
RESEARCH ARTICLE

The association between ethnicity and vaginal

microbiota composition in Amsterdam, the

Netherlands

Hanneke Borgdorff1,2, Charlotte van der Veer3,4, Robin van Houdt4, Catharina J. Alberts2,5,

Henry J. de Vries2,5,6, Sylvia M. Bruisten2,3, Marieke B. Snijder7,8, Maria Prins2,5,9, Suzanne

E. Geerlings2,9, Maarten F. Schim van der Loeff2,5,9, Janneke H. H. M. van de Wijgert1,2,10*

1 Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands, 2 Center for

Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands, 3 Public

Health Laboratory, Public Health Service of Amsterdam (GGD), Amsterdam, The Netherlands, 4 Department

of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands,

5 Department of Infectious Diseases, Public Health Service of Amsterdam (GGD), Amsterdam, the

Netherlands, 6 Department of Dermatology, Academic Medical Center, Amsterdam, The Netherlands,

7 Department of Public Health, Academic Medical Center, Amsterdam, The Netherlands, 8 Department of

Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The

Netherlands, 9 Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center,

Amsterdam, The Netherlands, 10 Department of Clinical Infection, Microbiology and Immunology, Institute of

Infection and Global Health, University of Liverpool, Liverpool, United Kingdom

* j.vandewijgert@liverpool.ac.uk

Abstract

Objective

To evaluate whether ethnicity is independently associated with vaginal microbiota (VMB)

composition in women living in Amsterdam, the Netherlands, as has been shown for Ameri-

can women.

Methods

Women (18–34 years, non-pregnant, N = 610) representing the six largest ethnic groups

(Dutch, African Surinamese, South-Asian Surinamese, Turkish, Moroccan, and Ghanaian)

were sampled from the population-based HELIUS study. Sampling was performed irrespec-

tive of health status or healthcare seeking behavior. DNA was extracted from self-sampled

vaginal swabs and sequenced by Illumina MiSeq (16S rRNA gene V3-V4 region).

Results

The overall prevalence of VMBs not dominated by lactobacilli was 38.5%: 32.2% had a

VMB resembling bacterial vaginosis and another 6.2% had a VMB dominated by Bifidobac-

teriaceae (not including Gardnerella vaginalis), Corynebacterium, or pathobionts (strepto-

cocci, staphylococci, Proteus or Enterobacteriaceae). The most prevalent VMB in ethnically

Dutch women was a Lactobacillus crispatus-dominated VMB, in African Surinamese and

Ghanaian women a polybacterial G. vaginalis-containing VMB, and in the other ethnic

groups a L. iners-dominated VMB. After adjustment for sociodemographic, behavioral and
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clinical factors, African Surinamese ethnicity (adjusted odds ratio (aOR) 5.1, 95% confi-

dence interval (CI) 2.1–12.0) and Ghanaian ethnicity (aOR 4.8, 95% CI 1.8–12.6) were

associated with having a polybacterial G. vaginalis-containing VMB, and African Surinam-

ese ethnicity with a L. iners-dominated VMB (aOR 2.8, 95% CI 1.2–6.2). Shorter steady rela-

tionship duration, inconsistent condom use with casual partners, and not using hormonal

contraception were also associated with having a polybacterial G. vaginalis-containing

VMB, but human papillomavirus infection was not. Other sexually transmitted infections

were uncommon.

Conclusions

The overall prevalence of having a VMB not dominated by lactobacilli in this population-

based cohort of women aged 18–34 years in Amsterdam was high (38.5%), and women of

sub-Saharan African descent were significantly more likely to have a polybacterial G. vagi-

nalis-containing VMB than Dutch women independent of modifiable behaviors.

Introduction

The majority of women of reproductive age have a vaginal microbiota (VMB) dominated by

lactobacilli [1]. VMB not dominated by lactobacilli are increasingly being recognized as a

cause of adverse reproductive health outcomes, such as increased acquisition and transmission

of HIV (reviewed in [2]) and preterm birth (reviewed in [3]). The clinical condition known as

bacterial vaginosis (BV) is thought to be the most common type of VMB not dominated by lac-

tobacilli [1, 4]. Molecular studies in the last decade have consistently identified the following

anaerobes with high relative abundance in BV cases: Gardnerella vaginalis, Atopobium vaginae,
BVAB1-3, Mobiluncus species, Prevotella species, Sneathia/Leptotrichia species, Megasphaera
species, among others [3]. Other types of VMBs not dominated by lactobacilli, such as VMBs

containing a high relative abundance of pathobionts, have also been identified but less com-

monly [1]. Until recently, many research groups lumped all VMBs not dominated by lactoba-

cilli together into one community state type (CST IV), which was originally described by Ravel

et al in 2011 [5]. An expert consultation organized by the U.S. National Institutes of Health

(NIH) in 2015 called for more detailed descriptions of the various types of VMBs not domi-

nated by lactobacilli and, eventually, subcategorization into multiple CSTs [6]. This is deemed

necessary to improve our understanding of the etiology and pathogenesis of different CSTs

and their sequelae, and to develop targeted interventions.

Another important finding from molecular studies in the last decade is that not all lactoba-

cilli are equal [1]: a VMB dominated by Lactobacillus crispatus is considered more beneficial

than a VMB dominated by L. iners, because the latter is associated with a higher risk of devel-

oping a VMB not dominated by lactobacilli [7] and a higher prevalence of sexually transmitted

infections (STIs) [8].

Known risk factors for BV are unprotected sexual activity (reviewed in [9]), smoking [10],

some types of vaginal cleansing practices (reviewed in [2]), the presence of STIs [11, 12], low

levels of sex hormones [13–15], and African ethnicity (reviewed in [16]). Molecular studies in

asymptomatic American women showed that African-American women are more likely to

have a diverse VMB or a L. iners-dominated VMB than Caucasian or Asian-American women

[5, 17–19]. Molecular studies have also shown that the prevalence of L. crispatus-dominated
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VMB is much lower in sub-Saharan Africa than in other parts of the world [20, 21]. However,

whether the association between ethnicity and VMB composition is based on sociodemo-

graphic, behavioral, environmental, or genetic factors is still a matter of debate [22, 23]. Molec-

ular studies conducted to date were small and did not adequately control for confounding

factors, and few studies have been done in multi-ethnic European populations [1]. Compari-

sons within and between multi-ethnic populations in different parts of the world may provide

the new insights required to disentangle the effects of sociodemographic, behavioral, environ-

mental, and genetic factors on VMB composition.

In this study, we characterized VMB compositions of women representing the six largest

ethnic groups in Amsterdam, the Netherlands. In keeping with the recommendation by the

recent U.S. NIH consultation, we provide detailed descriptions of all diverse VMBs that we

identified. We also determined factors associated with VMB composition with a focus on

ethnicity.

Materials and methods

Study population

We used baseline data and samples from the HELIUS study, a multi-ethnic cohort study in

Amsterdam, The Netherlands [24]. The HELIUS study aims to unravel the causes of the

unequal burden of disease across ethnic groups residing in Amsterdam, and was approved by

the Medical Ethics Committee of the Academic Medical Center in Amsterdam (protocol num-

ber: 10/100; amendment 10/100# 10.17.1729; NL32251.018.10). All participants provided writ-

ten informed consent.

People aged 18–70 years were randomly sampled by ethnic origin (Dutch, Surinamese,

Moroccan, Turkish, and Ghanaian) through the municipality register of Amsterdam [25]. For

the Dutch sample, we invited people who were born in the Netherlands and whose parents

were born in the Netherlands. For the Turkish sample, Turkish ethnicity was defined as: (a)

born in Turkey and having at least one parent who was born in Turkey (first generation) or

(b) born in the Netherlands but both parents were born in Turkey (second generation). A

similar definition was used for the other ethnic minority groups (Surinamese, Moroccan and

Ghanaian). After data collection, the Surinamese group was further stratified according to

self-reported ethnic origin into ‘African’ (of West-African descent), ‘South-Asian’ (of North-

Indian descent), ‘Javanese’, or ‘other’. In the VMB sub-study, we included African Surinamese

women and women of North-Indian Surinamese or Javanese Surinamese descent (collectively

referred to in this paper as South-Asian Surinamese) as two separate groups.

Between January 2011 and December 2015, HELIUS baseline data were collected for 24,789

participants. For the VMB sub-study, a subsample of women enrolled between 1 January 2011

and 31 December 2013 was selected: all women aged 18–34 years who had provided a self-sam-

pled vaginal swab and had completed the questionnaire on sexual behavior were eligible for

selection, and seven female participants per ethnic group per life year (or all available partici-

pants if fewer than seven were available) were randomly selected [26].

Study procedures

Participants attended the study clinic for one study visit. They provided data on sociodemo-

graphics, behaviors, and medical history online or during the study visit. Participants who

were unable to complete the questionnaire were offered assistance from a trained, ethnically

matched interviewer. They were asked to bring a sample of their first morning urine to their

study visit, which was tested by a urine reagent test strip (Combur 7, Roche). During the study

visit, participants underwent a physical examination and biological sample collection. All
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women were asked to participate in the VMB sub-study by self-collecting a vaginal swab

(Copan Diagnostics Inc., Murrieta, CA, USA) during the study visit, but refusal to do so did

not render them ineligible for the HELIUS study. The vaginal swabs were kept at 2–8˚C at the

study site for up to six days, and then transported to, and stored at -20˚C, at the Public Health

Laboratory until testing. Women who were pregnant or less than 6 months postpartum were

asked to postpone their HELIUS participation.

VMB characterization

Each vaginal swab was eluted in 800 μl phosphate-buffered saline and divided into four ali-

quots. One aliquot each was tested for Trichomonas vaginalis (Aptima Trichomonas vaginalis

assay, HOLOGIC, Bedford, MA, USA), Chlamydia trachomatis and Neisseria gonorroeae
(Aptima Combo 2, HOLOGIC, Bedford, MA, USA), and human papillomavirus (HPV)

(SPF10-PCR-DEIA/LiPA25 system version 1, DDL, Voorburg, the Netherlands) [26], and the

fourth aliquot was used for VMB characterization. Samples were lysed using chemical lysis

(lysozyme, mutanolysin (Sigma Aldrich, USA, St. Louis), and lysostaphin (AMBI, USA, New

York)) and bead beating (MagnaPure, Roche Diagnostics, Switzerland, Basel), as described by

Ravel [5]. Lysed samples were further treated using proteinase K and RNase A (Thermo Fisher,

USA, Waltham). DNA was extracted using the ChemaGen extraction robot (PerkinElmer,

Germany, Baesweiler). Dual indexed universal primers (319F and 806R) were used for PCR

amplification of the V3-V4 regions of the 16S rRNA genes as described by Fadrosh [27]. PCR

products were pooled and normalized, and purified with Agencourt AMPure XP magnetic

beads (BeckmanCoulter, Fullerton, USA). Paired-end sequencing was performed on the Illu-

mina MiSeq instrument (San Diego, CA, USA).

Preprocessing of raw sequence data

Sequence data were preprocessed as described by Fadrosh [27] with minor modifications. Bar-

codes were trimmed off unaligned sequences. The unaligned sequences were then quality fil-

tered by truncating reads with an average phred score <20 over a 30 bp sliding window with

subsequent removal of sequences truncated to less than 75% of their original length as well as

their paired sequences using Trimmomatic [28]. PANDAseq [29] was used for assembling

paired sequences, error correction, and additional quality filtering: paired-end sequences that

did not overlap or resulted in a sequence of<400 bp were removed. Sequences were matched

to their corresponding barcode using the demultiplex tool in QIIME (version 1.8.0) [30] and

removed when not matched to a barcode, being less than 75% of the original length after qual-

ity truncation, or having any ambiguous base calls. One mismatch was allowed during removal

of PCR primer sequences (Tagcleaner [31]). The USEARCH tool in QIIME [32] was used for

operational taxonomic unit (OTU) picking based on 97% sequence similarity and Greengenes

version 13.8 was used as a reference for chimera detection [33]. Sequences were aligned to

sequences in a vaginal reference package [34] using the PyNAST method in QIIME.

Taxonomic classification

Taxonomic classification of OTUs was performed using two methods: 1) pplacer suite [35]

with the vaginal reference package [34] as reference taxonomy and 2) RDP Classifier in

QIIME with Greengenes version 13.8 [33] as reference taxonomy. The 16S rDNA BLAST

function of the NCBI database was used when the two methods produced discordant results or

when identification at species level was not possible (for OTUs with>1% relative abundance

in at least one sample only). OTUs that were assigned to the same species were merged.

Extremely rare OTUs (a total read count of less than 10) were removed. This resulted in 455
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OTUs, with 96% mapping to species level, 3% to genus level, and 1% to higher taxonomic

levels.

Data analysis

Statistical analyses were performed using R version 3.1.3 (R Development Core Team, 2015)

and STATA release 12 (StataCorp, College Station, TX, USA). All analyses were cross-sectional

and contained one sample per participant. Samples with<100 high quality reads were excluded

from subsequent analyses. Richness (number of OTUs) and diversity (Shannon Diversity

Index) were calculated for each sample at a rarefied read count of 100. Hierarchical clustering

was performed using Euclidean distance and complete linkage, and the resulting 20 clusters

were visualized in a heatmap. Thirteen of these 20 clusters contained fewer than 10 samples.

Clusters were therefore pooled based on microbiological characteristics to form meaningful

VMB groups (see Table 1 for a detailed description of how this was done). The resulting eight

VMB groups were described and their distribution across ethnic groups assessed. Sociodemo-

graphic, behavioral, and clinical characteristics were compared between HELIUS participants

who did or did not provide a vaginal swab (to explore the magnitude and direction of participa-

tion bias), the six ethnic groups, and the three largest VMB groups (the other five VMB groups

were too small to allow for multivariable modeling). The three largest VMB groups were: 1) L.

crispatus-dominated VMB; 2) L. iners-dominated VMB; and 3) polybacterial G. vaginalis-con-

taining VMB (Table 1). In unadjusted analyses comparing women who did or did not provide a

vaginal swab, and the six ethnic groups, two-sided Chi-squared or Fishers’ exact tests were used

for categorical data, and two-sided Kruskal Wallis tests for continuous data. Two separate mul-

tivariable logistic regression models were used to determine correlates of the L. iners-dominated

VMB group and polybacterial G. vaginalis-containing VMB group, respectively, each compared

to the L. crispatus-dominated VMB group. All covariates that were considered risk factors for a

non-lactobacilli-dominated VMB a priori, and were associated with a VMB group in the unad-

justed analyses at p<0.1, were included in the multivariable models. The proportion of women

who used antibiotics in the past two weeks was small, and not statistically different among eth-

nic groups or VMB groups (see results). Furthermore, a sensitivity analysis excluding recent

antibiotic users did not significantly alter our results and conclusions (data not shown).

Results

Study population

Of the 1,469 women aged 18–34 years who attended a HELIUS baseline visit before January

2014, 980 (67%) self-sampled a vaginal swab and 924 (63%) also completed the sexual behavior

questionnaire. Up to seven women per ethnic group and per life year were randomly selected

from these 924 women, which resulted in a sample size of 610 women. Dutch, African Suri-

namese, South-Asian Surinamese, and Ghanaian women were more likely to provide a vaginal

swab (94%, 87%, 75%, and 71%, respectively) than Turkish and Moroccan women (37% and

49%, respectively; p<0.01; [26]).

The median age of the 610 selected women was 27 years (IQR 22–30), and did not differ

between ethnic groups by design. However, other sociodemographic characteristics, substance

use, reproductive health history, sexual behaviors, and clinical characteristics differed substan-

tially (Table 2). Dutch women were more likely to have attained higher vocational or university

education and to report use of tobacco, cannabis and alcohol, and less likely to report being

religious and to have children. Turkish and Moroccan women were most likely to be married,

Dutch and Surinamese women were most likely to currently use hormonal contraception, and

Dutch and African Surinamese women were most likely to report sexual risk behaviors. Dutch

Vaginal microbiota and ethnicity
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Table 1. VMB cluster composition descriptions, Amsterdam, the Netherlands (2011–2015).

Clusters1 Description (Percentages are relative abundances) N2 VMB group names3 N2

2 L. crispatus-dominated. 85 women had >90%, 44 had 50–90%, and 2 had <50% with L.

jensenii.

131 L. crispatus-dominated 131

1 L. iners-dominated. 94 women had >90%, 81 had 50–90%, and 12 had <50% with other

lactobacilli.4
187 L. iners-dominated 187

7 L. gasseri-dominated. 3 women had >90%, 6 had 50–90%, and 5 had <50% with other

lactobacilli.

13 Other lactobacilli-dominated 18

9 L. jensenii-dominated. 2 women had >90%, and one had 50% L. jensenii and 45% L. gasseri. 3

14 L. delbrueckii-dominated. Both women had 48–61% combined with 17–47% GV. 2

4 Polybacterial with GV>AV or BVAB1. All women had GV (18–77%), 80 also had AV (1–30%),

and 18 BVAB1 (3–18%). Sneathia/Leptotrichia, Megasphaera type 1, Mobiluncus, Prevotella

(but always <20%), and L. iners were common3. Six women had some L. gasseri, two L.

jensenii, and none L. crispatus.

98 Polybacterial GV-containing VMB 134

5 Polybacterial with AV>GV. All 31 women had GV (10–52%) and AV (26–69%), and 3 had

<10% BVAB1. Sneathia/Leptotrichia, Megasphaera type 1, Mobiluncus, Prevotella (but

always <20%), and L. iners were common.5 One woman each had some L. jensenii or L.

crispatus.

31

17 Polybacterial with BVAB1 and GV>AV. All 5 women had BVAB1 (40–47%), GV (4–16%), and

AV (2–33%). Sneathia/Leptotrichia, Megasphaera type 1, Mobiluncus, Prevotella (but always

<20%), and L. iners were common.5 No-one had L. crispatus.

5

3 G. vaginalis-dominated. All 29 women had 75–100% GV.6 29 G. vaginalis-dominated 29

16 Mobiluncus curtisii-dominated (60%) with some GV, AV, and BVABs. 2 Other polybacterial anaerobic VMB 13

6A Polybacterial with low abundance of GV, AV, and BVAB1: 7 women had >20% of Prevotella

spp (21–34%), 3 had 37–44% L. crispatus with anaerobes, and one a mixture of anaerobes.

11

11 Bifidobacteriaceae-dominated, not including GV (59–89%) 3 Bifidobacteriaceae or

Corynebacterium-dominated

14

20 Bifidobacterium-dominated (75–99%) 3

10 Bifidobacterium breve-dominated (40–89%) 4

6B Polybacterial with low abundance of GV, AV, and BVAB1, and >40% Corynebacterium spp

(44–75%)

4

18 Streptococcus–dominated (71%) 1 Pathobiont-dominated 20

8 Streptococcus agalactiae-dominated: 5 women had 62–97%, and 4 had 35–57% with other

pathobionts, Corynebacterium spp, Bifidobacteriaceae, and/or lactobacilli.

9

19 Streptococcus anginosus-dominated (69%) 1

13 Staphylococcus-dominated (82%) 1

12 Escherichia coli-dominated (83%) 1

15 Enterococcus faecalis-dominated (55%), with some S. agalactiae, S. anginosis, and

staphylococci.

2

6C Polybacterial with low abundance of GV, AV, and BVAB1, and >15% pathobionts (15–44%). 5

AV = Atopobium vaginae, BVAB1 = BV-associated bacteria 1; GV = Gardnerella vaginalis, spp = species, VMB = vaginal microbiota.
1These numbers correspond to the 20 hierarchical clusters described in the results. In this table, clusters are organized into biologically meaningful VMB

groups. Each hierarchical cluster was assigned to one biologically meaningful VMB group, except for cluster 6: this cluster was further subdivided into three

groups (referred to as 6A-C), each of which was assigned to a different biologically meaningful VMB group. The hierarchical clustering clustered 6A-C

together because of similar diversity combined with low abundance of GV, AV, and BVAB1, but they were otherwise biologically very different (see

descriptions in the table).
2Number of samples containing the depicted VMB composition.
3VMB composition correlates were only determined for the three pooled clusters shown in bold.
4Two women also had >30% aerobes (37% Psychrobacter; 32% Raoultella planticola).
5Some women also had >1% Actinomycetales, Anaerococcus spp, other BVABs, Clostridiaceae, Corynebacterium spp (but <20%), Dialister spp,

Eggerthella, Finegoldia magna, Parvimonas micra, Peptoniphilus spp, and Veillionella spp. >1% Bifidobacterium spp, Mycoplasmas, Ureaplasmas, and

pathobionts were rare.
6Low levels of the same anaerobes as described for clusters 4, 5 and 17 were also often present.

https://doi.org/10.1371/journal.pone.0181135.t001
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and African Surinamese women also had the highest prevalence of any HPV and high risk

HPV (both p<0.01) [24]. The prevalences of Neisseria gonorrhoeae, Chlamydia trachomatis,
and Trichomonas vaginalis were low and not statistically significantly different across the eth-

nic groups.

VMB compositions in the overall study population

The median number of high quality sequences per sample was 25,392 (IQR 4,654–43,798).

Samples with fewer than 100 sequences (n = 64) were discarded from further analyses; these

were equally distributed across ethnic groups (data not shown). Hierarchical clustering of the

remaining 546 samples resulted in 20 clusters (Fig 1, Table 1), which were pooled into eight

microbiologically meaningful VMB groups as outlined in Table 1.

Three VMB groups were dominated by lactobacilli: L. crispatus-dominated VMB (n = 131,

24.0% of women), L. iners-dominated VMB (n = 187, 34.2%), and ‘other Lactobacillus-domi-

nated’ VMB (pooling clusters dominated by L. gasseri, L. jensenii, and L. delbrueckii; n = 18,

3.3%). Most women in these groups had a VMB with more than 50% relative abundance of the

Fig 1. Hierarchical clustering of participants by VMB composition. AV = Atopobium vaginae; BVAB1 = BV-associated bacterium 1; GV = Gardnerella

vaginalis; L = Lactobacillus; OTU = operational taxonomic unit; VMB = vaginal microbiota. A. The 20 VMB clusters obtained by hierarchical clustering of 546

vaginal samples. Clustering was based on the relative abundance of 455 OTUs. B. Heatmap showing the relative abundance of the most abundant OTUs

using the color key on the left.

https://doi.org/10.1371/journal.pone.0181135.g001

Vaginal microbiota and ethnicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0181135 July 11, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0181135.g001
https://doi.org/10.1371/journal.pone.0181135


relevant Lactobacillus species, and women with less than 50% of that species typically had addi-

tional Lactobacillus species. Other bacteria were sometimes present but in much smaller rela-

tive abundance, most commonly G. vaginalis and Corynebacterium. Pathobionts (streptoccoci,

staphylococci, Proteus, and Enterobacteriaceae) were present in 14 women in a relative abun-

dance of 1–14%. Overall, for all ethnic groups combined, 61.5% of the women had a lactoba-

cilli-dominated VMB and 38.5% had another type of VMB.

Three of the five VMB groups that were not dominated by lactobacilli resembled BV. These

included ‘polybacterial G. vaginalis-containing VMB’ (pooling three polybacterial clusters with

high relative abundance of G. vaginalis, A. vaginae and BVAB1 [4]; n = 134, 24.5% of women), ‘G.

vaginalis-dominated VMB’ (n = 29, 5.3%), and ‘other anaerobic polybacterial VMB’ (pooling two

polybacterial clusters with low relative abundance of G. vaginalis, A. vaginae and BVAB1 but high

relative abundance of Mobiluncus, Prevotella species or other anaerobes; n = 13, 2.4%). All of

these women had a polybacterial VMB characterized by the anaerobes that have typically been

associated with BV (see Introduction and Table 1), often in combination with L. iners and several

other minority taxa. Bifidobacteriaceae (not including G. vaginalis) were uncommon in these

VMB groups. The final two of five VMB groups not dominated by lactobacilli included a VMB

group dominated by Bifidobacteriaceae (not including G. vaginalis) or Corynebacterium (n = 14,

2.6%) and a VMB group dominated by pathobionts (n = 20, 3.7%). Overall, 32.2% of all women

had a VMB resembling BV and another 6.2% had a VMB dominated by Bifidobacteriaceae (not

including G. vaginalis), Corynebacterium, or pathobionts.

A total of 33 women (6.0%) distributed over all eight VMB groups had 1% or more relative

abundance of a Streptococcus species, and an additional 18 women (3.3%) had 1% or more rela-

tive abundance of another pathobiont.

Unadjusted associations between ethnicity and VMB groups

The distribution of the eight VMB groups was significantly different among ethnic groups

(Fig 2). The most prevalent VMB group in Dutch women was a L. crispatus-dominated VMB

(38%), in South-Asian Surinamese, Turkish and Moroccan women a L. iners-dominated VMB

(40%, 41%, and 35%, respectively), and in African Surinamese and Ghanaian women a poly-

bacterial G. vaginalis-containing VMB (39% and 34%, respectively). Turkish and Moroccan

women more often had a VMB dominated by Bifidobacteriaceae (not including G. vaginalis),
Corynebacterium or pathobionts than women from the other ethnic groups (11% and 14%,

respectively, versus 2–5%). When comparing the VMB group distribution of each ethnic

group to the distribution in Dutch women (as shown in Fig 2), the Fisher’s exact p values were

0.41 for South Asian Surinamese women, <0.01 for African Surinamese women, 0.08 for Gha-

naian women,<0.01 for Turkish women, and 0.01 for Moroccan women. The VMB of African

Surinamese women had the highest richness (median 6.2, IQR 3.6–9.2) compared to a median

richness of 4.2–5.2 in the other ethnic groups (overall Kruskal Wallis p = 0.02). The median

Shannon Diversity Index [IQR] for Dutch women was 0.9 [0.3–1.5]. The median Shannon

Diversity Indexes [IQR], and Kruskal Wallis p values for the other ethnic groups compared to

Dutch women, were: South Asian Surinamese women 0.8 [0.2–1.4] (p = 0.31), African Suri-

namese women 1.5 [0.5–1.9] (p< 0.01), Ghanaian women 0.9 [0.2–1.7] (p = 0.83), Turkish

women 1.0 [0.3–1.6] (p = 0.59), and Moroccan women 1.1 [0.4–1.7] (p = 0.16).

VMB correlates in multivariable logistic regression models

VMB correlates were determined for the three largest of the eight VMB groups as described in

the methods (Table 3). In adjusted analyses, being of African Surinamese and Ghanaian eth-

nicity, compared to Dutch ethnicity, was significantly associated with having a polybacterial G.
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vaginalis-containing VMB (adjusted odds ratio (aOR) 5.1, 95% confidence interval (CI) 2.1–

12.0 and aOR 4.8, 95% CI 1.8–12.6, respectively), and being of African Surinamese ethnicity

also with having a L. iners-dominated VMB (aOR 2.8, 95% CI 1.2–6.2). Other characteristics

independently associated with having a polybacterial G. vaginalis-containing VMB at p<0.05

were being in a steady relationship for less than 2 years (aOR 3.5, 95% CI 1.4–8.5), inconsistent

Fig 2. Prevalence of VMB groups by ethnic group. L = Lactobacillus; GV = Gardnerella vaginalis; VMB = vaginal microbiota. *Excluding

GV. A. Prevalence of six VMB groups by ethnic group. The error bars show the 95% confidence intervals for the prevalence of the three

Lactobacillus-dominated VMB groups combined and the three VMB groups not dominated by lactobacilli combined for each ethnic group.

B. The ‘Other VMB’ group was further subdivided into three subgroups: The prevalence of these subgroups is shown by ethnic group.

https://doi.org/10.1371/journal.pone.0181135.g002
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condom use with a casual sex partner in the past six months (aOR 3.2, 95% CI 1.0–9.9), and

currently not using hormonal contraception (aOR 0.5, 95% CI 0.3–0.8, for current use).

Discussion

More than a third (38.5%) of the women in our population-based study in Amsterdam had a

non-lactobacilli-dominated VMB, of which 83.6% resembled BV and 16.4% had a VMB domi-

nated by Bifidobacteriaceae (not including G. vaginalis), Corynebacterium, or pathobionts.

Women of sub-Saharan African descent (either African Surinamese or Ghanaian) were signifi-

cantly more likely to have a polybacterial G. vaginalis-containing VMB, and African Surinam-

ese women were significantly more likely to have a L. iners-dominated VMB, than Dutch

women after controlling for sociodemographic factors, sexual risk behaviors, vaginal cleansing

practices, and hormonal contraceptive use.

Table 3. VMB correlates: Multivariable logistic regression models comparing each VMB cluster to the L. crispatus-dominated cluster.

L. crispatus-dominated (n = 131) L. iners-dominated (n = 187) Polybacterial GV-containing

VMB (n = 134)

N (%)1 N (%)1 aOR (95% CI)2,3 N (%)1 aOR (95% CI)2,4

Ethnicity: Dutch 38 (29) 28 (15) ref 17 (13) ref

African Surinamese 17 (13) 36 (19) 2.8 (1.2–6.2)* 42 (31) 5.1 (2.1–12.0)*

S-Asian Surinamese 24 (18) 36 (19) 1.9 (0.9–4.0) 19 (14) 1.6 (0.7–4.0)

Turkish 17 (13) 33 (18) 2.1 (0.9–4.9) 12 (9) 1.1 (0.4–3.0)

Moroccan 20 (15) 32 (17) 2.1 (0.9–5.0) 19 (14) 2.4 (0.9–6.3)

Ghanaian 15 (11) 22 (12) 2.1 (0.8–5.4) 25 (19) 4.8 (1.8–12.6)*

Currently married 14 (11) 39 (21) 0.9 (0.3–2.4)

�1 child births 23 (18) 60 (32) 1.5 (0.7–2.9)

Current hormonal contraception use 64 (49) 72 (39) 0.7 (0.4–1.1) 42 (31) 0.5 (0.3–0.8)*

Alcohol use in past 12 months 87 (66) 102 (55)

Steady relationship: None 81 (62) 86 (46) ref 63 (48) ref

<2 years 12 (9) 17 (9) 1.5 (0.6–3.7) 24 (18) 3.5 (1.4–8.5)*

2–5 years 23 (18) 35 (19) 1.3 (0.6–2.8) 28 (21) 2.2 (1.0–4.9)

�6 years 14 (11) 47 (25) 2.5 (0.9–6.8) 17 (13) 1.9 (0.7–5.0)

Condom use in past six months:

No recent sex 51 (39) 50 (27) ref 38 (29) ref

Consistent5 (steady/casual partner) 27 (21) 28 (15) 1.1 (0.5–2.2) 22 (17) 0.9 (0.4–2.1)

Inconsistent6 (steady partner only) 46 (35) 95 (51) 1.7 (0.9–3.2) 58 (44) 1.4 (0.7–3.0)

Inconsistent6 (casual +/- steady partner) 7 (5) 13 (7) 2.5 (0.9–7.5) 15 (11) 3.2 (1.0–9.9)*

aOR = adjusted odds ratio; CI = confidence interval; GV = Gardnerella vaginalis; ref = reference category; S-Asian = South Asian; VMB = vaginal

microbiota.

Two separate multivariable logistic regression models were used to determine correlates of the L. iners-dominated VMB group and polybacterial G.

vaginalis-containing VMB group, respectively, each compared to the L. crispatus-dominated VMB group.
1 N (%) is shown for all variables in the reference column, but in the other two columns, only for variables associated with the outcome (the L. iners-

dominated VMB group or polybacterial G. vaginalis-containing VMB) at p<0.1 in unadjusted analyses (Fishers’ exact for categorical and Kruskal Wallis for

continuous data). The models were not adjusted for any other variables.
2 aORs with 95% CI that were statistically significant at p<0.1 are shown in bold, and those significant at p<0.05 are also indicated with *.
3,4 Participants dropped from the multivariable model due to missing values: n = 8 (3) and n = 5 (4), respectively.
5 Reported as mostly/always.
6 Reported as never/mostly not/sometimes.

https://doi.org/10.1371/journal.pone.0181135.t003
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While studies in multi-ethnic asymptomatic American populations have shown similar dif-

ferences between African-American women and women of other ethnicities before [1, 5, 17–

19], our study is the first to show this in a multi-ethnic population living in Europe. We note

some differences between our study and the American multi-ethnic studies: VMB dominated

by lactobacilli other than L. crispatus and L. iners (most notably L. gasseri and L. jensenii) were

less common, and the overall prevalence of a VMB resembling BV in White and Asian women

was higher, in our study. Hypotheses to explain the association between ethnicity and VMB

composition include differences in sociodemographic, behavioral, environmental, and genetic

factors. Our results suggest that genetic differences might play a role. First, our sampling strat-

egy balanced ethnicity and age, and we controlled our analyses for a large number of other

sociodemographic factors and behaviors. Second, our study included two groups of women of

sub-Saharan African descent: African Surinamese and Ghanaian women. The African Suri-

namese went from West-Africa to Suriname, a former Dutch colony in South America, in the

nineteenth century, and many migrated from Suriname to the Netherlands in the 1970s and

1980s due to an unstable political situation in Suriname. Ghanaians migrated to the Nether-

lands (and also to other European countries such as the UK and Germany) between 1974

and 1983, and again in the early 1990s, for economic and political reasons. Despite different

migration histories, both groups had higher adjusted odds of having a polybacterial G. vagina-
lis-containing VMB compared to Dutch women of a similar magnitude (aOR 5.1 and 4.8,

respectively). Macro-environmental factors are therefore unlikely to play a role, but the role of

cultural habits that women and their sexual partners take with them when they migrate, such

as diet and sexual, vaginal, and penile hygiene practices, cannot be ruled out (vaginal hygiene

practices were, however, not associated with VMB group in our study). A few studies have sug-

gested that genetic differences in vaginal mucosal immune responses might favor colonization

by L. iners over L. crispatus in women of African descent [36–38] but this has not yet been suf-

ficiently studied. We speculate that vaginal mucosal immune responses may have evolved dif-

ferently in sub-Saharan Africa compared to Europe or the Americas as a result of differences

in exposures at mucosal surfaces to types and quantities of pathogens and pathobionts.

The clustering we performed differentiated VMB groups not dominated by lactobacilli by

bacterial diversity, the relative abundances of the BV-associated taxa G. vaginalis, A. vaginae,
BVAB1, Mobiluncus species, and Prevotella species, and the relative abundance of Bifidobacter-
iaceae (not including G. vaginalis), Corynebacterium, and pathobionts. Others have also

reported on VMB groups differentiated by bacterial diversity and relative abundance of typical

BV-associated bacteria [1, 5, 17–19], but different research groups are not yet using consistent

VMB descriptions and categorizations making between-study comparisons difficult. VMBs

dominated by Bifidobacteriaceae (not including G. vaginalis), Corynebacterium, and patho-

bionts have been infrequently reported thus far [1, 19, 39]. A Russian study isolated four Bifi-
dobacterium species (B. bifidum, B. breve, B. adolescentis, and B. longum) in vaginal specimens

of healthy women of reproductive age, and these were capable of inhibiting pathobionts in

vitro [39]. While the clinical significance of the Corynebacterium VMB group is unclear, VMBs

dominated by pathobionts are likely associated with adverse reproductive health outcomes;

culture-based studies have consistently identified these pathobionts as causes of pregnancy

complications and neonatal sepsis [3, 40]. Of note, only 6% of women in our study had at least

1% relative abundance of a Streptococcus species in their VMB, whereas a recent systematic

review of culture-based studies concluded that the mean prevalence of rectovaginal carriage of

S. agalactiae was 17.9% worldwide and 19.0% in Europe [41]. These figures cannot be com-

pared directly due to differences in sampling (vaginal versus rectovaginal) and laboratory

methods (16S sequencing versus culture). However, further research is needed to explain these

differences and ensure that pathobionts are accurately identified in molecular studies. In
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addition, in our study, pathobionts occurred across VMB groups, including lactobacilli-domi-

nated VMB groups. A better understanding of when pathobionts become clinically relevant

(for example, at which relative or absolute abundance), and whether VMB groups or commu-

nity state types adequately capture those situations, is urgently needed.

The five VMB groups not dominated by lactobacilli in our study might require different

types of treatment or combinations of treatments. The three VMB groups resembling BV

might respond to metronidazole treatment, but the efficacy might differ depending on the rel-

ative abundances of key taxa such as G. vaginalis, A. vaginae and BVAB1 and/or the presence

of a biofilm (G. vaginalis is thought to initiate a vaginal biofilm by providing the scaffolding

needed for other anaerobes to colonize) [42]. In contrast, VMBs with high relative abundance

of pathobionts would require a different antibiotic treatment [40]. Clinicians should therefore

be enabled to differentiate between these conditions.

Our study was cross-sectional. The vaginal microbiota often fluctuate over time, and the

potential confounders that we included in our models (sexual risk behaviors, vaginal cleansing

practices, and hormonal contraceptive use) are also time-dependent. Furthermore, vaginal

microbiota are often influenced by the menstrual cycle [1, 18], and menstrual cycle data were

not collected in the HELIUS study. Transient vaginal dysbiosis may not be clinically relevant,

and data on the proportions of women who have persistent vaginal dysbiosis are needed. It

should also be noted that the data on the potential confounders were self-reported, and may

therefore suffer from social desirability bias.

The HELIUS study selected women at random from among those registered in Amsterdam

in the age range and ethnic groups of interest, and we selected our subsample from the

HELIUS sample. However, our subsample did suffer from participation bias and possibly

reporting bias. The Turkish and Moroccan participants, in particular, were much less likely

than the other groups to self-sample a vaginal swab and to complete a sexual behavior ques-

tionnaire [26]. They were also less likely to report sexual risk behaviors, which could be due to

actual differences in behaviors or in reporting of those behaviors. Our results related to the

Turkish and Moroccan groups should therefore be interpreted with caution. However, we

believe that these biases did not influence our main finding that women of sub-Saharan Afri-

can descent were much more likely to have a suboptimal VMB after controlling for potential

confounding factors than Dutch women. In the three ethnic groups included in those compar-

isons (Dutch, African Surinamese and Ghanaian), vaginal sampling rates were 94%, 87% and

71%, respectively. None of the characteristics that differed between those who self-sampled

and those who did not were associated with VMB composition in multivariable models, except

that Ghanaian women who self-sampled were more likely to be in a steady relationship of lon-

ger duration and to have had at least one child than Ghanaian women who declined self-sam-

pling [data not shown]. This suggests that Ghanaian women who participated may have a

lower risk of having a VMB not dominated by lactobacilli than those who did not, which only

strengthens our main finding.

We conclude that the overall prevalence of VMB not dominated by lactobacilli in women

aged 18–34 years in Amsterdam was high, and that women of sub-Saharan African descent

were more likely to have a polybacterial G. vaginalis-containing VMB than Dutch women

independent of modifiable behaviors. Further research is required to determine if these

women are also more likely to have persistent vaginal dysbiosis, and whether this contributes

to the higher prevalence of adverse reproductive outcomes in these groups. Our findings sup-

port hypotheses implicating the contribution of genetic causes to these differences, such as

those related to differences in vaginal mucosal immune response, and these should be further

investigated.
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