ZIP MYC-MAX, MAX, Mycn

E-GEOD-11039 e2f2 E2F_TDP E2F1

E-GEOD-11352 ESRalpha Nuclear Receptor ESR1

E-GEOD-11809 irf1 TRP-CLUSTER IRF1 IRF2

E-GEOD-2060 CREB bZIP CREB1, bZIP910, bZIP911

E-GEOD-2192 PPARg2 Nuclear Receptor PPARG-RXRA, PPARG

E-GEOD-2527 Gata-1 ZN-FINGER, GATA Gata1

E-GEOD-3126 HNF4a NUCLEAR RECEPTOR HNF4A

E-GEOD-3244 p53 TP53 P53

E-GEOD-6077 nmyc bHLH-ZIP Mycn, MYC-MAX, MAX

E-GEOD-6487 Myf bHLH Myf

E-GEOD-7137 KLF15 ZN-FINGER, C2H2 Klf4

E-GEOD-7219 NFkappaB2 REL NF-kappaB, NFKB1

E-GEOD-7223 AIbZIP bZIP CREB1, bZIP910, bZIP911

E-GEOD-7835 HiF1 bHLH Arnt, Arnt-Ahr

E-GEOD-9786 PPARalpha Nuclear Receptor PPARG, PPARG-RXRA

E-MEXP-1444 Cepba bZIP Cebpa, Ddit3-Cebpa

E-MEXP-634 Gata-3 ZN-FINGER, GATA GATA3

E-GEOD-590 USF1 Zipper USF1

E-GEOD-5800 Irf6 TRP-CLUSTER IRF1 IRF2

E-GEOD-5823 c-MYC bHLH-ZIP Mycn, MYC-MAX, MAX

E-GEOD-2624 NF-kB REL NF-kappaB, NFKB1
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showed that the largest fraction (38%) of binding regions
mapped to intragenic regions of transcripts and were
localized within introns, whereas 23% were within 100 kb
from the 5' start sites, and 19% were within 100 kb of 3'
polyadenylation sites [8]. This clearly indicated signifi-
cant enrichment of ER binding sites in downstream
regions of promoters. This is in line with our observation
that ignoring the promoter ranging from 0 to +2000 bp
makes ESR1 not discoverable by over-representation
analysis. This allows the conclusion that over-representa-
tion conditions reflect the distribution of TF binding
sites, which is an important aspect in choosing proper
promoter regions in our motif finding and analysis.

Systematic analysis of performance of over-representation 
analysis
As the above example demonstrates, the ESR1 binding
site can be recovered through over-representation analy-
sis in up-regulated genes. To see whether this carries over
to other TFs, we proceeded to analyze the remaining
experiments for which we had identified differential
genes in the microarray experiments (see Methods).
Under the default parameter settings, we repeated the
above process for over-representation analysis with
oPOSSUM. We summarized the result of oPOSSUM analy-
sis in Table 2 (for detailed result, see Additional file 5).
Under default parameter settings, up to 12 target matri-
ces were found to be significantly over-represented in
either of up- or down-regulated genes. In seven experi-

ments, target matrices were over-represented at a low
level of significance. Due to the great influence of param-
eters, for those 21 experiments whose target matrices
were not significantly over-represented under default
parameter settings, we subsequently altered input pro-
moter number and length, leading to the identification of
significantly over-represented target matrices in seven
experiments and two new weakly over-represented
experiments. The remaining eight experiments did not
yield any of the target matrices to satisfy z-score above 10
or Fisher-score below 0.01. For all the experiments, we
also recorded conditions which recovered the target
matrices as over-represented at highest possible level of
significance (see Table 2).

We proceeded to determine whether this success rate
could actually be due to chance. For all the tested experi-
ments, oPOSSUM found on average 3.5 matrices to be sig-
nificantly over-represented per analysis, out of which one
happened to be the target matrix. We determined the
probability of this event by comparing to the overall num-
ber of candidate matrices in Jaspar. Then, the event of
finding the target matrix in a certain number of cases is
binomially distributed. We found target matrices to be
over-represented in 25 out of 33 experiments, including
significantly over-representation in 19 experiments. In
fact, the significance of finding the target matrix to be sig-
nificantly over-represented out of 33 cases has a binomial
tail probability below 2.2e - 16, which makes it appear

E-GEOD-3116 HNF4 NUCLEAR RECEPTOR HNF4A

E-GEOD-5424 Foxa2 Forkhead FOXF2, FOXD1, FOXC1, FOXL1, Foxq1, Foxd3, Foxa2, FOXI1

E-GEOD-8943 FOXQ1 Forkhead FOXF2, FOXD1, FOXC1, FOXL1, Foxq1, Foxd3, Foxa2, FOXI1

E-GEOD-11557 Evi-1 zinc finger Evi1

E-TABM-43 TP53 TP53 P53

E-GEOD-2815 Myb Helix-Turn-Helix Myb

E-GEOD-5475 PPARI Nuclear Receptor PPARG, PPARG-RXRA

E-GEOD-6846 STAT2 stat STAT1

E-GEOD-11836 Nkx3.1 HOMEO Nkx2-5

E-MEXP-871 HMGA2 - HMG-1, HMG-IY

E-MEXP-1413 E2F2 E2F TDP E2F1

Table 1: Transcription factors and their Jaspar target matrices. (Continued)
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highly unlikely that this performance would be due to
chance rather than the ability of the computational pipe-
line to pick up the right matrix. We recovered target
matrices correspond to 9 out of the 11 TF classes identi-
fied in [41], with the exceptions coming from the HMG
and Homeobox groups of transcription factors. The num-
ber of experiments we had available for study seems to be
insufficient, however, to fully decide whether this repre-
sents a bias in over-representation analysis with respect
to certain TF classes.

For all those 19 experiments where target motifs
appeared significantly over-represented under default
parameter setting, target matrices were found signifi-
cantly over-represented in either up-regulated genes or
down-regulated genes, but never in both. Although in
some experiments, target matrices were also weakly over-
represented, we can still conclude that TFs generally play
unequal roles in activating and repressing gene expres-
sion.

In this work, eight experiments did not allow us to
identify the target matrices to be over-represented. There
might be a plethora of reasons for this. First of all, we
evaluated the hypothesis that the information content of
PFMs had great influences on the performance of oPOS-
SUM. PFMs with low information content would be likely
to lead to more false positive binding site predictions,
which results in low performance of oPOSSUM. There-
fore, we carried out a Student's t-test for information

content of over-represented and not over-represented
matrices. The result showed a great difference in infor-
mation content (one-tailed p < 0.029). Although this was
in line with our hypothesis, we still could not ascribe all
failures to recover matrices to low information content.
Another hypothesis we investigated was that the real dis-
tribution of TF binding sites was out of the ability of
oPOSSUM. As two experiments related to Gata factors
did not yield over-represented target matrices, we investi-
gated their properties in more detail. Although ChIP-chip
experiments were available that indicated the binding
sites of Gata factors in proximal promoters [57], many
experiments suggested that Gata factors took important
roles by binding to regions out of -2000 bp and +2000 bp
of the TSS [58,59]. Together with seven other TFs, no
whole-genome binding site investigation was available in
public databases, making it hard to draw conclusions
without further experimental data. A final reason why
over-representation might fail in some cases lies in the
networked nature of regulation by transcription factors.
TFs do not act purely by themselves, but interact with
other TFs through a cascade of signals. In microarray
experiments, genes with differential expression may not
be the direct target of TFs. For example, c-myc can be reg-
ulated by other TFs, and c-myc may also regulate about
15% of all other genes, including numerous other TF
genes [60,61]; under such conditions, it is hard to distin-

Figure 2 Over-representation of ESR1 in up-regulated genes.  (a) 100 up-regulated genes and (b) 200 up-regulated genes were input into oPOS-
SUM.
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Table 2: Results for over-representation analysis in 33 experiments

Experiment Name. TF default parameter setting Con. Most significantly over-representation

Up-regulated 
genes

Down-regulated 
genes

Parameter setting status

E-GEOD-10954 cMyc N S 400, down-regulated, 10000 bp S

E-GEOD-11352 ESRalpha S N 100, up-regulated, 4000 bp S

E-GEOD-11809 irf1 S W 100, up-regulated, 4000 bp S

E-GEOD-3126 HNF4a S N 400, up-regulated, 4000 bp S

E-GEOD-6077 nmyc S N 100, up-regulated, 7000 bp S

E-GEOD-6487 Myf S N 400, up-regulated, 4000 bp S

E-GEOD-7219 NFkappaB2 S N 200, up-regulated, 7000 bp S

E-GEOD-7223 AIbZIP S N 200, up-regulated, 4000 bp S

E-GEOD-7835 HiF1 N S 400, up-regulated, 7000 bp S

E-MEXP-1444 Cepba S W 100, up-regulated, 7000 bp S

E-GEOD-2624 NF-kB N S 200 down-regulated, 2000 bp S

E-GEOD-11557 Evi-1 N S 200 down-regulated, 2000 bp S

E-GEOD-5424 Foxa2 W N 300 up-regulated, 7000 bp S

E-TABM-43 TP53 W N 200 up-regulated, 2000 bp S

E-GEOD-3116 HNF4 W N 100 up-regulated, 2000 bp S

E-GEOD-2060 CREB N N 400, up-regulated, 7000 bp S

E-GEOD-3244 p53 N N 100, up-regulated, 7000 bp S

E-GEOD-9786 PPARalpha N N 100, down-regulated, 2000 bp S

E-GEOD-5475 PPARI N N 100 down-regulated, 7000 bp S

E-GEOD-2192 PPARg2 W N 200, up-regulated, 4000 bp W

E-GEOD-11039 e2f2 W N 100, up-regulated, 4000 bp W

E-GEOD-590 USF1 N N 300 up-regulated, 7000 bp W
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E-GEOD-5800 Irf6 N N 100 up-regulated, 4000 bp W

E-GEOD-8943 FOXQ1 W N 200 up-regulated, 4000 bp W

E-GEOD-5823 c-MYC W W 300 up-regulated 4000 bp W

E-GEOD-2527 Gata-1 N N - -

E-GEOD-7137 KLF15 N N - -

E-MEXP-634 Gata-3 N N - -

E-GEOD-2815 Myb N N - -

E-GEOD-6846 STAT2 N N - -

E-GEOD-11836 Nkx3.1 N N - -

E-MEXP-871 HMGA2 N N - -

E-MEXP-1413 E2F2 N N - -

S: significantly over-represented; W: weakly over-represented; N: not over-represented

Table 2: Results for over-representation analysis in 33 experiments (Continued)

guish signals directly induced by a TF from such cas- can indeed be recovered in many cases using de novo pre-

caded "second-round" signals.

De novo prediction
In the previous step, oPOSSUM was applied to determine
over-represented TF binding sites related Jaspar matri-
ces in differentially expressed genes. A natural next step
was to determine whether those regulatory motifs could
also be recovered by de novo predictions. We performed
de novo prediction in promoter regions of differentially
expressed genes using the Weeder tool [43]. Figure 3
shows the logos for predicted motifs and their similarity
with target matrices. In order to evaluate how well target
matrices could be recovered by Weeder, we summarized
the number of experiments with recovered target matri-
ces at different similarity percentage cutoffs, as shown in
Figure 4. For all the experiments, Weeder predicted at
least one motif sharing ≥ 60% similarity and the number
of recovered experiments decreased with stricter similar-
ity percentage cutoff. Considering the nature of TF bind-
ing sites and the mechanism of de novo prediction
methods [62], we could not expect the predicted motifs
to share a high degree of similarity with the target matri-
ces. If we set the similarity cutoff 75% for recovering tar-
get matrices, our predictions could recover the TF
binding sites in about 73% of the 33 experiments. In gen-
eral, we may conclude that the affected TF binding sites

diction methods.

Conclusions
In this work, we report a computational evaluation on
recovering TF binding sites from differentially expressed
genes using two different methods. Our over-representa-
tion analysis with oPOSSUM proves successful in 25 out of
33 experiments exhibiting differential expression patterns
as a consequence of activating or deactivating TFs, indi-
cating that TF binding site recovery is generally possible
with computational methods when dealing with one sin-
gle manipulated transcription factor. Our evaluation of de
novo prediction for all experiments succeeds in recover-
ing motifs similar to the binding site of the affected TFs in
about 73% of all cases with a cutoff of similarity percent-
age of 75%. This allows the conclusion that TF binding
site recovery may even be achieved using a de novo
approach, though less reliable than oPOSSUM over-repre-
sentation analysis.

In general, our findings support the hypothesis that the
over-representation of TF binding sites in the promoter
regions of differentially expressed genes can be detected
with computational tools and it confirms that TF binding
sites can be predicted by utilizing information of differen-
tial expression. With the increasing availability of
microarray data in public databases, it will be a useful
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theoretical foundation for novel TF binding site predic-
tion and functional studies.

In this work, we could also specify the influence of
input gene numbers and promoter length and their
importance for the sensitivity of computational methods,
which indicates the different properties of TF regulating
gene expression. More specifically, we could observe very
particular regulatory effects such as the critical effect of
downstream ESR1 binding sites on gene expression.

Additional material

Additional file 1 Assessment of microarray quality with scatter plots 
and p-value frequency histograms. To eliminate those microarrays with 
low quality, we used two methods for quality evaluation. The first one was 
based on scatter plots, in which the averaged normalized expression value 
of manipulated hybrids and control hybrids were plotted. Another meth-
ods was histograms of q-value frequency distributions, predicted by SAM. 
We manually checked those distribution and selected reasonable experi-
ments for differential expression analysis.

Figure 3 Regulatory motifs predicted by Weeder and their similarity with target matrices.

Experiment Target
Matrix

Logo of weeder motifs percent
scores

Experiment Target
Matrix

Logo of weeder motifs percent
scores

E-GEOD-10954 MYC-
MAX

84.5 E-GEOD-11352 ESR1 75.7

E-GEOD-11809 IRF2 73.84 E-GEOD-2060 CREB1 76.6

E-GEOD-2192 PPARG-
RARX

84.8 E-GEOD-3126 HNF4A 75.9

E-GEOD-3244 TP53 86.9 E-GEOD-6077 Mycn 75.1

E-GEOD-6487 Myf 88.2 E-GEOD-7219 dl 1 71.5

E-GEOD-7223 CREB1 73.4 E-GEOD-7835 Arnt-
Ahr

69.24

E-GEOD-9786 PPARG-
RARX

92.9 E-MEXP-1444 Cebpa 82.01

E-MEXP-1413 E2F 72.8 E-GEOD-11039 E2F1 66.0

E-GEOD-7137 Klf4 71.44 E-TABM-43 TP53 84.4

E-MEXP-634 GATA3 74.5 E-GEOD-590 USF1 66.2

E-GEOD-2624 NFKB1 72.7 E-GEOD-2815 Myb 82.28

E-GEOD-3116 HNF4A 85.8 E-GEOD-5424 Foxa2 75.8

E-GEOD-5475 PPARG 84.2 E-GEOD-5800 IRF1 82.7

E-GEOD-5823 Myc 64.4 E-GEOD-6846 STAT2 76.9

E-GEOD-8943 FOXQ1 79.4 E-GEOD-11557 Evi-1 76.3

E-GEOD-11836 Nkx3.1 81.4 E-MEXP-871 HMG-IY 87.3

E-GEOD-2527 Gata1 89.5

Figure 4 Number of recovered experiments under different simi-
larity percentage.
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