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Abstract

Given a set of sequences comprised of time-ordered events, sequential pattern mining is

useful to identify frequent subsequences from different sequences or within the same

sequence. However, in sport, these techniques cannot determine the importance of particu-

lar patterns of play to good or bad outcomes, which is often of greater interest to coaches

and performance analysts. In this study, we apply a recently proposed supervised sequen-

tial pattern mining algorithm called safe pattern pruning (SPP) to 490 labelled event

sequences representing passages of play from one rugby team’s matches in the 2018

Japan Top League season. We obtain patterns that are the most discriminative between

scoring and non-scoring outcomes from both the team’s and opposition teams’ perspectives

using SPP, and compare these with the most frequent patterns obtained with well-known

unsupervised sequential pattern mining algorithms when applied to subsets of the original

dataset, split on the label. From our obtained results, line breaks, successful line-outs,

regained kicks in play, repeated phase-breakdown play, and failed exit plays by the opposi-

tion team were found to be the patterns that discriminated most between the team scoring

and not scoring. Opposition team line breaks, errors made by the team, opposition team

line-outs, and repeated phase-breakdown play by the opposition team were found to be the

patterns that discriminated most between the opposition team scoring and not scoring. It

was also found that, probably because of the supervised nature and pruning/safe-screening

mechanisms of SPP, compared to the patterns obtained by the unsupervised methods,

those obtained by SPP were more sophisticated in terms of containing a greater variety of

events, and when interpreted, the SPP-obtained patterns would also be more useful for

coaches and performance analysts.

Introduction

Large amounts of data are now being captured in sport as a result of the increased use of GPS

tracking, optical, and video analysis systems, as well as enhancements in computing power and
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storage. There is great interest in making use of this data for performance analysis purposes. A

wide variety of methods have been used to analyze sports data, ranging from statistical meth-

ods to, more recently, machine learning, deep learning and data mining techniques.

Among the various analytical frameworks available in sports analytics, in this paper, we

adopt an approach to extract events from sports matches and analyze sequences of events. The

most basic events-based approach is based on the analysis of the frequencies of events, which

can be used as performance indicators [1]. Alternatively, by comparing the frequency of each

event in sequences with positive outcomes (winning, scoring points, etc.) with the frequency

of each event in sequences with negative outcomes (losing, conceding points, etc.), one can

investigate which events are commonly associated with these outcomes. However, frequency-

based analyses have drawbacks in that the information contained in the order of events cannot

be exploited.

In this study, we consider sequences of events, and refer to a partial sequence of events as a

sequential pattern, pattern of play, subsequence, or simply a pattern. In sports, the occurrence

of certain events in a particular order often has a strong influence on outcomes, so it is useful

to use patterns as a basic analytical unit. Invasion sports, e.g., rugby, soccer and basketball,

have many events and patterns that occur very frequently and repeatedly. However, although

there may be a paucity of events that are important for scoring, these are the patterns that are

of greater interest to coaches and performance analysts. For instance, in soccer, a pattern con-

sisting of an accurate cross followed by a header that is on target will occur much less fre-

quently than a pattern consisting of repeated passes between players, but the former pattern is

likely to be of much greater interest to coaches and performance analysts because there is a

good chance that the pattern may lead to a goal being scored.

The computational framework for finding patterns from sequential data that have specific

characteristics is known as sequential pattern mining (SPM) in the field of data mining. The

most basic problem setup in SPM is to enumerate frequent patterns, which is called frequent

SPM. Although the total number of patterns (i.e., the number of ordered sequences of all possi-

ble events) is generally very large, it is possible to efficiently enumerate patterns that appear

more than a certain number of times by making effective use of branch-and-bound techniques.

In the field of machine learning, frequent SPM is categorised as an unsupervised learning

technique.

When applying frequent SPM to data from sport, there are several options. The first option

is to simply extract the frequent patterns from the entire dataset. The drawback of this

approach is that it is not possible to determine whether a particular pattern leads to good or

bad outcomes. The second option is to split the dataset into a “good-outcome” dataset and a

“bad-outcome” dataset, and apply frequent SPM to each dataset. The third option is to apply

frequent SPM to the entire dataset in order to identify frequent patterns, and then create a

machine learning model that uses these patterns as features to predict whether the pattern is

associated with good or bad outcomes. A disadvantage of the second and third options is that

the pattern extraction process is conducted separately from the process that associates patterns

with outcomes.

Unlike unsupervised SPM, supervised SPM directly extracts patterns that are associated

with good or bad outcomes. Roughly speaking, by using supervised SPM, we can identify pat-

terns that differ in frequency according to the outcomes in a more direct manner.

Related work

Sequential pattern mining (SPM). Sequential pattern mining (SPM) [2] involves discov-

ering frequent subsequences as patterns from a database that consists of ordered event
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sequences, with or without strict notions of time [3]. Originally used to analyze biological

sequences [4–7], SPM methods have also been applied for other purposes including XML doc-

ument classification [8], keyword/key-phrase extraction [9–11], as well as next item/activity

prediction and recommendation systems [12–17]. For an overview of the SPM field, we refer

the reader to [18].

A recent area of interest in SPM has been high-utility SPM, which built on the idea of high-

utility pattern (itemset) mining [19] by taking into consideration the utility of patterns. For

instance, [20] provides an example where in market basket analysis, although a diamond may

sell much less frequently than an egg, it is of much higher utility (profit) and is thus of greater

interest to a business. An early study was that of [21], who defined the high-utility SPM prob-

lem and proposed a method for it called USpan. Other proposed high-utility SPM methods

include HUS-SPAN [22], which was expanded on by [23], who used pruning methods to

decrease the required pattern search space in order to improve efficiency in terms of run-time

and the number of candidate patterns generated. Scalable high-utlity SPM methods that can

be applied to big data (e.g., IoT) have been proposed by [24], who introduced a scalable Spark-

based platform, and [25], who proposed a Hadoop-based high fuzzy utility pattern mining

(HFUPM) algorithm.

In market basket analysis applications of high-utility SPM, per-item prices or profits can be

used as utility values in order to then determine which patterns are interesting; however, in

sport, it is difficult to determine explicit a priori values for events or patterns. Thus, to over-

come this problem, in this study, by assigning outcome labels to sequences based on scoring

outcomes and taking a discriminative approach that employs supervised learning, we can

instead identify interesting patterns by determining their a posteriori values.

One of the first (standard) SPM algorithms to be proposed was GSP [26], which was based

on the A-priori algorithm proposed by the same authors [27]. Algorithms including SPADE

[28], SPAM [29], and PrefixSpan [30] were later proposed to address some of the limitations

that were identified with GSP. PrefixSpan is categorized as a pattern-growth algorithm, since it

grows a tree structure of patterns extending from a pattern with a single event at its base, and

adds greater numbers of events to the patterns in each of its descendent nodes for all possible

patterns in a database. More recently, CM-SPAM and CM-SPADE [31] as well as Fast [32]

have been proposed to provide further improvements in computational efficiency and speed

compared to the original SPAM and SPADE algorithms. It should be noted that all of the

above-mentioned SPM methods are unsupervised methods, which are applied to unlabelled

sequences.

Safe pattern pruning (SPP), proposed by [33, 34], combines a convex optimisation tech-

nique called safe screening [35] with SPM. SPP is supervised, and can be applied to labelled

sequences. SPP uses PrefixSpan to grow the initial pattern tree, and redundant patterns are

then removed using a specific pruning criterion (see [33, 34] for more details on this pruning

criterion). In particular, the tree structure grown by PrefixSpan is pruned in such a way that if

a node corresponding to a particular pattern is pruned, it is guaranteed that all patterns corre-

sponding to its descendant nodes are not required for the predictive SPP model (Fig 1).

In the SPP method, each pattern is multiplied by a weight, and these weights are calculated

by solving an optimization problem, as will be described later in this paper. The magnitude of

the weight of a pattern reflects the degree to which that pattern discriminates between positive

and negative outcomes (labels). As mentioned, the SPP method also incorporates safe screen-

ing, which eliminates redundant weights that are guaranteed to be non-discriminative in the

optimal solution (i.e., will have a weight value of zero). SPP has previously been applied to

datasets consisting of animal trajectories [34]; however, compared with animal trajectories,

data in sport often contains a greater diversity of events.
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Application of SPM methods in sport. Some previous studies have applied unsupervised

SPM methods to sport, and these are summarized in Table 1. These prior studies have focused

mainly on the identification, interpretation and visualization of sequential patterns.

CM-SPAM was applied for performing technical tactical analysis in judo by [36], while

sequential data that was obtained using trackers was used to test for significant trends and

interesting sequential patterns in a single cyclist’s training regime over an extended period of

time by [37]. In the context of team sport (soccer), Decroos et al. [38] combined clustering and

CM-SPADE using a five-step approach that is summarized in the fifth column of Table 1, and

Fig 1. SPP pruning. One of the mechanisms of SPP identifies and removes patterns that do not contribute to the

model before performing the optimization. For example, if pattern t does not satisfy the pruning criterion specified in

[34], the sub-tree below pattern t is deleted.

https://doi.org/10.1371/journal.pone.0256329.g001

Table 1. Prior studies that have applied sequential pattern mining techniques in sport.

Study Sport Model Used Model Type Summary of Approach Evaluation Metrics

[36] Judo CM-SPAM Unsupervised Identified patterns with SPM for the tactical analysis of judo

techniques

Support

[37] Cycling SPADE Unsupervised Applied SPADE to identify frequent sequential patterns,

calculated interestingness measures (p-values) for these

frequent patterns, and visualized these patterns for

increasing/decreasing daily and duration trends

Support, permutation test p-values

[38] Soccer CM-SPADE Unsupervised Clustered phases based on spatio-temporal components,

ranked these clusters, mined the clusters to identify

frequent sequential patterns, used a ranking function

(weighted support function)—in which a coach can assign

higher weights to more relevant events—to score obtained

patterns, and then interpreted the obtained patterns

Support (events were weighted according to their

relevance based on the judgement of the user), and

identified the top-ranked frequent sequences in the

clusters

https://doi.org/10.1371/journal.pone.0256329.t001
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the authors provided a ranking function that allowed the user (e.g., a coach) to assign higher

weights to events that are more relevant. For instance, the authors note that, despite their fre-

quency, normal passes are not as of much relevance to coaches as shots and crosses.

Analysis of sequences in rugby union. In the sport of rugby union (hereafter referred to

simply as rugby), some prior studies have considered sequences of play by analyzing their

duration. For example, [39] studied the durations of sequences of plays leading to tries at the

1995 Rugby World Cup (RWC), and [40] found that, at the 2003 RWC, teams that were able

to create movements that lasted longer than 80 seconds were more successful. More recently,

[41] applied K-modes cluster analysis to sequences of play in rugby, and found that scrums,

line-outs and kick receipts were common scenarios that led to tries being scored in the 2018

Super Rugby season. By employing convolutional and recurrent neural networks, [42] aimed

to predict the outcomes of sequences of play (e.g., whether the sequence of play ended with ter-

ritory gain, retaining of possession, scoring of a try, or conceding/being awarded a penalty),

based on the order of events and their on-field locations.

Motivation and contributions

In this study, we apply SPP, a supervised SPM method, to data consisting of event sequences

from all of the matches played by a professional rugby union team in their 2018 Japan Top Lea-

gue season. The present study is motivated by the fact that, although SPM methods have been

applied to sport, only unsupervised SPM methods appear to have been used to date. In addi-

tion, no form of SPM method, unsupervised or supervised, appears to have been applied to

analyze sequences of play in rugby.

We compare the most discriminative SPP-obtained patterns (subsequences) with the most

frequent patterns obtained by well-known unsupervised SPM methods (PrefixSpan, GSP, Fast,

CM-SPADE and CM-SPAM), where the unsupervised SPM methods are assumed to possess

knowledge of which sequences contain scoring events (i.e., when the unsupervised methods

are applied to label-based partitions of the original labelled data).

The main contributions of this study are in the comparison of the usefulness of supervised

and unsupervised SPM methods when applied to event sequence data in sport, the application

of a supervised SPM method to event sequence data in sport, and the application of a SPM

method to analyze sequences of play in rugby.

Notation

Sequences consist of ordered events drawn from a set of m unique event symbols, denoted

S ≔ fs1; . . . ; smg. Let n denote the number of sequences in the dataset. The sets of sequences

with labels 1 and -1 are denoted by Gþ;G� � ½n�, and are of size nþ ≔ jGþj; n� ≔jG� j, respec-

tively. SPP takes as input a set of n labeled sequences:

fðg i; yiÞgi2½n�;

where gi represents the ith sequence/passage of play. Each sequence gi takes a label from yi 2
{±1} and can be written as

g i ¼ hgi1; gi2; . . . ; giTðiÞi; i 2 ½n�;

where git is the tth symbol of the ith sequence, which takes one of the event symbols in S, and

T(i) is the length of the ith sequence (i.e., T(i) is the number of events in sequence gi). Patterns

of play are denoted by q1, q2, . . ., each of which is also a sequence of event symbols:

qj ¼ hqj1; qj2; . . . ; qjLðjÞi; j ¼ 1; 2; . . . ;
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where L(j) is the length of pattern qj for j = 1, 2, . . .. The presence of subsequence qj in

sequence gi is denoted by qjv gi. The set of all possible patterns contained in any sequence

{gi}i2[n] is denoted as Q ¼ fqigi2½d�, where d is the number of possible patterns (Q is very large

in general, which is why the pruning and safe-screening mechanisms of SPP are useful).

Materials and methods

Data

We obtained XML data generated from video that was tagged in Hudl Sportscode (https://

www.hudl.com/products/sportscode) by the performance analyst of one of the teams in the

Japan Top League competition (the team is not named for reasons of confidentiality). Written

consent was obtained to use the data for research purposes. Seasons are comprised of a num-

ber of matches, matches are made up of sequences of play, which are, in turn, comprised of

events. Our dataset consisted of all of this particular team’s matches in their 2018 season for

each of the opposition teams they faced. These matches consist of passages of play (i.e.,

sequences of events), however, rules need to be specified to decide the point at which these pas-

sages of play start and end. Initially, each match in the original dataset was one long sequence

of events. One approach that we considered initially, which we used on other datasets, was to

label match sequences based on whether the team won or lost the match. However, in our ini-

tial experiments, this did not produce interesting results since it is obvious that a greater num-

ber of scoring events will occur within match sequences labeled with wins, and so the

discriminative patterns identified largely contained only contain these scoring events. There-

fore, we generated a more granular dataset by specifying rules to delimit the match sequences

into sequences representing individual passages of play (these rules are described in more

detail in the following subsection). Each sequence was comprised of a series of events from 24

unique events (12 unique events for the team and opposition teams), based on the events the

analyst had tagged in SportsCode. These events are listed in Table 2, and some are also

depicted in Fig 2 (the XML data also contained a more granular level of data with a greater

number of unique events, however, in order to reduce computational complexity, the higher

level of granularity was considered).

Methods

Delimiting matches into sequences. First, each match sequence was delimited into pas-

sage of play event sequences (Fig 3). The rules to delimit matches into passages of play should

ideally result in passages of play that begin and end at logical points in the match, e.g., when

certain events occur, when play stops, or when possession changes (e.g., [43]), and should

result in sequences which are neither overly long nor overly short. In this study, a passage of

play was defined to start with either a kick restart, scrum, or line-out. These three events result

in play temporarily stopping and therefore represent natural delimiters for our dataset. When

a kick restart, scrum (except for a scrum reset where a scrum follows another scrum), or line-

out occurs, this event becomes the first event in a new event sequence; otherwise, if a try is

scored or a kick at goal occurs, a new passage of play also begins. Applying these rules (also

shown in Fig 3) resulted in a delimited dataset consisting of 490 sequences, each made up of

events listed in Table 2. At this stage, the delimited dataset was unlabelled, and the scoring

events (try scored, kick at goal) for the team and opposition teams were contained in the

sequences.

Experimental dataset creation and comparative approach. The delimited sequence data

described above was then divided into two datasets. In the first, which we call the scoring
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dataset, we consider the case in which the sequences are from the team’s scoring perspective.

In this dataset, the label yi = +1 represents points being scored or attempted by the team. Note

that while a try scored was certain in terms of points being scored, a kick at goal (depicted in

the top-left of Fig 2) is not always successful and therefore may not result in points being

scored. In our data, only the kick at goal being attempted (event id 6) was available—not

whether the goal was actually successful or not. However, since it is more important to be able

to identify points-scoring opportunities than whether or not the kick was ultimately successful

(which is determined by the accuracy of the goal kicker), we assumed that all kicks at goal

resulted in points being scored. In the scoring dataset, the label yi = +1 was assigned to

sequence i if a try was scored or a kick at goal was made by the team in that particular

sequence. If no try was scored and no kick at goal was made by the team in sequence i, the

label yi = −1 was assigned. Then, since the label now identified the scoring/not scoring out-

come, the events that relate to the team scoring—Try scored (event ID = 11) and Kick at goal

(event ID = 6)—were removed from the event sequences.

In the second, which we call the conceding dataset, we consider the case in which the

sequences are from the team’s conceding perspective, or equivalently, from the opposition

teams’ scoring perspective. In the conceding dataset, the label yi = +1 was assigned to sequence

i if a try was scored or a kick at goal was made by the opposition team in that particular

sequence. If no try was scored and no kick at goal was made by the opposition team in sequence

i, the label yi = −1 was assigned. The list of events for the original delimited, scoring and

Table 2. Unique events in the original XML data. Events prefixed by “O-” are performed by the opposition team;

those that are not are performed by the team.

event ID event event description

1 Restart Received Team receives a kick restart made by the opposition team

2 Phase Period between breakdowns (team in possession of the ball)

3 Breakdown Team player is tackled, resulting in a ruck

4 Kick in Play Kick within the field of play (rather than to touch) made by the team

5 Penalty Conceded Team gives away a penalty, opposition may re-gain possession

6 Kick at Goal Team attempts kick at goal

7 Quick Tap Quick restart of play by the team following a free kick awarded to them

8 Line-out Ball is thrown in by the team

9 Error Mistake made by the team, e.g., lost possession, forward pass, etc.

10 Scrum Set piece in which the forwards attempt to push the opposing team off the ball

11 Try Scored Team places the ball down over opposition team’s line (five points)

12 Line Breaks Team breaches the opposition team’s defensive line

13 O-Restart Received Opposition team receives a kick restart made by the team

14 O-Phase Period between breakdowns (opposition team in possession of the ball)

15 O-Breakdown Opposition player is tackled, resulting in a ruck

16 O-Kick in Play Kick within the field of play (rather than to touch) made by the opposition team

17 O-Penalty Conceded Opposition team gives away a penalty, team may re-gain possession

18 O-Kick at Goal Opposition team attempts kick at goal

19 O-Quick Tap Quick restart of play by the opposition team following a free kick awarded to them

20 O-Line-out Ball is thrown in by the opposition team

21 O-Error Mistake made by the opposition team, e.g., lost possession, forward pass, etc.

22 O-Scrum Set piece in which the forwards attempt to push the team off the ball

23 O-Try Scored Opposition team places the ball down over the team’s line (five points)

24 O-Line Breaks Opposition team breaches the team’s defensive line

https://doi.org/10.1371/journal.pone.0256329.t002
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Fig 2. Key events in rugby matches. The photographs used as the original images are listed in parentheses. All of them are licensed under the unsplash.

com license (https://unsplash.com/license). Top left: Kick at goal (https://unsplash.com/photos/xJSPP3H8XTQ); Bottom left: Line-out (https://

unsplash.com/photos/CTEvFbFpVC8); Center top: Kick restart/Kick-off (https://unsplash.com/photos/OMdge7F2FyA); Center bottom: Scrum

(https://unsplash.com/photos/y5H3_7OobJw); Top Right: Line break (https://unsplash.com/photos/XAlKHW9ierw); Middle Right: Beginning of a

phase (https://unsplash.com/photos/fqrzserMsX4); Bottom Right: Breakdown (https://unsplash.com/photos/WByu11skzSc).

https://doi.org/10.1371/journal.pone.0256329.g002

Fig 3. Converting XML files into labeled sequences. Illustration of the procedures and specified rules to delimit the raw XML data files into passage of

play event sequences labeled with scoring or conceding outcomes.

https://doi.org/10.1371/journal.pone.0256329.g003
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conceding datasets are presented in Table 3. Then, since the label now identified the scoring/

not scoring outcome, the events that relate to the opposition team scoring—Try scored (event

ID = 11) and Kick at goal (event ID = 6)—were removed from the event sequences.

The process to create the scoring and conceding datasets from the original delimited dataset

is shown in the upper half of Fig 4.

The SPP algorithm (software is available at https://github.com/takeuchi-lab/

SafePatternPruning) was applied to the scoring and conceding datasets.

As a basis for comparison, we compared the patterns (qjs) obtained by SPP with those

obtained by the following unsupervised methods: PrefixSpan, CM-SPAM, CM-SPADE, GSP

and Fast. The SPMF pattern mining package [44] (v2.42c) was used to apply the five unsuper-

vised SPM methods to our dataset. Since the unsupervised methods use unlabeled data,

although support values of the patterns of play can be obtained (how many times a particular

pattern occurred in the dataset), weights for the patterns cannot. For a more fair comparison

between the unsupervised methods and SPP, we assume that the unsupervised methods have

prior knowledge of the sequence labels. Thus, the unsupervised methods were applied to sub-

sets of the scoring and conceding datasets, partitioned based on the label. The first subset,

which we call the “scoring+1” dataset, contained only the sequences in which the team actually

Table 3. Event lists for the original, scoring and conceding datasets.

event ID original scoring conceding

1 Restart Received Restart Received Restart Received

2 Phase Phase Phase

3 Breakdown Breakdown Breakdown

4 Kick in Play Kick in Play Kick in Play

5 Penalty Conceded Penalty Conceded Penalty Conceded

6 Kick at Goal Kick at Goal

7 Quick Tap Quick Tap Quick Tap

8 Line-out Line-out Line-out

9 Error Error Error

10 Scrum Scrum Scrum

11 Try Scored Try Scored

12 Line Breaks Line Breaks Line Breaks

13 O-Restart Received O-Restart Received O-Restart Received

14 O-Phase O-Phase O-Phase

15 O-Breakdown O-Breakdown O-Breakdown

16 O-Kick in Play O-Kick in Play O-Kick in Play

17 O-Penalty Conceded O-Penalty Conceded O-Penalty Conceded

18 O-Kick at Goal O-Kick at Goal

19 O-Quick Tap O-Quick Tap O-Quick Tap

20 O-Line-out O-Line-out O-Line-out

21 O-Error O-Error O-Error

22 O-Scrum O-Scrum O-Scrum

23 O-Try Scored O-Try Scored

24 O-Line Breaks O-Line Breaks O-Line Breaks

label - Points Scored O-Points Scored

n = 490 n+ = 86, n− = 404 n+ = 44, n− = 446

https://doi.org/10.1371/journal.pone.0256329.t003
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scored, and the second, the “conceding+1” dataset, contained only the sequences in which the

team actually conceded (i.e., the opposition team scored).

The dataset creation process and comparative approach is presented in Fig 4.

Obtaining pattern weights with safe pattern pruning. As mentioned, our data consisted

of sequences comprised of events from Table 2, labeled with an outcome: either +1 or −1, e.g.

−1 22 22 17
+1 8 11 2 6
−1 1 2 3 2 9
−1 20 21
−1 10 10 2 3 2 3 2 3 2 3 2 17
+1 8 11 2 6
−1 1 2 3 2 3 9
−1 22 16 2
−1 13 14 16
. . .

We used SPP to identify patterns that discriminate between outcome +1 and outcome −1.

For instance, in the dataset above, it would appear that subsequence [2 3 2] is potentially a dis-

criminative pattern, since it appears in three sequences that are labeled with −1 but does not

appear in any sequences that are labeled with 1. Pattern [11 2 6] also appears to be a discrimi-

native pattern since it appears in two sequences with label 1 and in none labeled with −1. In

SPP, after performing safe screening and pruning, each remaining pattern in a sequence is

multiplied by weights, e.g., w1 [2 3 2] + w2 [11 2 6]. . ., and then an optimization model solves

for these weights.

Fig 4. Illustration of dataset creation and experimental approach. Illustration of the procedures to create the datasets from the original delimited

dataset to be used in the experiments and to compare the unsupervised and supervised SPM methods.

https://doi.org/10.1371/journal.pone.0256329.g004
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SPP uses a classifier based on a sparse linear combinations of patterns, which can be written

as

f ðg i; QÞ ¼
X

qj2Q

wjIðqj v g iÞ þ b;
ð1Þ

where I(�) is an indicator function that takes the value 1 if sequence gi contains pattern gi and 0

other otherwise; and wj 2 R and b 2 R are parameters of the linear model that are estimated

by solving the following minimization problem (as well as its dual maximization problem):

min
w;b

X

i2½n�

‘ðyi; f ðg i; QÞÞ þ lk w k1; ð2Þ

where w = [w1, . . ., wd]
> is a vector of weights, ℓ is a loss function and λ> 0 is a regularization

parameter that can be tuned by cross-validation. Note that, due to the permutations in terms

of the number of potential patterns of play, the size of Q is large in general. However, SPP’s

pruning criterion reduces the size of Q by removing unnecessary patterns from the original

pattern tree. The minimization problem (1) was, in the present study, solved with an L1-regu-

larised L2-Support Vector Machine (the default option in the S3P classifier command line

options https://github.com/takeuchi-lab/S3P-classifier), with 10-times 10-fold cross-validation

used to tune the regularization parameter, lambda. The maximum pattern length parameter

(option -L in the S3P classifier command line options) was set to 20. The feature vector

xi = [xi1, xi2, . . ., xid] is defined for the ith sequence gi as

xij ¼ Iðqj v g iÞ; j ¼ 1; . . . ; jQj: ð3Þ

In other words, the feature vectors, xi = [I(q1v gi), I(q2v gi), . . ., I(qdv gi)], are binary var-

iables that take the respective values 1 or 0 based on whether or not pattern qj is contained

within sequence gi. In a two-class problem, the squared hinge-loss function ℓ(y, f(xi)) = max{0,

1 − yf(xi)}2 is used, and the optimization problem (2) becomes:

min
w;b

X

i2½n�

maxf0; 1 � yiðw
>xi þ bÞg2

þ lk w k1; ð4Þ

Discriminative patterns are those that have positive weights (in absolute terms) in the opti-

mal solution to (4), i.e., those patterns that have weights that are non-zero. As mentioned, SPP

uses safe screening to remove weights that are guaranteed to be zero at the optimal solution,

prior to solving the optimization problem (see S1 Appendix for more details.

In the results section below, in order to exclude patterns that may have occurred merely by

chance, we have not reported obtained patterns (qjs) that had support values of less than five.

In the case of the patterns obtained by the unsupervised methods, the top five patterns with

the largest support values are reported. In the case of the SPP-obtained patterns, the top five

patterns with the largest positive wj values were recorded. In addition, we restricted our analy-

sis to patterns of play that had the highest positive weights. For the scoring dataset, this means

the patterns that had a positive contribution to the team scoring. For the conceding dataset,

this means the patterns that had a positive contribution to opposition teams scoring. In other

words, for the sake of brevity, we did not consider the patterns that had the highest contribu-

tion to “not scoring” and “not conceding.”
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Results and discussion

Analysis of sequence lengths

The average sequence length in the scoring and conceding datasets was 10.6 and 10.8 events,

respectively. The shortest sequence in both datasets contained two events, and the longest con-

tained 48 events (Table 4). The slight difference in average sequence length between the scor-

ing and conceding datasets is a result of the removal of the try scored and kick at goal events

from the sequences in order to create the sequence outcome label (as was mentioned in the

Materials and methods section above). The sequence length distributions (Fig 5) are positively

skewed and, based on Shapiro-Wilk tests, non-normal. By comparing these distributions, it is

clear that the number of sequences in which points were scored was higher in the scoring data-

set than the conceding dataset, which reflects this particular team’s strength in the 2018 season.

From the team’s scoring perspective, 86 out of the 490 passages of play (18%) resulted in points

being scored by the team, while from the team’s conceding perspective, 44 out of the 490 pas-

sages of play (9%) resulted in points being conceded. The sequences in which the team scored

were slightly longer, containing an average of 12.8 events compared to sequences in which the

team didn’t score, which contained an average of 10.2 events. The sequences in which the team

conceded and did not concede contained an average of 11.2 events and 10.8 events,

respectively.

Identification of important patterns of play using SPP

SPP initially obtained 93 patterns when applied to the scoring dataset, of which 75 had support

of five or higher. Of these 75 patterns of play, 38 had a positive weight (wj> 0). The 75 patterns

with minimum support of five contained an average of 4.5 events, and the 38 patterns with

positive weights contained an average of 5.4 events. The longest obtained pattern in the scoring

dataset contained 16 events.

Applying SPP to the conceding dataset resulted in a total of 72 patterns, of which 51 had

support of five or higher. Of these 51 patterns of play, 31 had a positive weight (wj> 0). The 51

patterns with minimum support of 5 contained an average of 3.8 events, and the 31 patterns

with positive weights contained an average of 4.4 events. The longest obtained pattern in the

conceding dataset contained 15 events.

The five patterns that discriminated the most between scoring and non-scoring outcomes

(i.e., the patterns with the largest positive weight values) were obtained by applying SPP to the

scoring dataset, and are listed along with their weight values and odds ratios in Table 5. In the

results tables, the notation [p] × n indicates that pattern p is repeated n times. We also include

Table 4. Descriptive statistics for the scoring and conceding datasets.

scoring conceding

Mean 10.6 10.8

Standard deviation 7.8 7.9

Minimum 2 2

25th percentile 5 5

Median 8 8

75th percentile 15 15

Maximum 48 48

Skewness 1.3 1.4

https://doi.org/10.1371/journal.pone.0256329.t004
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the odds ratio (OR) for each pattern (simply the exponential of the weight), which aids in

interpretation by providing a value that compares the cases where a sequence contains a partic-

ular pattern, and when it does not.

The pattern in the scoring dataset with the highest weight value (0.919), which discrimi-

nated the most between scoring and non-scoring sequences, was a pattern consisting of a sin-

gle line break event (event id 12). The OR for the line break pattern is e0.919 = 2.506, meaning

that the team is 2.5 times more likely to score when a line break is made in a sequence of play

than if a line break is not made in a sequence of play. This makes sense since line breaks,

which involve breaking through an opposition team’s line of defense (see the top-right image

in Fig 2), generally advance the attacking team forward and are thus expected to create possible

scoring opportunities. A line-out followed by phase play (8 2) was the second most

Fig 5. Sequence length distributions. Distribution of sequence lengths by points-scoring outcome for the scoring and

conceding datasets. Sequence length is defined as the number of events in each sequence (excluding the outcome

label).

https://doi.org/10.1371/journal.pone.0256329.g005

Table 5. Top five SPP-obtained patterns that discriminated the most between scoring and non-scoring outcomes.

pattern (qj) pattern description support weight OR

12 Line break 77 0.919 2.506

8 2 Line-out, Phase 71 0.808 2.242

2 3 4 2 3 Phase, Breakdown, Kick in play, Phase, Breakdown 9 0.796 2.217

2 3 2 3 2 3 2 3 4 [Phase, Breakdown] × 4, Kick in play 9 0.732 2.079

13 14 15 14 15 16 14 2 3 O-Restart received, [O-Phase, O-Breakdown] × 2, O-Kick in play, Phase, Breakdown 6 0.710 2.033

https://doi.org/10.1371/journal.pone.0256329.t005
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discriminative pattern between scoring and not scoring, with a weight of 0.808 and an OR of

2.242, indicating that the team is 2.2 times more likely to score when a line-out followed by a

phase occurs in a sequence of play than if it does not. The third most discriminative pattern, 2

3 4 2 3 (w = 0.796, OR = 2.217), can be interpreted as a kick in play being made by the team

and being re-gathered by the team, thus resulting in retained possession. The OR indicates

that the team is 2.2 times more likely to score when this pattern occurs in a sequence of play

than if it does not. The fourth most discriminative pattern, 2 3 2 3 2 3 2 3 4 (w = 0.732,

OR = 2.079), represents four repeated phase-breakdown plays by the team, followed by the

team making a kick in play. This pattern thus involves repeated retaining of possession before

the team presumably gaining territory in the form of a kick. The OR indicates that the team is

2.1 times more likely to score when this pattern occurs in a sequence of play than if it does not.

The fifth most discriminative pattern, 13 14 15 14 15 16 14 2 3 (w = 0.710, OR = 2.033), can be

interpreted as the opposition team receiving a kick restart made by the team, attempting to

exit their own territory via a kick but not finding touch, thus giving the ball back to the team

from which they can potentially build phases and launch an attack. The OR indicates that the

team is twice as likely to score when this pattern occurs in a sequence of play than if it does

not.

The five patterns that discriminated the most between conceding and non-conceding out-

comes were obtained by applying SPP to the conceding dataset, and are listed along with their

weights and ORs in Table 6. A line break (event ID 24) (w = 0.613, OR = 1.846) being made by

the opposition team was the pattern that discriminated most between sequences in which the

team conceded (i.e., the opposition team scored) and sequences in which the team did not

concede (i.e., the opposition team did not score). In other words, a line break by the opposition

team was the pattern that discriminated the most between the group of sequences in which the

opposition team scored and the group of sequences in which the opposition team did not

score. The OR of 1.8 indicates that the opposition team is 1.8 times more likely to score when

they make a line break in a sequence of play than if they do not. The weight (and OR) for the

line break pattern was not as large as in the scoring dataset (w = 0.919 vs. w = 0.613), which

suggests that the team had strong defense in this particular season. The second most discrimi-

native pattern between conceding and non-conceding outcomes, 14 9 15 (w = 0.392,

OR = 1.479), can be interpreted as the opposition team being in possession of the ball, the

team making some form of error, and the opposition team regaining possession. The opposi-

tion team is 1.5 times more likely to score when this pattern occurs in a sequence of play than

if it does not. The third most discriminative pattern between conceding and non-conceding

outcomes was an opposition team line-out (w = 0.357, OR = 1.428). The opposition team is 1.4

times more likely to score if they have a line-out in a sequence of play than if they do not. The

fourth (w = 0.339, OR = 1.403) and fifth (w = 0.261, OR = 1.299) most discriminative patterns

for the conceding dataset represent repeated phase and breakdown play, which results in

Table 6. Top five SPP-obtained patterns that discriminated the most between conceding and non-conceding outcomes.

event id pattern (qj) pattern description support weight OR

24 O-Line break 32 0.613 1.846

14 9 15 O-Phase, Error, O-Breakdown 10 0.392 1.479

20 O-Line-out 86 0.357 1.428

15 15 14 15 O-Breakdown, O-Breakdown, O-Phase, O-Breakdown 5 0.339 1.403

15 14 15 14 15 14 15 14 15 14 15 14 15 [O-Breakdown, O-Phase] × 6, O-Breakdown 16 0.261 1.299

https://doi.org/10.1371/journal.pone.0256329.t006
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retained possession and the building of pressure. The fifth pattern, for example, is one in

which the opposition team makes over six repeated consecutive phases and breakdowns.

Comparing the SPP-obtained patterns with those obtained by the

unsupervised methods

The five patterns with the highest support for the scoring+1 and conceding+1 datasets,

obtained by applying each of the five unsupervised methods (PrefixSpan, CM-SPAM,

CM-SPADE, GSP and Fast), are shown in Tables 7 and 8, respectively.

Tables 7 and 8 show that only common events and patterns were detected by the unsuper-

vised methods, i.e., patterns containing breakdowns, phases, or both. Repeated breakdown

and phase play means that a team can generally retain possession of the ball and build pressure

pressure (see the middle and bottom images on the right-hand side of Fig 2). While some of

the patterns identified by SPP also contained repeated breakdown and phase play, they were

generally longer and also contained other events. The patterns obtained by the unsupervised

methods are not particularly useful for coaches or performance analysts since they merely

reflect common, repeated patterns rather than interesting patterns. By using passage of play

event sequences that are labelled with scoring or conceding outcomes, through the computed

weights, SPP is also able to provide a measure of the degree to which particular patterns dis-

criminate between these outcomes. In addition, compared to the unsupervised methods, the

supervised SPP method obtained a greater variety of patterns of play (i.e., not only those con-

taining breakdowns and/or phases) and also discovered more sophisticated patterns that can

be readily interpreted by coaches or performance analysts.

Discussion

By considering both the scoring and conceding perspectives of the team, insight was able to be

obtained that would be useful to both the team as well as opposition teams that are due to play

the team. For both the team and their opposition teams during the 2018 season, line breaks

were found to be most associated with scoring. For both the team and their opposition teams,

Table 7. Top five PrefixSpan-obtained patterns with the largest support: Scoring+1 dataset.

PrefixSpan CM-SPAM CM-SPADE GSP Fast support

2 2 2 2 2 84

2 3 3 3 3 3 60

3 2 3 2 3 2 3 2 3 60

2 2 2 2 3 2 2 2 2 2 59

2 3 2 2 3 2 2 2 3 2 3 2 59

https://doi.org/10.1371/journal.pone.0256329.t007

Table 8. Top five PrefixSpan-obtained patterns with the largest support: Conceding+1 dataset.

PrefixSpan CM-SPAM CM-SPADE GSP Fast support

14 14 14 14 14 39

14 15 15 15 15 15 33

15 14 15 14 15 14 15 14 15 33

14 14 14 14 15 14 14 14 14 14 29

14 15 14 14 15 14 14 14 15 14 15 14 29

https://doi.org/10.1371/journal.pone.0256329.t008

PLOS ONE Supervised sequential pattern mining of event sequences in rugby to identify important patterns of play

PLOS ONE | https://doi.org/10.1371/journal.pone.0256329 September 23, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0256329.t007
https://doi.org/10.1371/journal.pone.0256329.t008
https://doi.org/10.1371/journal.pone.0256329


line-outs were found to be more beneficial in generating scoring opportunities than scrums.

This result is consistent with [41], who found that line-outs followed by a driving maul are

common approaches to scoring tries (albeit in a different competition, Super Rugby), and with

[45], who found that around one-third of tries came from line-outs in the Japan Top League in

2003 to 2005—the highest of any try source. As well as creating line-outs or perhaps prioritis-

ing them over scrums, for opposition teams playing the team, effective strategies may include

aiming to maintain possession through repeated phase-breakdown play (over six repetitions),

shutting down the team’s ability to regain kicks, and ensuring that touch is found on exit plays

from kick restarts made by the team.

As mentioned, compared to the unsupervised methods, the supervised SPP method

obtained a greater variety of patterns that consisted of a greater variety of events. The unsuper-

vised methods only generated patterns consisting of either phases, breakdowns, or both, which

are very frequent and repetitive patterns but are not of use to coaches or performance analysts.

As well as containing a greater variety of events, the patterns obtained by SPP were more com-

plex in terms of the patterns of play that were identified. For instance, through one of the SPP-

obtained patterns, an opposition team could identify that they could be punished by the team

for a failed exit play. The pattern involving the team making and regaining a kick in play

(which was shown to discriminate between scoring and non-scoring outcomes for the team) is

another example of a complex pattern of play that was identified by SPP. The superiority of

SPP over the unsupervised methods is likely due to the discriminative nature of SPP as well as

the safe screening and pattern pruning mechanisms of SPP, which prune out irrelevant

sequential patterns and model weights in advance.

Conclusions and future work

In this study, a supervised sequential pattern mining (SPM) method called safe pattern prun-

ing (SPP) was applied to data from professional rugby union in Japan that consisted of

sequences in the form of passages of play that were labelled with points scoring outcomes. The

obtained results suggest that the SPP model was useful in detecting complex patterns (patterns

of play) that are important to scoring outcomes. SPP was able to identify relatively sophisti-

cated, discriminative patterns of play, which made sense when interpreted, and which are

potentially useful for coaches and performance analysts for own- and opposition-team analysis

in order to identify vulnerabilities and tactical opportunities. The approach highlighted the

potential utility of supervised SPM as an analytical framework for performance analysis in

sport, and more specifically, the potential usefulness of SPM methods for performance analysis

in rugby.

Although the results obtained are encouraging, a limited amount of data from one sport

was used. Also, spatial information such as field position was not available in the data, and this

may have improved the analysis. Although the team that performed a particular event was

used in our analysis, which player performed particular events was not considered—this may

be interesting to investigate in future work. One limitation of SPP is that, although it considers

the order of events within the sequences, the method does not consider the order of sequences

within matches, which could also be informative (e.g., a particular pattern occurring in the sec-

ond half of a match may be more important than if it occurs in the first half). Furthermore,

although SPP was useful for the specific dataset in this study, its usefulness is to some degree

dependent on the structure of the input data and the specific definition of the sequences and

labels. For instance, as mentioned earlier, applying the approach to a dataset that consists of

entire matches as sequences and match win/loss outcomes does not tend to produce interest-

ing results since it is self-evident that sequences that contain more scoring events will be more
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associated with wins, and so SPP would simply pick up the scoring events in such datasets. In

future work, it would be interesting to apply the approach to a larger amount of data from

rugby, as well as to similarly structured datasets in other sports in order to confirm its efficacy.
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