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a b s t r a c t 

Species distribution models (SDMs) are powerful tools that can predict potential distributions of 

species under climate change. However, traditional SDMs that rely on current species occurrences 

may underestimate their climatic tolerances and potential distributions. To address this limitation, 

we developed an integrated framework that incorporates eco-evolutionary data into SDMs. In our 

approach, the fundamental niches of species are constructed by their realized niches in different 

periods, and those fundamental niches are used to predict potential distributions of species. Our 

framework includes multiple phylogenetic analyses, such as niche evolution rate estimation and 

ancestral area reconstruction. These analyses provide deeper insights into the responses of species 

to climate change. We applied our approach to the Chrysanthemum zawadskii species complex to 

evaluate its efficacy through comprehensive performance evaluations and validation tests. Our 

framework can be applied broadly to species with available phylogenetic data and occurrence 

records, making it a valuable tool for understanding species adaptation in a rapidly changing 

world. 

• Integrating the niches of species in different periods estimates more complete climatic en- 

velopes for them. 

• Combining eco-evolutionary data with SDMs predicts more comprehensive potential distri- 

butions of species under climate change. 

• Our framework provides a general procedure for species with phylogenetic data and occur- 

rence records. 
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Method details 

The overall workflow of our framework is depicted in Fig. 1 . Our analysis process involves the following steps including data collec-
tion, data preprocessing, standard species distribution modeling (SDM), phylogenetically-informed SDM, and additional phylogenetic 
analysis. All analyses within this study were conducted using R v . 4.1.3 [1] . 

Data collection 

Our framework requires three types of data: occurrence records of species, the dated phylogenetic tree of the target species and
its closely related species, and predictor variables for modeling (e.g., climatic and topographic variables). The distribution data of
species can be obtained through field surveys, museum records, related literature, or citizen science initiatives, which depend on
specifics of the target species. There are multiple ways to acquire the required dated phylogenies. We can download molecular data
of species from the National Center for Biotechnology Information or other databases and then use those data as inputs to reconstruct
dated phylogeny with some phylogenetics software, e.g., BEAST [3] , PAML [4] , and others. In addition, previous studies can also
provide the required phylogenetic trees. Notably, some software such as SoTree [5] and V.PhyloMaker2 [6] can generate phylogenies 
for vascular plants according to the species names provided. Predictor variables for modeling are usually downloaded from some
public databases including WorldClim [7] , ENVIREM [8] , EarthEnv project [9] , Oscillayers [10] , and so on. 

Data preprocessing 

In species distribution modeling, it is necessary to filter and screen the data to improve model quality [11] . Specifically, data
preprocessing can be divided into two parts in our approach: reduction of spatial autocorrelation in occurrence records and selection
of predictor variables. 
Fig. 1. The overall workflow of the integrated framework which combines eco-evolutionary data with species distribution models (SDMs) and R 

packages used in this study. Adopted from Lu et al. [2] . The ancestral realized niches of the target species contain two past periods, the early (t1 ) and 

middle stages (t2 ) in the course of its evolution. The realized niches of two past periods (t1 and t2 ) and the current period (t3 ) are used to calibrate 

the “fundamental ” niche of the target species. CF1 and CF2 indicate climatic factor 1 and climatic factor 2, respectively. 
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When performing SDMs, reducing spatial autocorrelation between occurrence records of species is crucial [11] . We here recom- 
mended two methods to minimize spatial autocorrelation in occurrence records of species. One of them is filtering the occurrence
points of species to keep pairwise distances of their occurrences greater than a proper distance. Filtering of species occurrences can be
performed using the ‘spThin’ R package [12] . Except for filtering species records, we also suggested implementing a cross-validation
procedure to partition the occurrence records into training and test datasets when performing modeling analyses. This step, as pro-
posed by previous studies [ 11 , 13 ], can enhance the spatial independence between training and test data, thereby improving the
robustness and validity of our modeling results. 

Because constructing models with highly correlated predictor variables may lead to some detrimental outcomes, such as model 
overfitting and debated model extrapolation [ 11 , 14 ], variables with high correlation should be removed from the model. A common
method used to evaluate the multicollinearity of predictor variables is to calculate Pearson’s correlation coefficients ( r ) between
different variables. This assessment can be performed using the ‘ENMTools’ R package [15] , and variables exhibiting low pairwise
correlations (e.g., | r | < 0.80) should be selected to avoid collinearity issues. 

Standard species distribution modeling 

For comparisons with SDMs that integrate phylogenetic information (phylogenetically-informed SDMs), we conducted standard 
SDMs for the target species in our framework. Notably, previous studies indicated that splitting species which consist of populations
with clear genetic and ecological differentiation into subunits could improve potential distribution predictions for them [ 16–18 ].
Therefore, we suggested determining whether models below species level are needed to predict species distributions for the target
species before performing SDMs. There are many algorithms for predicting species distribution, which could be selected according 
to specific needs. The well-tuned boosted regression trees (BRT) model is identified as one of the best algorithms for SDM, and some
studies suggested that the BRT model even outperforms the ensemble model which integrates multiple modeling algorithms [ 19 , 20 ].
Thus, we chose the well-tuned BRT model for standard SDMs in our framework. The subsequent modeling process is also exemplified
by the BRT model. 

The process of standard SDM commenced with the generation of pseudo-absences for the target species. Most algorithms such as
the BRT model require both presence and absence data of species, but distribution data of species obtained from related databases
are often composed of presence-only records. Barbet-Massin et al. [21] provided a guideline to generate pseudo-absences for different 
algorithms. For example, this guideline suggested that generating pseudo-absences with a “random ” strategy can yield the most 
reliable distribution models when using regression techniques. After determining the strategy and number for generating pseudo- 
absences, we can perform this step using some R packages, e.g., ENMTools [15] and biomod2 [22] . 

Subsequently, the BRT models should be tuned to optimize their performance. The BRT model possesses a series of hyperparam-
eters, including “shrinkage ”, “n.trees ”, “distribution ”, “bag.fraction ”, and “interaction.depth ”. While default values for these hyper-
parameters have been predefined in the BRT model, their optimal settings for specific taxa or species remain uncertain. Given the
impact of parameter configurations on model complexity and performance, pre-defining these hyperparameters is critical [23] . In our 
study, we specifically adjusted three hyperparameters ( “shrinkage ”, “n.trees ”, and “interaction.depth ”) following guidelines by Elith
et al. [24] . R packages such as SDMtune [23] can be utilized for tuning the BRT model of the target species. The optimal combination
of hyperparameters was determined based on the area under the receiver operator characteristic curve (AUC) metric in SDMtune.
Significantly, if other modeling algorithms are selected, the models also need parameter tuning to optimize model performance. 

After model tuning, we performed the well-tuned BRT model with ten cross-validation replicates using the optimal combinations 
of hyperparameters in the ‘biomod2’ R package [22] for the target species. Each BRT model replicate was trained on 80% of the
occurrence data, with the remaining 20% data reserved for testing. To evaluate model performance, we utilized the true skill statistic
(TSS) metric and the AUC metric. Given that the value of TSS metric > 0.7 indicates high model performance, we only used models
with TSS values greater than 0.7 to build the ensemble BRT model of the target species for further projections. These ensemble
models were created using both the probability weighted mean method and the committee averaging method. Their performances 
were also assessed based on the AUC and TSS metrics. Then, ensemble models generated by two methods were projected into the
current climatic layers to predict the potential distribution of species in the current period. 

In the final phase, we converted the continuous suitability predictions of those ensemble models into binary outputs. A previous
study proposed that the “maximizing the sum of sensitivity and specificity ” (maxSSS) statistic is a well-performing threshold selection
method for transforming continuous predictions into binary maps [25] . Thus, we calculated the maxSSS values for the ensemble
models of species, and the habitat suitability value of each raster cell below the corresponding maxSSS value was set to 0. 

Phylogenetically-informed SDMs 

To forecast more comprehensive potential distributions of species, we employed phylogenetically-informed SDMs to model their 
distribution. This method integrates phylogenetic information with traditional SDM to enhance model performance. Standard SDMs 
characterize environmental envelopes of species based on the relationships between environmental variables and observed occur- 
rences of species [ 26 , 27 ]. However, these models typically reflect the realized niches of species, potentially underestimating their
climatic tolerances and full potential distributions [26] . The multi-temporal calibration approach, proposed as a solution to this lim-
itation, operates under the premise that while the fundamental niche of a species remains relatively stable over time, its realized
niche can shift [ 28 , 29 ]. Studies have shown that the multi-temporal calibrated SDMs, which incorporate geographic locations of
3
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species from different periods (e.g., fossil records), can enhance model transferability and provide estimation closer to the fundamen-
tal niche of species [30–33] . Yet, the scarcity of fossil records for many species impedes the verification of their past distributions
and characterization of their realized niches in the past. 

Our solution is to integrate eco-evolutionary information into SDMs. Considering the fundamental niche is often regarded as a
lineage-specific trait that is conserved within and even across lineages [ 34 , 35 ], the fundamental niche of the target species can be
informed by the niches of its related species in a phylogenetic framework [36] . Hence, we drew on the conceptual frame of the
multi-temporal calibration and proposed our phylogenetically-informed SDM. The process involves several key steps: 

We first reconstructed ancestral climatic envelopes for the target species and its closely related species, utilizing current climate
data and the dated phylogeny. This was done with the ‘machuruku’ R package [37] . The reconstruction of ancestral niches involves
two stages: a) constructing Bioclim models for all species using their observed occurrence records and selected predictor variables.
The current climatic envelopes of these species are described by some parameters, e.g., the mean, standard deviation, and skewness;
b) utilizing the dated phylogeny and the derived parameters of the climatic envelope as inputs to estimate ancestral character states
at specific past time points under the Brownian Motion (BM) model. We here focused on two past time points for thetarget species,
i.e., the early and middle stages respectively in the course of their evolution, with the timing dependent on the divergence times
of species. These ancestral characters were then converted to ancestral niche models of species with the ‘machuruku’ package [37] .
Significantly, the BM model assumes that niche evolution of species is gradual, which may oversimplify the process of niche evolution.
This is an omission needs to be addressed, and some progress has been made [38] , which is also the direction for us to optimize our
framework in the future. 

Subsequently, those ancestral niche models were projected into current climatic layers, transforming the ancestral climatic en- 
velopes into binary suitability maps using the ‘machuruku’ package [37] . As potential distributions predicted by modeling essentially 
represent the spatial manifestation of the realized niche of species, we overlaid these potential distributions, generated from ancestral 
niches, with those from standard SDMs. This overlay, conducted using the ‘raster’ R package [39] allowed us to integrate realized
niches of the target species from different periods to predict a more comprehensive potential distribution for species. 

Future projections of species distribution 

After constructing SDMs with different methods, the next step is to predict the potential distributions for the target species across
various future periods to explore species-specific responses to changing climates. For standard SDMs, we employed the BRT ensemble
model, previously generated for the target species, and projected it into future climatic layers to predict future potential distributions of
species. These projections were then transformed into binary suitability maps for subsequent analyses. For phylogenetically-informed 
SDMs, the ancestral niche models, developed in our earlier analyses, were similarly projected into climatic layers of future periods. This
projection process allowed us to convert these models into spatial representations. We then overlaid the “future ” potential distributions
forecasted by both the ancestral niche models and the standard SDM to provide a potential distribution of phylogenetically-informed
SDM for the target species. 

Given that integrating distance constraints can enhance the accuracy of SDMs [40] , we suggested generating an accessible area for
the target species. This was achieved by first establishing a minimum convex polygon (MCP) for each species, followed by the creation
of an appropriate buffer zone surrounding each MCP. The size of buffer zone should be tailored to the dispersal ability of species
being studied. After that, the predictions of different modeling strategies were processed based on the corresponding accessible area.
Following this, we employed the ‘biomod2’ package [22] in R to compare the changes in potential distributions of the target species
across different future periods. 

Additional phylogenetic analysis 

Even if multi-temporal calibrated SDMs can provide estimation closer to the fundamental niche of species, the projections they 
generate should be approached with caution due to potential overly optimistic expectations in responses of species to climate change.
Furthermore, some studies have underscored the significance of evolutionary history of a species in forecasting its future distribu-
tion under changing climatic conditions [ 41 , 42 ]. To enhance our understanding of the responses of species to climate shifts, we
undertook comprehensive phylogenetic analyses in our framework. These analyses include estimating the rate of niche evolution and 
reconstructing ancestral areas. 

To gain a deeper insight into how different species have adapted to climate change, we quantified their mean rates of realized niche
evolution. In this study, we adopted a phylogenetic ridge regression-based method to calculate niche evolution rates [ 43 , 44 ]. This
approach enables the estimation of evolutionary rates across all branches of the phylogenetic tree. Specifically, we accounted for the
ancestral characters of main nodes as reference values when computing rates of niche evolution. Initially, we identified the optimal
model of niche evolution for the target species using the ‘geiger’ R package [45] based on the climatic data of their occurrences and the
dated phylogeny. We evaluated four evolution models: White Noise, Brownian Motion, Ornstein-Uhlenbeck, and Early Burst. Their 
performance was assessed using Akaike’s Information Corrected Criterion (AICc) values. Subsequently, the ancestral characters of 
those climatic variables were estimated with the ‘phytools’ package [46] , based on the optimal evolution model to provide reference
values for the estimation of niche evolution rates. Finally, we used the dated phylogeny, climatic data, and the reference values of
main nodes as inputs to compute rates of niche evolution for the target species, employing the ‘RRphylo’ R package [44] . 

To reconstruct the historical range dynamics of the target species, we estimated its ancestral distributions. This analysis commenced 
with the acquisition of paleoclimate data. In recent years, high-quality paleoclimatic data has become available, which contributes 
4
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to the development of ancestral range estimation [ 10 , 47 ]. We can download paleo-climatic layers with high spatial resolution from
some databases (e.g., Oscillayers [10] and PaleoClim [47] ) according to the requirements. Subsequently, using the processes detailed 
in the ‘Phylogenetically-informed SDMs’ section, we generated ancestral niche models for the target species utilizing the ‘machu- 
ruku’ R package [37] . These models were then projected into the corresponding paleo-climatic layers to deduce potential ancestral
distributions for the target species. These ancestral distributions were further transformed into binary suitability maps through the 
’machuruku’ R package, providing a clearer picture of the historical range dynamics of species. 

An empirical examination of the Chrysanthemum zawadskii species complex 

To assess the effectiveness of our approach, we here focused on the Chrysanthemum zawadskii species complex within the genus
Chrysanthemum L. (Anthemidae, Asteraceae). This complex contains seven closely related species in China, i.e., C. zawadskii, C. 

maximowiczii, C. naktongense, C. chanetii, C. mongolicum, C. hypargyrum, and C. oreastrum , which exhibit diverse habitats and different
patterns of distribution [ 48 , 49 ]. Previous studies reconstructed a well-resolved phylogeny for this complex and traced its evolutionary
history, serving as a foundation for our analysis and modeling in this study [ 50 , 51 ]. Notably, two narrowly distributed species, i.e.,
C. oreastrum and C. hypargyrum , consist of distinct geographical lineages with clear genetic and ecological differentiation [ 50 , 51 ].
Therefore, we implemented SDMs at lineage levels for these two species. We predicted the potential distribution of different species
and lineages within this complex, calculated their niche evolution rates, and reconstructed their ancestral distributions following the 
previously described analysis process. Data collection and preprocessing of the empirical examination are detailed in supplementary 
material. 

We then conducted a comparative analysis between phylogenetically-informed SDMs and standard SDMs to evaluate the contribu- 
tions of ancestral realized niches to the total niche of the target species. Specifically, the values of two niche breadth metrics, Levins’
B 1 and B 2 (as proposed by Levins [52] ) were measured for each species and lineage based on their potential distributions. These
metrics range from 0 to 1, with values nearing 1 denoting a wider niche breadth, and those closer to 0 indicating a narrower one.
We used predictions of species and lineage which added distance constraints as inputs to calculate these niche breadth metrics using
the ‘ENMtools’ R package [15] . Subsequently, we compared the current potential distribution of each species and lineage based on
different modeling strategies with the ‘biomod2’ R package [22] . Our niche comparison results revealed that the niche breadths pro-
vided by phylogenetically-informed SDMs are consistently broader than those predicted by standard SDMs for all species and lineages,
indicating that our approach estimates broader niches for all species and lineages (Table S1). Similarly, phylogenetically-informed 
SDMs also provided broader potential distributions for all species and lineages than those generated by standard SDMs (Table S1). 

To further validate the effectiveness of phylogenetically-informed SDM, we focused on C. chanetii , given its relatively abundant
occurrence records within the complex. We created partial presence datasets by randomly selecting a subset of occurrence records 
(50% and 75%) for each species in the complex. This random sampling was replicated five times for each subset percentage, resulting
in a total of 10 partial presence datasets. These partial presence datasets were utilized to reconstruct the climatic envelopes of C.

chanetii and predict its current potential distributions using our phylogenetically-informed SDMs, as previously described. We then 
compared these results with those obtained from standard SDMs to ascertain whether our approach estimates a broader niche and
predicts a more extensive distribution for C. chanetii . The outcomes of this validation test, detailed in Table 1 , underscore the superior
capacity of our method in providing a broader climatic envelope for the target species compared to standard SDMs. 

In practice, we found that the phylogenetically-informed SDMs also predicted broader potential distributions than those of the 
standard SDMs across various future periods. Besides, the results of two modeling strategies display different tendencies of range
change under climate change (Table S2). In this case, integrating the results of SDMs with niche evolution rates (Table S3) and
ancestral distribution of the target species (Figure S1) can help us understand their fate in a rapidly changing world. 
Table 1 

Validation test results for phylogenetically-informed SDMs in Chrysanthemum chanetii. 

Method Presence datasets Niche breadth Range change (%) 

Levins’ B 1 Levins’ B 2 

Standard SDM all occurrences 0.827 0.123 / 

Phylogenetically- 

informed 

SDM 

all occurrences 0.886 0.252 104.1 

50% occurrences repeat-1 0.883 0.242 96.3 

50% occurrences repeat-2 0.858 0.180 45.7 

50% occurrences repeat-3 0.860 0.184 49.0 

50% occurrences repeat-4 0.880 0.233 88.8 

50% occurrences repeat-5 0.869 0.203 64.9 

75% occurrences repeat-1 0.894 0.276 124.0 

75% occurrences repeat-2 0.890 0.263 113.3 

75% occurrences repeat-3 0.875 0.219 77.9 

75% occurrences repeat-4 0.895 0.280 127.1 

75% occurrences repeat-5 0.859 0.181 47.0 

Note : Validation test is based on the potential distributions of C. chanetii in the current period. Levins’ B 1 and B 2 niche breadth metrics are 

as suggested by Levins [52] . 

5



W.-X. Lu and G.-Y. Rao MethodsX 12 (2024) 102608

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

This study introduces a comprehensive framework that combines eco-evolutionary data with species distribution models to forecast 
species range shifts in response to changing climates. Our approach is universally applicable to species for which phylogenetic data
and occurrence records are available. Validation tests have demonstrated that incorporating the realized niches of target species 
from various time periods results in a more complete delineation of their climatic envelopes. Consequently, these phylogenetically- 
informed SDMs are capable of predicting a more extensive potential distribution for the target species. However, it is important to
acknowledge that such phylogenetically-informed SDMs might yield overly optimistic predictions regarding responses of species to 
climate change. To address this, we advocate for incorporating additional data, such as the rate of niche evolution and ancestral
distribution of species, and recommend a cautious interpretation of the results. Overall, integrating eco-evolutionary information is 
crucial for accurately predicting the future potential distributions of species, thereby enriching our understanding of how species 
respond to climate change. 
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