
 

 1 

Cell type-specific dysregulation of gene expression due to Chd8 haploinsufficiency during 
mouse cortical development 
 
Kristina M. Yim1*, Marybeth Baumgartner1*, Martina Krenzer1,7*, María F. Rosales Larios1,8, 
Guillermina Hill-Terán1,9, Timothy Nottoli2,3, Rebecca A. Muhle4,10, James P. Noonan1,5,6+ 

 

1. Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA 
2. Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, 

USA 
3. Yale Genome Editing Center, Yale School of Medicine, New Haven, CT 06510, USA 
4. Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA 
5. Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA 
6. Wu Tsai Institute, Yale University, New Haven, CT 06510, USA 
7. Present address: Mount Sinai School of Medicine, Brookdale Department of Geriatrics and 

Palliative Medicine, New York, NY 10029, USA 
8. Present address: Social Studies of Science and Technology, Department of Evolutionary 

Biology, School of Sciences, National Autonomous University of Mexico, 04510 Mexico 
City, Mexico 

9. Present address: Higher Institute of Biological Research (INSIBIO, CONICET-UNT), 
Institute of Biology, National University of Tucumán, T4000 San Miguel de Tucumán, 
Argentina 

10. Present address: New York State Psychiatric Institute and Columbia University 
Department of Psychiatry, New York, NY 10032, USA 

 
 
*These authors contributed equally. 
 
+ Corresponding author: james.noonan@yale.edu. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2024. ; https://doi.org/10.1101/2024.08.14.608000doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.608000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Summary 

Disruptive variants in the chromodomain helicase CHD8, which acts as a transcriptional regulator 

during neurodevelopment, are strongly associated with risk for autism spectrum disorder (ASD). 

Loss of CHD8 function is hypothesized to perturb gene regulatory networks in the developing 

brain, thereby contributing to ASD etiology. However, insight into the cell type-specific 

transcriptional effects of CHD8 loss of function remains limited. We used single-cell and single-

nucleus RNA-sequencing to globally profile gene expression and identify dysregulated genes in 

the embryonic and juvenile wild type and Chd8+/− mouse cortex, respectively. Chd8 and other 

ASD risk-associated genes showed a convergent expression trajectory that was largely conserved 

between the mouse and human developing cortex, increasing from the progenitor zones to the 

cortical plate. Genes associated with risk for neurodevelopmental disorders and genes involved in 

neuron projection development, chromatin remodeling, signaling, and migration were 

dysregulated in Chd8+/− embryonic day (E) 12.5 radial glia. Genes implicated in synaptic 

organization and activity were dysregulated in Chd8+/− postnatal day (P) 25 deep- and upper-layer 

excitatory cortical neurons, suggesting a delay in synaptic maturation or impaired synaptogenesis 

due to CHD8 loss of function. Our findings reveal a complex pattern of transcriptional 

dysregulation in Chd8+/− developing cortex, potentially with distinct biological impacts on 

progenitors and maturing neurons in the excitatory neuronal lineage.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2024. ; https://doi.org/10.1101/2024.08.14.608000doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.608000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

Introduction  

Whole exome and whole genome studies have identified rare, protein-damaging genetic 

variants in over 200 genes that contribute to an increased risk of an autism spectrum disorder 

(ASD) diagnosis1–8. The majority of these genes encode proteins involved in transcriptional 

regulation, such as chromatin modifiers and transcription factors, or proteins involved in neuronal 

communication2. These findings suggest that ASD risk-associated genes converge in 

transcriptional networks and biological pathways that are disrupted by variants that perturb ASD 

risk gene function, thereby contributing to ASD etiology.  

 Gene expression studies in fetal and adult human brain support this hypothesis. 

Longitudinal analyses of transcription across developing brain regions have identified co-

expression networks in the human mid-fetal cortex that are enriched in ASD risk-associated 

genes9–11. Single-cell transcriptome studies of human cortical development further indicate that 

ASD risk-associated genes show enriched expression in excitatory and inhibitory neuronal 

lineages2. Single-nucleus transcriptome analysis of cortical tissues from people diagnosed with 

ASD also support that perturbation of gene expression is a feature of ASD12. Understanding how 

disruptions in ASD risk gene function alter gene expression in specific cell types is therefore 

essential for identifying the molecular and neurodevelopmental mechanisms contributing to ASD. 

 Efforts to address this question have relied on genetic and experimental perturbation of 

individual ASD risk-associated genes in model systems. Several of these studies have focused on 

the chromatin remodeler CHD8, which is among the most significant ASD risk-associated genes 

yet discovered in rare variant screens2,8,13. ASD risk-associated protein-truncating variants in 

CHD8 are hypothesized to lead to CHD8 loss of function, resulting in changes in CHD8 target 

gene expression in the developing brain14–17. Maps of CHD8 binding profiles in the human and 
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mouse developing brain showed that other ASD risk-associated genes are significantly 

overrepresented among CHD8 gene targets18. Knockdown of CHD8 expression in human neural 

stem cells also resulted in dysregulation of CHD8-bound ASD risk-associated genes18,19. These 

results suggest that disruption of CHD8 contributes to ASD risk in part through its regulation of 

other ASD risk-associated genes. 

 The effects of Chd8 loss of function on gene expression and neurodevelopment have also 

been studied using mouse and cortical organoid knockout models. To date, analyses of expression 

changes in Chd8+/− mouse models have been limited by a lack of cellular resolution and have yet 

to reveal a consistent pattern of transcriptional disruption. Bulk transcriptome studies in the 

developing mouse brain point to mild effects on transcription overall and have identified abnormal 

activation of the REST pathway, transcriptional changes in RNA processing pathways, and 

disruption of cell adhesion and axon guidance pathways14,17,20. 

 Mouse and organoid knockout studies have also revealed a variety of cell type-specific 

effects due to Chd8 loss of function. Disruption of Chd8 expression in mouse oligodendrocyte 

precursor cells alters oligodendrocyte lineage development and leads to myelination defects21,22. 

Disruption of Chd8 via Perturb-Seq in the mouse embryonic brain also altered gene expression in 

oligodendrocyte precursor cells23. Chd8 knockdown has been shown to disrupt neural progenitor 

proliferation in the mouse embryonic cortex, and CRISPR-Cas9 knockout of CHD8 reduces 

proliferation of cultured human neural stem cells, although this may reflect differential effects on 

cellular viability at very low levels of CHD8 expression24,25. CHD8+/− cultured excitatory neurons 

derived from human embryonic stem cells have been reported to exhibit decreased synaptic 

activity26. An increase in the number of Pax6-positive cells has also been reported in the Chd8+/− 

developing mouse cortex, as has a massive increase in GABAergic interneurons in CHD8+/− 
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human cortical organoids17,27. However, a consistent molecular phenotype has yet to be established 

across these systems. 

 These results, coupled with the overall cellular heterogeneity of the developing cortex, 

suggest there may be cell type-specific variation in the effects of Chd8 loss of function. Such 

changes could be obscured by bulk transcriptome analyses. To address this question, we used 

single-cell RNA-sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) to 

characterize global gene expression at single-cell resolution during embryonic and juvenile cortical 

development in wild type and Chd8+/− mice. We found that CHD8 exhibits a clear expression 

gradient in the developing mouse cortex, increasing from the germinal zone to cortical plate.  Chd8 

and other genes associated with risk for ASD and other neurodevelopmental disorders show 

convergent expression trajectories across the developing mouse cortex, and this convergent pattern 

is conserved between mouse and human cortical development. Our results also support that loss 

of Chd8 expression results in dysregulation of genes associated with risk for neurodevelopmental 

disorders and genes potentially regulated by CHD8 in the embryonic cortex, particularly in 

embryonic day (E) 12.5 radial glia. We also found that genes involved in synaptic organization, 

synaptic signaling, and synaptic activity are specifically dysregulated in both deep- and upper-

layer excitatory neurons in the postnatal day (P) 25 Chd8+/− cortex, including multiple glutamate 

receptor subunits and their regulators. This signature may indicate a delay in synaptic maturation, 

impaired synaptogenesis, or both. Collectively, our results point to a complex pattern of 

transcriptional disruption in the excitatory neuronal lineage, impacting both early progenitors and 

maturing neurons, due to loss of Chd8 expression.   
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Results 

Generation and initial characterization of a Chd8+/− mouse model  

 To investigate how CHD8 loss of function may affect both CHD8 expression and gene 

expression overall within individual cortical cell types, we generated a Chd8 loss of function 

mouse model. We used CRISPR editing to generate a Chd8+/− mutant mouse carrying a 

constitutive deletion of Chd8 exon 3 (Fig. 1A; Methods). This mutation results in a frameshift at 

Ala408 predicted to result in premature termination of the CHD8 protein. We found that CHD8 

protein levels were significantly reduced in the E16.0 Chd8+/− cortex (Fig. 1B, Table S1). Chd8−/− 

null embryos were not obtained from Chd8+/− in-crosses, recapitulating the finding that 

homozygous loss-of-function of Chd8 is incompatible with life14,17,28,29.  

We first assessed the spatiotemporal distribution of CHD8 expression in wild type and 

Chd8+/− mice at four time points during embryonic cortical development (E12.5, E14.5, E16.0, 

E17.5) (Fig. 1C-D; Methods). At E12.5, CHD8 exhibited a uniform nuclear expression pattern 

across the cortex, from neural progenitor cells in the ventricular zone (VZ) to neurons in the 

preplate (PP). At E14.5, CHD8 expression showed a clear apical-to-basal expression gradient, with 

increased expression in the cortical plate (CP) compared to progenitor cells of the VZ and 

subventricular zone (SVZ). This expression gradient persisted at E16.0 and E17.5, with increased 

expression in neurons of the subplate (SP) and CP compared to the germinal zones. We validated 

these CHD8 expression patterns using secondary antibody-only negative controls (Fig. S1A). 

CHD8 expression was consistent between male and female embryos at each developmental stage 

(Fig. S1B) as well as along the rostral-caudal axis of the cortex (Fig. S2). The distribution of CHD8 

expression in the developing CP was also similar in wild type and Chd8+/− littermates at each of 

the four embryonic time points we examined (Fig. 1D).  
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Figure 1. Generation and characterization of a Chd8+/− mouse model. (A) Schematic showing 
our strategy for constitutive Chd8+/− mouse generation, using CRISPR-Cas9 targeted mutagenesis 
to delete 1,061 nucleotides (chr14:52,852,109-52,853,169, mm9) that include exon 3, causing a 
frameshift at alanine 408. The Chd8 gene models (top) and comparison of the targeted sequence 
(bottom) in the wild type (Chd8+) and disrupted (Chd8-) alleles are shown; nucleotides directly 
adjacent to the deletion site are colored red. Triangles denote expected guide RNA (gRNA)-
directed cleavage sites of the upstream (red) and downstream (yellow) gRNAs (Methods). The 
dashed line with slashes indicates sequence omitted for clarity. (B) Western blot showing CHD8 
and actin expression in male wild type (WT) and Chd8+/− embryonic day (E) 16.0 cortices (left), 
with quantification of CHD8 expression in the wild type and Chd8+/− E16.0 cortex (right). CHD8 
levels were normalized to actin in each replicate (Methods). Whiskers span the minimum and 
maximum data points, boxes span the interquartile interval, and lines indicate the median. 
Significance was determined by one-tailed Welch’s t-test (Methods). (C) Coronal sections of wild 
type embryonic mouse cortex at the indicated stages, stained with anti-CHD8 antibody (red) and 
Hoechst 33342 (nuclei; blue). Scale bars: 200μm (top), 50μm (bottom). (D) Spatiotemporal 
expression of CHD8 (grayscale) in coronal sections of the wild type (top) and Chd8+/− (bottom) 
embryonic mouse cortex collected from littermates at the indicated stages. Scale bar: 100µm. VZ 
= ventricular zone; SVZ = subventricular zone; IZ = intermediate zone; PP = preplate; SP = 
subplate; CP = cortical plate; MZ = marginal zone. See also Figures S1-S2 and Table S1. 
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Single-cell transcriptome profiling of wild type and Chd8+/− mouse embryonic cortex 

We next used scRNA-seq to quantify gene expression in wild type and Chd8+/− mouse 

cortices at the same embryonic time points examined in the IHC studies described above (Fig. 1C-

D). We generated 32 scRNA-seq datasets from sex- and litter-matched pairs of wild type and 

Chd8+/− cortices (eight embryos per time point), capturing single-cell expression profiles for 

145,082 total cells (Fig. 2A, Table S2; Methods). Genotyping results for each sample are presented 

in Figure S3. We removed low quality cells and potential doublets by thresholding on the total 

feature counts per cell, the number of genes detected per cell, and the percentage of counts 

originating from mitochondrial RNA, resulting in 135,926 cells after filtering (Fig. S4, Table S2; 

Methods). 

To mitigate differences in cell cycle phase among dividing cells, we calculated a cell cycle 

score for each cell and then regressed out the difference between G2M and S phase scores 

(Methods). We then normalized feature counts using SCTransform, integrated all 32 datasets using 

Seurat, and visualized the integrated data using uniform manifold approximation and projection 

(UMAP) (Fig. 2B; Methods)30–35. Labeling cells by cell cycle phase, we observed a distinct 

boundary between proliferating and post-mitotic cells (Fig. S5A). Cells within the embedding did 

not separate by sex, genotype, or sample batch (Fig. 2B, Fig. S5A-B). The distribution of cells 

within the UMAP embedding was largely determined by the expression of highly variable genes, 

particularly markers of specific cell types such as radial glia (Sox2, Pax6)36,37, intermediate 

progenitors (Eomes, Neurog2)38, and neurons (Tbr1, Fezf2, Neurod1)38,39 (Fig. S6A-B & S7, Table 

S3).  

We identified cell clusters using Seurat and then annotated clusters based on the expression 

of known cell type marker genes (Fig. 2B, Fig. S7-8, Table S3; Methods). The vast majority of 
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cells (>94%) belonged to the excitatory glutamatergic neuronal lineage (Fig. 2C, Table S4). These 

included radial glia (expressing Sox2, Pax6), intermediate progenitors (Eomes, Neurog2), 

newborn/early neurons (Neurod1, Unc5d)40, upper-layer neurons (Satb2)39, and deep-layer 

neurons (Fezf2, Tbr1). We also identified GABAergic interneurons (~4% of total cells, expressing 

Dlx2, Gad2)41, and low percentages of red blood cells, vasculature cells42,43, Cajal-Retzius cells44, 

oligodendrocyte precursor cells45, and microglia46 (Fig. S7-8, Table S4). Using a two-tailed 

Welch’s t-test, we compared the number of cells per cell type in the wild type and Chd8+/− cortices 

(Fig. S9, Table S5; Methods). In contrast to previous studies, we did not observe significant 

differences in cell type representation due to loss of Chd817,27.  
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Figure 2. Analysis of embryonic cortical development using single-cell RNA-sequencing in 
wild type (WT) and Chd8+/− mice. (A) Study design, including dissection schema and number of 
cells collected at each time point in each genotype. (B) UMAP embedding of 135,926 cells colored 
by cell type clusters (left), genotype (top right), and time point (bottom right). Cell type clusters 
were identified using a graph-based clustering approach, implemented in Seurat, and then 
annotated based on the expression of known cell type marker genes (Methods). (C) Cell type 
composition at each time point in each genotype. (D) PHATE embedding of 128,112 cells in the 
excitatory neuronal lineage, colored by cell type (left) and pseudotime (right). The principal curve 
through the primary trajectory of the PHATE embedding is shown as a black arrow. A set of 4,457 
radial glia-like cells (shown in gray), mostly present at embryonic day (E) 12.5, diverged from the 
primary trajectory and were excluded from further analyses. (E) Cell type representation along 
pseudotime. Male and female samples were aggregated for each time point and genotype; the 
pseudotime trajectory was divided into 20 equally-spaced bins and the percent of cells within each 
bin is shown, color-coded by genotype (WT: black; Chd8+/−: white). Below each distribution, the 
position of each cell along pseudotime is plotted as a vertical line, colored according to cell type 
label. See also Figures S3-S9 and Tables S2-S5. IP = intermediate progenitors; UL = upper-layer; 
DL = deep-layer; RBC = red blood cells; OPC = oligodendrocyte precursor cells.  
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Inferring gene expression trajectories in the developing mouse cortex 

Our IHC results demonstrated that CHD8 exhibits a clear apical-to-basal expression 

gradient in the developing mouse cortex (Fig. 1C). To identify genes, including other ASD risk-

associated genes, that show similar patterns of expression, we used potential of heat-diffusion 

affinity-based transition embedding (PHATE) to infer gene expression trajectories in our scRNA-

seq datasets (Methods)47. For this analysis, we focused on cells in the excitatory neuronal lineage 

(i.e., radial glia, intermediate progenitors, newborn/early excitatory neurons, upper-layer 

excitatory neurons, and deep-layer excitatory neurons); other cell types were excluded (Fig. 2D). 

PHATE showed that the expression profiles of cells in the excitatory neuronal lineage are 

distributed along a continuum. Given the continuous structure of the data, we fit a principal curve 

to the PHATE embedding and then projected cells onto the curve to assign each cell a value on a 

0 to 1 pseudotime scale (Fig. 2D-E)48,49. We found that cell types were ordered along the principal 

curve corresponding to the apical-to-basal cortical excitatory neurogenic axis (Fig. 2D-E, Fig. 

S6C). These findings support that the pseudotime scale we inferred from PHATE recapitulates the 

process of differentiation and maturation in the excitatory neuronal lineage, i.e., the primary 

trajectory of differentiation captured in the data.  

To determine whether our approach generally identified spatial and developmental gene 

expression gradients in the developing mouse cortex, we inferred expression trajectories from 

scRNA-seq data for Chd8, the ASD risk-associated gene Pogz, and the cortical developmental 

markers Pax6 and Tbr1 (Methods). In parallel, we performed IHC in wild type mouse cortices at 

E14.5 and E17.5 for CHD8, POGZ, TBR1, and PAX6 to compare the transcriptional trajectories 

inferred from scRNA-seq data with the expression of each protein (Fig. 3; Methods). Chd8 showed 

lower transcriptional expression at the beginning of the differentiation trajectory (i.e., in radial 
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glia) and peaked at the end of the trajectory (i.e., in post-mitotic neurons in the cortical plate). 

These results were consistent with the spatiotemporal distribution of CHD8 we detected using 

IHC, namely increased expression in mature neurons in the cortical plate and subplate compared 

to expression in progenitor cells in the ventricular and subventricular zones (Fig. 1C, Fig. 3A). 

Pogz exhibited a similar expression gradient to Chd8 across the excitatory neuronal lineage in the 

E14.5 and E17.5 wild type cortex; this finding was also supported by IHC (Fig. 3B). The 

trajectories we inferred for Tbr1 and Pax6 were also consistent with their known expression 

patterns and with protein expression visualized using IHC (Fig. 3C-D)50,51. These findings 

establish that our inferred transcriptional trajectories correspond to bona fide developmental and 

cell type-specific expression patterns.   
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Figure 3. Inferring spatial and developmental gene expression gradients in the developing 
mouse cortex using single cell RNA-sequencing. Expression gradients for (A) Chd8, (B) Pogz, 
(C) Tbr1, and (D) Pax6 inferred at E14.5 (left) and E17.5 (right). For each time point, the 
expression of each protein visualized using immunohistochemistry is shown at the left (CHD8 = 
red; POGZ = cyan; TBR1 = green; PAX6 = yellow; Methods). The inferred expression trajectories 
for each gene are shown at the right. Male and female samples were aggregated for each time point 
and genotype, then cells were divided into 20 equally-spaced bins along the pseudotime scale and 
mean expression per bin was computed for each gene. Mean expression per bin (open circles) is 
plotted against pseudotime. Smoothed lines are drawn with loess (span = 0.75) and a confidence 
interval of 0.95. See also Figure 2 and Figure S6. Scale bars: 100µm. VZ = ventricular zone; SVZ 
= subventricular zone; IZ = intermediate zone; SP = subplate; CP = cortical plate; MZ = marginal 
zone. 
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Defining sets of genes in wild type and Chd8+/− mouse embryonic cortex exhibiting shared 

transcriptional trajectories 

To identify genes with similar developmental and cell type-specific expression patterns, 

we classified gene expression trajectories into metagenes—groups of genes with convergent 

expression along the pseudotime scale. We inferred gene expression trajectories from scRNA-seq 

data in wild type and Chd8+/− mouse cortex at E14.5, E16.0, and E17.5 (Fig. S10A-B; Methods). 

E12.5 expression data were excluded given the low representation of intermediate progenitors and 

neurons along the differentiation trajectory at this time point. We defined 10 metagene centers 

(labeled A through J) by k-means clustering wild type trajectories (k = 25), followed by 

hierarchical clustering using correlation distance (Fig. S10C-D; Methods). We then assigned each 

expression trajectory to a metagene based on highest Pearson correlation between the trajectory 

and the metagene center (Fig. S10E, Table S6).  

The majority of gene expression trajectories were assigned to metagenes C, D, H, or I (Fig. 

4A). These four metagenes represented the most common expression patterns we observed in the 

developing mouse cortex and included known cell type-specific marker genes (e.g., Sox2 in 

metagene C, Eomes in metagene D; Fig. 4A). Metagenes H and I included genes whose expression 

peaks in post-mitotic neurons and revealed two distinct developmental expression patterns: genes 

whose expression steadily increases along the differentiation trajectory (including Chd8) and genes 

that are spatially restricted to post-mitotic neurons with no or very low expression in other cell 

types (e.g., Scn2a; Fig. 4A). The presence of shared transcriptional trajectories during development 

suggests that genes assigned to the same metagene may participate in common biological 

functions. To examine this question, we performed Gene Ontology (GO) enrichment analysis to 

identify biological processes that were significantly enriched in each metagene (Table S7; 
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Methods). Metagenes C and D, i.e., genes with maximal expression in progenitor cells, were 

enriched for GO Biological Process (GO:BP) terms associated with metabolic and biosynthetic 

processes. Metagene C, which contains radial glia-specific genes, was specifically enriched for the 

terms “cell cycle” and “cell division” (Table S7). Metagenes H and I were both enriched for terms 

such as “vesicle-mediated transport” and “neuron projection development” (Fig. 4B, Table S7). 

Metagene H was specifically enriched for the term “autophagy,” while metagene I was specifically 

enriched for terms such as “chemical synaptic transmission,” “synapse organization,” and “cell-

cell signaling” (Fig. 4B, Table S7). 
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ASD and developmental disorder risk-associated genes converge in specific metagenes in the 

mouse embryonic cortex 

Previous studies indicate that ASD risk-associated genes are co-expressed in specific 

cortical regions and cell types2,10. To determine if ASD risk-associated genes showed convergent 

expression trajectories in the developing mouse cortex, we tested metagenes for enrichment for 

ASD risk-associated genes using a one-tailed Fisher exact test (Fig. 4C, Fig. S11A, Tables S8-

S9)2. We also tested for enrichment of genes associated with developmental and intellectual 

disability identified by the Deciphering Developmental Disorders (DDD) consortium6. Metagene 

H, which includes Chd8, was significantly enriched for ASD risk-associated genes and DDD genes 

at E16.0 and E17.5 (BH-adjusted p-value < 0.05; Fig. 4C, Fig. S11A-B, Tables S8-S9). Metagene 

I was also consistently enriched for ASD risk-associated genes at E14.5, E16.0, and E17.5, and 

enriched for DDD genes at E16.0 (BH-adjusted p-value < 0.05; Fig. 4C, Fig. S11A-B, Tables S8-

S9).  

Risk-associated genes in metagene H tend to be involved in the regulation of gene 

expression and appeared to gradually increase in expression along the differentiation trajectory 

(e.g., Adnp, Bcl11a, Elavl3, Kdm5b, Kmt5b, Kdm6b, Kmt2e, Myt1l, Pogz, Smarcc2, Tbr1) (Fig. 

S12)2. In contrast, risk-associated genes in metagene I tend to function in neuronal communication 

and displayed cell type-specific expression in post-mitotic neurons (e.g., Ank2, Cacna1e, 

Cacna2d3, Dip2a, Gabrb3, Grin2b, Kcnma1, Lrrc4c, Nrxn1, Scn2a, Shank2, Stxbp1) (Fig. S12)2. 

Given the established role of CHD8 in gene regulation, including the regulation of other ASD risk-

associated genes, we also tested whether metagenes were enriched for genes whose promoters 

were bound by CHD8 in the wild type E17.5 mouse cortex (Fig. S11C, Tables S8-S9)18. Metagene 

D and metagene H (which includes Chd8) were significantly enriched for CHD8 targets at E14.5, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2024. ; https://doi.org/10.1101/2024.08.14.608000doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.608000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

E16.0, and E17.5 in both wild type and Chd8+/− mice (BH-adjusted p-value < 0.05; Fig. 4C, Fig. 

S11C). These findings suggest CHD8 may contribute to the convergent expression pattern we 

observed in metagene H via regulation of its target genes.  
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Figure 4. Metagenes reveal neurodevelopmental, ASD risk-associated genes, and 
developmental disorder risk-associated genes with common transcriptional trajectories. (A) 
Number of genes assigned to each metagene for each time point and genotype (top), with  examples 
of symbolic aggregate approximation (SAX)-transformed gene expression trajectories assigned to 
each metagene (bottom). The metagene center is plotted as dashed line, and the SAX-transformed 
gene expression trajectory is plotted as a solid line. The Pearson correlation (r) between the 
trajectory and the metagene center is shown for each example. Example trajectories were 
calculated from embryonic day (E) 17.5 wild type (WT) cortex scRNA-seq data. (B) Gene 
Ontology Biological Process (GO:BP) terms significantly enriched in metagenes H and I (g:SCS-
adjusted p-value < 0.05; black line = g:SCS-adjusted p-value = 0.05; Methods). GO enrichment 
analysis was performed using g:Profiler, and the resulting list of GO:BP terms was summarized 
using Revigo. Up to ten of the most significant representative GO:BP terms are shown for each 
metagene (Methods). (C) Enrichment of autism spectrum disorder risk-associated genes (ASD), 
the Deciphering Developmental Disorder gene set (DDD), and CHD8 binding targets in the E17.5 
wild type mouse cortex for each metagene. The circle size corresponds to the number of genes 
within each metagene that intersect the given gene set at each time point and genotype. The circle 
color corresponds to the Benjamini Hochberg-adjusted p-value (one-tailed Fisher exact test; 
Methods). See also Figures S10-S12 and Tables S6-S9. 
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ASD risk-associated gene trajectories are conserved between the mouse and human developing 

cortex 

Our analysis of mouse embryonic cortex scRNA-seq data revealed developmental and cell 

type-specific expression patterns that were enriched for ASD risk-associated genes, DDD genes, 

and CHD8 binding targets. We next investigated whether similar expression patterns exist in the 

developing human cortex and whether these patterns are also enriched for ASD risk-associated 

genes. We performed pseudotime and metagene analysis on a published scRNA-seq dataset 

generated in the human cortex at gestational weeks 17 and 18 (Methods)52. As in mouse, we found 

that human cortical cells were ordered along the pseudotime scale based on the apical-to-basal axis 

of neurogenesis (Fig. 5A-B). We then inferred gene expression trajectories along the primary 

trajectory of differentiation in the developing human cortex and classified these trajectories into 9 

metagenes using k-means and hierarchical clustering as previously described (Fig. 5C, Tables S10-

S11).  

To compare metagenes identified in the human cortex to those identified in the mouse 

cortex, we calculated the Pearson correlation (r) between human and mouse metagene centers, and 

then we labeled human metagenes based on maximal correlation with mouse metagene centers 

(Fig. 5D, Table S11; Methods). The human metagenes with the highest correlation to their mouse 

counterparts were metagene A′ (r = 0.86), metagene C′ (r = 0.98), metagene H′ (r = 0.86), and 

metagene I′ (r = 0.90). Metagenes D, F, and G in mouse were not matched to a corresponding 

metagene in human; likewise, metagenes K′ and L′ in human did not have a corresponding 

metagene in  mouse (Fig. 5D, Table S11). 

To further assess human metagenes and compare them to the metagenes we identified in 

mouse, we performed GO enrichment analysis. We observed the same GO:BP terms enriched in 
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human metagenes as their mouse counterparts: human metagene C′ was enriched for the term “cell 

cycle”, metagenes H′ and I′ were enriched for “neuron projection development,” and metagene I′ 

was enriched for “chemical synaptic transmission,” “synapse organization,” and “cell-cell 

signaling” (Fig. 5E, Table S12). These results suggest that highly correlated metagenes identified 

in the developing mouse and human cortex represent conserved developmental and cell type-

specific expression patterns associated with specific biological processes. 

Next, we tested human metagenes for enrichment for ASD risk-associated genes, DDD 

genes, and genes whose promoters were bound by CHD8 in the human mid-fetal cortex (Tables 

S9 & S13)18. We found that human metagenes H′ and I′ were both significantly enriched for ASD 

risk-associated genes (one-tailed Fisher exact test, Benjamini Hochberg (BH)-adjusted p-value < 

0.05; Methods) (Fig. 5F, Tables S9 & S13). Four human metagenes were significantly enriched 

for CHD8 binding targets (A′, J′, K′, and L′; Fig. 5F, Tables S9 & S13). We did not observe 

significant enrichment for DDD genes in any human metagenes (Fig. 5F, Tables S9 & S13).  

In order to identify ASD risk-associated genes with conserved expression trajectories, we 

compared ASD risk-associated genes in human metagenes H′ and I′ (49 genes) with ASD risk-

associated genes that were consistently classified into mouse metagenes H or I at E16.0 and E17.5 

(58 genes). Of these, 39 ASD risk-associated genes were present in these metagenes in both species 

(Fig. 5G). Similar to mouse, human cortex metagene H′ included risk-associated genes that are 

involved in the regulation of gene expression (e.g., ASXL3, ELAVL3, KDM6B, KMT2E, KMT5B, 

MED13L, MYT1L, POGZ, RORB, and TCF20) and appeared to be more broadly expressed across 

the developing cortex, peaking in post-mitotic neurons2. Human metagene I′ included risk-

associated genes that are involved in neuronal communication (e.g., AP2S1, CACNA1E, 

CACNA2D3, DIP2A, DSCAM, GABRB3, GRIA2, GRIN2B, KCNMA1, LRRC4C, NRXN1, SCN1A, 
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SCN2A, STXBP1) and whose expression was more spatially restricted to post-mitotic neurons2. 

Collectively, these findings indicate that ASD risk-associated gene expression trajectories are 

conserved between human and mouse cortical development at the time points we examined, and 

they converge in correlated developmental and cell type-specific expression gradients.  
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Figure 5. ASD risk-associated genes and developmental disorder risk-associated genes show 
convergent expression trajectories in mouse and human cortical development. (A) PHATE 
embedding of 30,132 cells from the fetal human cortex at gestational weeks (GW) 17 and 18, 
colored by cell types as defined in Polioudakis et al., 2019 (left) and by pseudotime (right). vRG 
= ventral radial glia; oRG = outer radial glia; PgS = S phase cycling progenitors; PgG2M = G2M 
phase cycling progenitors; ExN = newborn excitatory neurons; ExM = maturing excitatory 
neurons; ExM-U = upper-layer-enriched maturing excitatory neurons; ExDp1 and ExDp2 = deep-
layer excitatory neurons (subclusters 1 and 2). (B) Cell type representation in 20 bins along 
pseudotime, labeled as in (A). Circle size corresponds to the percent of cells of the indicated cell 
type per pseudotime bin. (C) Number of genes in each human cortex metagene. (D) Heat map of 
Pearson correlation (r) between mouse cortex metagene centers (labeled A through J) and human 
cortex metagene centers. Human metagenes were labeled based on maximal correlation  between 
human and mouse metagene centers and denoted with a prime (′) symbol. (E) Gene Ontology 
Biological Processes (GO:BP) terms significantly enriched in human metagenes A′, C′, H′, and I′ 
(g:SCS-adjusted p-value < 0.05; black line = g:SCS-adjusted p-value = 0.05; Methods). GO 
enrichment analysis was performed using g:Profiler, and the resulting list of GO:BP terms was 
summarized using Revigo. Up to ten of the most significant representative GO:BP terms are shown 
for each metagene. (F) Metagene enrichment for autism spectrum disorder risk-associated genes 
(ASD), the Deciphering Developmental Disorder gene set (DDD), and CHD8 binding targets in 
the human mid-fetal cortex. Circle size corresponds to the number of genes within each metagene 
that intersect the given gene set. Circle color corresponds to Benjamini Hochberg-adjusted p-value, 
one-tailed Fisher exact test. (G) Overlap of ASD risk-associated genes identified in mouse 
metagenes H and I at embryonic day (E) 16.0 and E17.5, and ASD risk-associated genes identified 
in human metagenes H′ and I′. The 39 ASD risk-associated genes that were assigned to these 
metagenes in both species are shown. See also Figure S12 and Tables S6, S9, and S10-S13. 
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Genes associated with risk for neurodevelopmental disorders are dysregulated in the Chd8+/− 

embryonic mouse cortex 

We next sought to characterize cell type-specific changes in gene expression associated 

with Chd8 loss of function. For each embryonic time point, we identified differentially expressed 

genes (DEGs) between wild type and Chd8+/− cells in the excitatory neuronal lineage using 

Monocle 3 (Methods)49,53. We first identified DEGs across all cells in the primary trajectory as 

defined above (Fig. 2D, Tables S14-S15). The most DEGs were identified at E12.5 and E17.5 

(2,972 and 1,743 respectively; BH-adjusted p-value < 0.05; Methods) (Fig. S13A). Nearly all 

DEGs showed only small changes in expression, i.e., less than 1.5-fold change (Fig. S13B, Table 

S15). We then used Monocle 3 to identify DEGs within cell type partitions along the primary 

trajectory (Tables S14 & S16). We partitioned cells along the pseudotime scale and labeled each 

partition based on the maximal expression of cell type marker genes (Fig. S13C). We saw the 

strongest signal of dysregulation in partitions containing radial glia and cells expressing upper-

layer neuronal markers. In particular, we identified 2,702 DEGs in radial glia at E12.5 and 1,181 

DEGs in upper-layer neurons at E17.5, which are respectively the most abundant cell types 

recovered at these time points (Fig. 6A, Table S16). There was a large overlap in radial glia and 

primary trajectory DEGs at E12.5 and a large overlap in upper-layer neurons and primary 

trajectory DEGs at E17.5 (Fig. S13D), suggesting that the dysregulation signal we detected in 

primary trajectory cells was being driven by the predominant cell types. As in our analysis of the 

primary trajectory, nearly all DEGs showed only small changes in expression (Fig. 6B, Table S16).   
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Figure 6. Gene sets associated with neurodevelopmental disorders are enriched among 
dysregulated genes in embryonic day (E) 12.5 radial glia and E17.5 upper-layer neurons. (A) 
Number of downregulated (DOWN; blue) and upregulated (UP; red) differentially expressed genes 
identified in cell types of the primary trajectory at each time point, determined by Monocle 3 
(Methods). (B) Volcano plots of Monocle 3 differential expression results for radial glia at 
embryonic day (E) 12.5 (left) and upper-layer (UL) neurons at E17.5 (right) in the embryonic 
Chd8+/− cortex, with genes color-coded by differential expression call (downregulated: DOWN, 
blue; upregulated: UP, red; not significantly different: NS, gray; Methods). Vertical gray lines = 
±log2(1.5 fold-change). (C) Intersection between differentially expressed genes in each cell type 
at E12.5 (left) or E17.5 (right) and CHD8 target genes in the E17.5 wild type mouse cortex, autism 
spectrum disorder risk-associated genes (ASD), the Deciphering Developmental Disorders gene 
set (DDD), and FMRP target genes. Significance was determined by one-tailed Fisher exact test, 
with adjustment for multiple testing (Methods); * = Benjamini Hochberg (BH)-adjusted p-value < 
0.05. (D) Gene set enrichment analysis (GSEA) results of differential gene expression in radial 
glia at E12.5 (left) or upper-layer neurons at E17.5 (right) in the embryonic Chd8+/− cortex, 
assessing enrichment of neurodevelopmental disorder (NDD)-associated gene sets, including ASD 
genes, DDD genes, and genes associated with risk for epilepsy, schizophrenia, macrocephaly, or 
microcephaly, among UP or DOWN genes. For each cell type, input genes are ordered by a ranked 
list metric calculated from the Monocle 3 output equal to sign(avg_log2FC) * -log10(p-value). 
Genes in the ranked list that overlap each NDD-associated gene set are shown as horizontal ticks 
and color-coded by differential expression calls determined by Monocle 3 (red = UP; blue = 
DOWN; gray = NS; Methods). Dotted line indicates the zero-cross rank separating positive and 
negative values. * = FDR < 0.05. (E) Intersection between differentially expressed genes in the 
bulk RNA-seq embryonic mouse cortex dataset at E12.5 or E17.5 and CHD8 target genes, ASD 
risk-associated genes, DDD genes, and FMRP target genes. Significance was determined by one-
tailed Fisher exact test, with adjustment for multiple testing (Methods); * = BH-adjusted p-value 
< 0.05. (F) GSEA results of differential gene expression in the bulk E12.5 (left) or bulk E17.5 
(right) Chd8+/− cortex, assessing enrichment of NDD-associated gene sets. For each time point, 
input genes are ordered by a ranked list metric calculated from the DESeq2 output equal to 
sign(avg_log2FC) * -log10(p-value). Genes in the ranked list that overlap each NDD gene set as 
horizontal ticks and color-coded by differential expression calls determined by DESeq2 (red = UP; 
blue = DOWN; gray = NS; Methods). Dotted line indicates the zero-cross rank separating positive 
and negative values. * = FDR < 0.05. See also Figures S13-S15, Table S9, and Tables S16-23. IP 
= intermediate progenitor; DL = deep-layer. 
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We then tested whether DEGs were enriched for genes whose promoters were bound by 

CHD8 in the E17.5 wild type mouse cortex (Tables S9 & S17). Out of 4,349 CHD8 target genes 

captured in our dataset, 1,621 and 1,070 genes were respectively called as differentially expressed 

in E12.5 and E17.5 primary trajectory cells (Fig. S14A, Table S17). We found that CHD8 target 

genes were significantly enriched among DEGs at E12.5 and E17.5 in primary trajectory cells and 

in E12.5 radial glia and E17.5 upper-layer neurons (one-tailed Fisher exact test; BH-adjusted p-

value < 0.05) (Fig. 6C, Fig. S14A, Table S17). CHD8 target genes were also enriched among 

DEGs in E14.5 primary trajectory cells and other cell types including intermediate progenitors, 

E17.5 early neurons, deep-layer neurons, and subplate neurons, but not enriched in any cell types 

at E16.0 (Fig. S14A-B, Table S17). 

We also sought to determine whether DEGs were enriched for genes associated with 

neurodevelopmental disorders. In addition to ASD risk-associated genes, we tested whether DEGs 

were enriched for the DDD gene set and genes associated with risk for epilepsy, schizophrenia, 

macrocephaly, and microcephaly (Tables S9 & S17)2,6,54–56. ASD risk-associated genes and DDD 

genes were significantly enriched among DEGs in both E12.5 and E17.5 primary trajectory cells 

(one-tailed Fisher exact test; BH-adjusted p-value < 0.05) (Fig. S14C, Table S17). DDD genes 

were also enriched among DEGs in E12.5 radial glia and E17.5 upper-layer neurons (Fig. 6C, 

Table S17). Macrocephaly risk-associated genes were enriched among DEGs in E12.5 radial glia, 

while ASD and schizophrenia risk-associated genes were enriched among DEGs in E17.5 upper-

layer neurons (Fig. S14D, Table S17). No gene sets associated with neurodevelopmental disorders 

were enriched among DEGs at E14.5 or E16.0 (Fig. S14C-D, Table S17). 

Finally, we considered a set of genes whose transcripts are bound by FMRP (Table S9)57. 

Loss of FMRP expression causes fragile X syndrome, which is associated with an increased risk 
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of ASD58,59. FMRP target genes were enriched among E12.5 and E17.5 primary trajectory DEGs 

(Fig. S14C, Table S17), as well as among DEGs identified in E12.5 radial glia and E17.5 early 

neurons, upper-layer neurons, and deep-layer neurons (Fig. 6C, Table S17). FMRP targets were 

not enriched among DEGs at E14.5 or E16.0 (Fig. S14C-D, Table S17). Collectively, these results 

suggest that within certain cell types, loss of Chd8 expression leads to dysregulation of CHD8 

target genes, genes associated with risk for neurodevelopmental disorders, and genes potentially 

subject to post-transcriptional regulation by FMRP. 

We then used Gene Set Enrichment Analysis (GSEA) to determine if genes associated with 

neurodevelopmental disorders were specifically overrepresented among genes upregulated or 

downregulated in the Chd8+/− background (Methods)60,61. GSEA considers all genes that were 

tested for differential expression and takes into account both significance (i.e., the Monocle p-

value) and expression change directionality. Using GSEA, we found that ASD risk-associated 

genes, DDD genes, and macrocephaly risk-associated genes were enriched among downregulated 

genes in E12.5 primary trajectory cells (Table S18). DDD genes were also enriched among 

downregulated genes in radial glia at E12.5 (Fig. 6D, Table S18), while ASD and macrocephaly 

risk-associated genes were enriched among downregulated genes in E12.5 deep-layer neurons 

(Table S18). Conversely, ASD risk-associated genes, DDD genes, and epilepsy, schizophrenia, 

and macrocephaly risk-associated genes were all significantly enriched among upregulated genes 

in E17.5 primary trajectory cells, radial glia, intermediate progenitors, and neuronal subtypes (i.e., 

early, upper-layer, deep-layer, and subplate neurons) (Fig. 6D, Table S18). Microcephaly risk-

associated genes were enriched among upregulated genes in E14.5 deep-layer neurons and E17.5 

radial glia (Table S18).  
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To validate the trends that emerged from our single-cell differential expression and gene 

set enrichment analyses, we performed bulk RNA-sequencing of E12.5 and E17.5 wild type and 

Chd8+/− cortex (Table S19; Methods). Using DESeq2, we identified 682 DEGs in the bulk cortex 

at E12.5 (462 down- and 220 up-regulated) and 80 DEGs in the bulk cortex at E17.5 (37 down- 

and 43 up-regulated) (Table S19). We then used a one-tailed Fisher exact test and GSEA as 

described above to identify gene sets enriched in these DEGs (Methods). Consistent with the 

results obtained from the E12.5 single-cell dataset, CHD8 targets and FMRP targets were both 

enriched among DEGs identified in the E12.5 bulk RNA-seq dataset (Fig. 6E, Table S20). Genes 

downregulated in the E12.5 Chd8+/− bulk cortex were also enriched for DDD genes and ASD, 

schizophrenia, and macrocephaly risk-associated genes, while upregulated genes were enriched 

for microcephaly risk-associated genes (Fig. 6F, Table S21). In contrast, the enrichment patterns 

we observed in the E17.5 single-cell dataset were not supported by the E17.5 bulk RNA-seq 

analysis. We did not detect consistent enrichment of risk-associated gene sets among upregulated 

genes in the E17.5 Chd8+/− bulk cortex (Table S21). Using GSEA, only microcephaly risk-

associated genes were enriched among upregulated genes at E17.5, while DDD, ASD and 

macrocephaly risk-associated genes were enriched among downregulated genes (Fig. 6F, Table 

S21), similar to GSEA results in the E12.5 bulk RNA-seq dataset.  

To determine if genes dysregulated in the Chd8+/− cortex converge on particular biological 

functions, we tested for enrichment of GO:BP terms among DEGs identified in our scRNA-seq 

and bulk RNA-seq datasets (Tables S22-S23; Methods). Genes downregulated in the E12.5 

primary trajectory and genes downregulated in E12.5 radial glia were both enriched for GO:BP 

terms such as “cell communication,” “cell migration,” “chromatin remodeling,” and “neuron 

projection development” (Fig. S15A-B, Table S22). Terms specifically enriched among genes 
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downregulated in E12.5 radial glia, but not among DEGs identified in the E12.5 primary trajectory, 

included “cell motility” and “cell population proliferation” (Fig. S15A, Table S22). Genes 

upregulated across multiple cell types at E12.5 were enriched for processes associated with 

mitochondrial gene expression and oxidative phosphorylation (Fig. S15C, Table S22). Many of 

the GO:BP terms enriched among downregulated genes identified in E12.5 single-cell datasets 

were also enriched among downregulated genes identified in E12.5 bulk cortex (Fig. S15A-B, 

Tables S22-S23). In contrast, we did not detect a similar enrichment of GO:BP terms between 

upregulated genes identified in E12.5 single-cell datasets and DEGs identified in E12.5 bulk cortex 

(Fig. S15C). Although upregulated genes detected in the E17.5 primary trajectory or upper-layer 

neurons were enriched for GO:BP terms including “chromatin remodeling” and “regulation of cell 

development”, no GO:BP terms were found to be enriched in the 80 DEGs identified in the E17.5 

bulk cortex (Fig. 15B-C, Tables S22-S23). 
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Synaptic genes are dysregulated across excitatory neuron subtypes in the juvenile Chd8+/− cortex 

In light of the findings that NDD risk-associated genes, CHD8 target genes, and FMRP 

target genes were potentially dysregulated in upper-layer neurons at E17.5, we examined the 

impact of Chd8 loss of function later in cortical development by snRNA-seq of the P25 wild type 

and Chd8+/− cortex (Fig. 7A, Methods). Summary data for each of the eight litter- and sex-matched 

samples, including total nuclei captured, mean reads per nucleus, and the number of nuclei that 

passed our filtering criteria (Methods, Fig. S16-S19) are presented in Table S24. Marker gene-

based cell type annotation revealed that the majority of nuclei (59.1%) were from cortical 

glutamatergic neurons (Fig. 7B, Fig. S18A & S20, Tables S25-S27). These excitatory neurons 

spanned all cortical layers (L2 through L6) and projection subtypes, such as intratelencephalic 

projecting neurons (IT), pyramidal tract neurons (PT), near-projecting neurons (NP), and 

corticothalamic projecting neurons (CT) (Fig. 7B, Fig. S18B & S20, Tables S26-S27)62–70. Cortical 

inhibitory neuron (iN) subtypes were also well-represented in this dataset, as were the major glial 

populations of the juvenile cortex, including astroglia (AG), oligodendrocyte precursor cells 

(OPCs), mature and immature oligodendrocytes (OL_1 and OL_2, respectively), and microglia 

(MG) (Fig. 7B, Fig. S18 & S20A, Tables S26-S27)62–66,71–73. As observed in the embryonic 

scRNA-seq cortical data, we also identified a cluster of vasculature-associated (Vasc) cells in the 

juvenile snRNA-seq dataset (Fig. 7B, Fig. 18 & S20A, Tables S26-S27)64,66,74. Similar to our 

findings in the embryonic Chd8+/− cortex, we did not observe a significant difference in cell type 

representation between the juvenile wild type and Chd8+/- cortex (two-tailed Welch’s t-test, 

Methods; Fig. S20B, Tables S27-S28).  
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Figure 7. Single-nucleus RNA-sequencing (snRNA-seq) of the juvenile wild type and Chd8+/− 
cortex reveals dysregulation of synaptic genes across excitatory neuron subtypes. (A) 
Schematic of experimental design, showing the dissection schema and number of nuclei collected 
for each genotype. The representative coronal section of the juvenile mouse brain is from the Allen 
Mouse Brain Atlas, Nissl-stained (postnatal day 28, position 295; Allen Institute for Brain Science 
(2004), developingmouse.brain-map.org). (B) UMAP embedding of 66,840 singlet nuclei colored 
by cell type assignment, with clusters excluded from downstream analyses colored in gray. Nuclei 
clusters were identified by a graph-based clustering approach that utilizes the Louvain algorithm 
(Methods). (C) Number of downregulated (DOWN; blue) and upregulated (UP; red) differentially 
expressed genes per cluster, identified by Monocle 3 (Methods). Only clusters with at least 1 
differentially expressed gene are represented. (D) Dot plot showing enrichment of representative 
functional terms among downregulated and upregulated differentially expressed genes per cluster, 
restricted to terms enriched across multiple clusters and identified by g:Profiler and Revigo 
(Methods). Only clusters enriching for functional terms shared across multiple clusters are shown. 
Dot size corresponds to the ratio of DOWN/UP genes intersecting with the denoted functional term 
out of all cluster-specific DOWN/UP genes submitted as a query to g:Profiler (GeneRatio; 
Methods). p_adj = gSCS-adjusted p-value (Methods). (E) Volcano plots of the Monocle 3 
differential expression results for L4 (left) and L6-CT (right) clusters, with a subset of genes 
encoding glutamate receptors (GluRs) or regulators of GluR localization and/or function outlined 
in black or light blue, respectively (Methods). DOWN = significantly downregulated (blue fill); 
UP = significantly upregulated (red fill); NS = not significantly different (gray fill); vertical gray 
lines = ±log2(1.5 fold-change). See also Fig. S16-S21 & S23-S25 and Tables S25-S30 & S33-S34. 
L = layer of excitatory cortical neuron; IT = intratelencephalic; PT = pyramidal tract; NP = near-
projecting; CT = corticothalamic; iN = inhibitory neuron; AG = astroglia; OL = oligodendrocyte; 
OPC = oligodendrocyte precursor cell; MG = microglia; Vasc = vasculature; mCtx = medial 
cortex; Clau = claustrum; Str = striatum; Ambig = ambiguous cluster; UL = upper-layer cortical 
neuron; DL = deep-layer cortical neuron. 
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We then identified DEGs in all cell types using Monocle 3 (BH-adjusted p-value < 0.05; 

Methods). We detected the largest number of DEGs in upper-layer neurons (L2/3 and L4; Fig. 

7C). We also observed substantial numbers of DEGs in deep-layer neuronal clusters (L5 and L6), 

particularly in L6-CT neurons (Fig. 7C). Comparatively, we identified fewer DEGs in the 

inhibitory neuron and glial populations (Fig. 7C, Fig. S21A, Tables S29-S30). Using the same 

approach as described above, we found that ASD risk-associated genes were enriched among 

DEGs in L4/5-IT neurons and L5-PT neurons (one-tailed Fisher exact test, BH-corrected p-value 

< 0.05; Figure S21B and Table S31; Methods). However, we did not observe significant 

enrichments in upper-layer neurons or any other cell type, in contrast to the results obtained in the 

single-cell E17.5 dataset (Fig. S21B, Table S31). No other NDD risk-associated gene sets were 

enriched in any cell type. FMRP target genes were enriched among DEGs in multiple deep- and 

upper-layer neuronal cell types and in a subset of interneurons (Fig. S21B, Table S31). GSEA 

revealed enrichment of ASD risk-associated genes in the downregulated DEGs from L4/5-IT and 

L6-IT neurons, but not in upregulated DEGs or in DEGs detected in other cell types (Fig. S22A-

B, Table S32). DDD genes were also enriched among downregulated DEGs in L6-IT neurons (Fig. 

S22B, Table S32).  

To further understand the biological impact of these differential expression signatures, we 

performed GO:BP term and KEGG and Reactome pathway enrichment analyses on the 

downregulated and upregulated DEGs for each cell type (Methods). Downregulated DEG sets in 

multiple excitatory neuronal subtypes were consistently enriched for GO:BP terms relating to 

synaptic transmission, synaptic signaling, and synapse organization (Fig. 7D, Fig. S23, Tables 

S33-S34). In comparison, fewer functional terms were consistently enriched in upregulated DEGs, 

including the GO:BP terms “neuron projection development” and “GO:BP synaptic transmission, 
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glutamatergic” (Fig. 7D, Fig. S23, Tables S33-S34). We did not observe any functional term 

enrichment from inhibitory neuron subtypes or from L5/6-NP excitatory neurons (Fig. 7C, Table 

S33).  

We next sought to determine whether the DEGs underlying the enrichment of these 

synaptic functional terms were themselves consistently downregulated or upregulated across 

multiple (≥2) excitatory neuronal clusters. We first extracted the downregulated genes 

underpinning the enrichment of the terms “GO:BP synaptic signaling,” the synaptic functional 

term with the largest gene set, and “GO:BP synapse organization” across neuronal clusters, 

yielding 114 downregulated synaptic term genes, 73 of which (64%) were downregulated in two 

or more neuronal subtypes (Fig. S23-S24, Table S33).  We similarly extracted all upregulated 

genes from the neuronal clusters that were enriched for the term “GO:BP synaptic transmission, 

glutamatergic,” yielding 15 upregulated synaptic term genes, 11 of which (73.3%) were 

upregulated in two or more neuronal subtypes (Fig. S23-S24, Table S33). 

Many of the consistently downregulated or upregulated synaptic term genes encoded for 

glutamate receptors (GluRs) (Fig. 7E, Fig. S24-S25 ). Consistently downregulated GluR genes 

included multiple NMDA and AMPA GluR subunit genes, two of which were downregulated in 

all excitatory neuronal subtypes (Grin2a, Grin2b; Fig. 7E, Fig. S24-S25, Tables S30 & S33)75,76. 

In contrast, we observed increased expression of a distinct set of ionotropic GluR subunit and 

metabotropic GluR genes across multiple neuronal subtypes (Fig. 7E, Fig. S24-S25, Tables S30 & 

S33)75–78. Ionotropic GluR adaptor and trafficking genes, such as Shisa6, Shisa9, Cacng2 (TARPg-

2), Neto1, and Neto2, were also consistently downregulated, whereas we observed consistent 

upregulation of Homer1, a regulator of metabotropic GluR localization and function (Fig. 7E, Fig. 

S24-S25, Tables S30 & S33)79,80. The consistently downregulated gene set also included 
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synaptogenesis genes and genes encoding postsynaptic scaffolding proteins, such as Dlgap2, Dlg2 

(PSD-93), and Shank2 (Fig. 7E, Fig. S24-S25, Tables S30 & S33)80–85. In all, these consistent 

trends of down- and up-regulation of these genes across excitatory neuronal subtypes are 

suggestive of shifts in ionotropic GluR subunit composition, function, and localization; enhanced 

metabotropic GluR signaling; and impaired synaptogenesis in the Chd8+/− postnatal cortex. 

To assess the robustness of these trends that emerged from our single-nucleus differential 

expression analysis using an orthogonal approach, we performed bulk RNA-seq of the P25 wild 

type and Chd8+/− cortex (Methods; Table S19). We identified only 39 DEGs in the P25 bulk RNA-

seq data, potentially due to the high degree of cell type heterogeneity at this time point (Methods; 

Fig. 7B, Table S35). These DEGs were not enriched in NDD risk-associated genes, CHD8 target 

genes, FMRP target genes, GO:BP functional terms, or KEGG/Reactome pathway terms (Tables 

S35-S36). However, GSEA revealed enrichment of ASD risk-associated genes and DDD genes 

among downregulated genes in these data, consistent with the snRNA-seq findings (Fig. S22C, 

Table S37). We also observed enrichment of macrocephaly risk-associated genes among 

downregulated genes, alongside enrichment of schizophrenia risk-associated genes among 

upregulated genes, in the P25 bulk RNA-seq dataset (Fig. S22C, Table S37).  
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Discussion 

In this study, we conducted a longitudinal analysis of gene expression in wild type and 

Chd8+/− embryonic and juvenile cortex at single-cell resolution. Our results provide insight both 

into the spatial and cell type-specific transcriptional trajectories of genes associated with risk for 

ASD and other neurodevelopmental disorders, as well as the impact of Chd8 loss of function in 

particular cell types and developmental stages. We found that Chd8 exhibits a gradient of 

expression in the developing mouse cortex, with both transcript and protein expression increasing 

from the ventricular zone to the cortical plate. This suggests that loss of Chd8 dosage may perturb 

both neural progenitors and excitatory neurons, potentially with distinct biological effects. Using 

a metagene analysis, we then identified sets of genes associated with risk for neurodevelopmental 

disorders that exhibited similar expression gradients across the developing cortex, including genes 

that showed convergent expression with Chd8. Consistent with previous studies, these findings 

provide further evidence that ASD risk-associated genes participate in common regulatory 

networks and biological pathways that are disrupted in ASD2,9,10,18,19. Our observation that CHD8 

target genes are also significantly enriched in metagenes that include Chd8, and our differential 

expression results, support that Chd8 itself contributes to the convergent regulation of these gene 

sets.  

The metagene approach we employed here differs from other approaches used to identify 

sets of genes that show convergent gene expression patterns in specific cell types, such as 

clustering, and is suited for analysis of single-cell data generated across developmental time series, 

which remains a challenge in the field. After integrating scRNA-seq datasets and identifying cells 

across all embryonic time points that shared a specific developmental lineage (i.e., the generation 

of excitatory cortical neurons, or the primary trajectory of differentiation), we defined metagenes 
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explicitly based on the ordering of these cells along pseudotime—a useful proxy for marking the 

progression of cells through a developmental process47,49,53. Compared to clustering, binning cells 

along pseudotime better reflects the continuous structure of the data, provides more control over 

the granularity of cell type and subpopulation assignment used for downstream analyses, and 

enables the comparison of transient cell states, while also addressing the inherent problem of 

sparsity in single-cell data by grouping together transcriptionally similar cells. For comparison of 

gene expression patterns, calculating average expression along pseudotime is an intuitive and 

straightforward way to both characterize and visualize gene expression along a developmental 

lineage, facilitating interpretations that are contextualized within a developmentally relevant 

trajectory inferred from the data. Moreover, this approach enables the use of data mining tools 

originally designed for “true” time series data in our single-cell analysis pipeline. Metagenes thus 

capture spatial, temporal, cell type-specific, and cell state-specific gene expression patterns in 

single-cell datasets spanning developmental time points. 

The ASD risk-associated gene trajectories we identified were conserved between the 

embryonic mouse and fetal human cortex. This finding supports that the etiology of ASD involves 

the disruption of deeply conserved gene regulatory networks. Metagenes enriched in ASD risk-

associated genes in both species were also enriched for genes involved in axonogenesis, synaptic 

transmission, and synapse organization, pointing to conserved biological processes that may be 

disrupted due to damaging mutations in ASD risk-associated genes in humans and their orthologs 

in mouse. Analysis of synaptic and circuit function in mouse models may thus provide insight into 

how the corresponding processes are altered in human. As has been suggested by previous studies 

that combined gene co-expression data with genetic variation to enhance risk gene identification, 
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the conserved metagenes enriched for ASD risk-associated genes we describe here may also 

include additional risk genes yet to be discovered in genetic surveys3,86.  

We did not observe major differences in cell type representation between the wild type and 

Chd8+/− cortex at any time points we assessed. An increase in the number of Pax6-expressing radial 

glia has been reported in a previously generated Chd8 loss of function model17. An increase in the 

number of GABAergic interneurons has also been found in human CHD8+/− organoids27. Our 

results indicate that Chd8 loss of function in the mouse cortex does not result in major expansion 

or reduction of any of the cell types we identified, supporting that changes in cellular composition 

may not be a major feature of ASD. This is consistent with a recent study that identified subtle 

changes in adult brains from persons with ASD compared to controls, primarily involving 

microglia and astrocytes87. However, we note that we may lack power to detect small but 

biologically significant differences due to the total number of cells and the low representation of 

some cell types in our dataset. 

Our results reveal a complex pattern of gene expression perturbations resulting from Chd8 

loss of function. Consistent with previous studies, we observed modest changes in gene expression 

in the Chd8+/− cortex at all time points and cell types we investigated14,17,20. The most consistent 

effects on gene expression we observed in our embryonic time series were at E12.5, the earliest 

time point represented in our analysis. We found that CHD8 and FMRP target genes, and genes 

associated with risk for neurodevelopmental disorders, were enriched genes downregulated in 

radial glial cells in the Chd8+/− cortex. Overall, these findings were also supported by bulk RNA-

seq analyses, which further suggested that genes associated with risk for ASD, schizophrenia, 

microcephaly, or macrocephaly were enriched among genes downregulated in the Chd8+/− cortex. 

Genes implicated in neuron projection development and chromatin remodeling were also 
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downregulated in the E12.5 Chd8+/− cortex. Collectively, these results support that loss of Chd8 

dosage results in dysregulation of genes implicated in multiple neurodevelopmental disorders and 

may impair the neurogenic potential of radial glia.  

The impact of Chd8 loss of function at later embryonic time points, specifically at E17.5, 

is ambiguous. We observed upregulation of genes associated with risk for ASD, 

neurodevelopmental disorders, schizophrenia, macrocephaly, and microcephaly in Chd8+/− E17.5 

upper-layer excitatory neurons. However, GSEA analyses using bulk RNA-seq from the Chd8+/− 

cortex found that genes associated with neurodevelopmental disorders were enriched among 

downregulated genes. This may be due to the cellular heterogeneity of the E17.5 cortex, which 

may result in cell type-specific effects of Chd8 loss of function being obscured in analyses using 

bulk RNA-seq data. We note that we only identified 80 DEGs in the E17.5 bulk RNA-seq analysis, 

compared to 682 DEGs at E12.5, a stage at which the cortex is predominantly composed of 

progenitor cells. Alternatively, the apparent discrepancy may be due to a transient effect of Chd8 

loss of function at E17.5, as we did not observe similar enrichments in P25 upper-layer excitatory 

neurons.  

Our results also support that loss of Chd8 results in dysregulation of gene expression in 

multiple excitatory neuronal cell types in the juvenile mouse cortex. We found that ASD risk-

associated genes were enriched among DEGs detected in L4/5-IT, L5-PT, and L6-IT neurons. This 

is consistent with both our finding in this study and findings from previous studies that ASD risk-

associated genes show convergent expression in the excitatory neuronal lineage and supports a 

role for CHD8 in the regulation of other ASD risk-associated genes in cortical excitatory 

neurons2,9,10. We also found that genes involved in synaptic organization and signaling were 

dysregulated in multiple deep- and upper-layer excitatory neuron subtypes in the Chd8+/- cortex, a 
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substantial number of which were consistently dysregulated across excitatory neuron subtypes. 

Many of these consistently dysregulated genes encoded glutamatergic receptor subunits and 

regulators of glutamate receptor function, or were genes implicated in synaptogenesis. Notably, 

most of the consistently downregulated glutamate receptor subunit genes either encode key 

glutamate receptor components in both developing and mature synapses or are specifically 

associated with mature synapses, such as Grin2a/GluN2a, while multiple consistently upregulated 

glutamate receptor genes encode subunits that are prevalent in immature neurons75,76,88–91. These 

findings suggest that loss of Chd8 may impair glutamatergic neurotransmission and delay synaptic 

maturation across broad swaths of excitatory neurons in the cortex. Deficits in synaptic activity 

have been reported in cultured human CHD8+/− cortical neurons and cortical neurons derived from 

Chd8+/− mice26. Dysregulation of synaptic gene expression has also been reported in analyses of 

postmortem brain samples from ASD probands, suggesting impaired synaptic function is a feature 

of ASD that may be amenable to study using Chd8+/− mice and other mouse models of ASD risk-

associated genes87.  

Collectively, our results point to a complex pattern of gene expression dysregulation in the 

developing and juvenile cortex resulting from Chd8 loss of function, impacting radial glia in the 

early cortex and excitatory neuronal subtypes postnatally. This developmental shift in the cell type 

predominantly affected by Chd8 loss of function supports that Chd8 has distinct, cell type-specific 

functions across cortical development and that even within a cell type, such as excitatory neurons, 

CHD8 function is dynamic across cellular maturation and impacts specific developmental events 

of cell differentiation, such as synaptogenesis and synapse maturation. Thus, the molecular 

mechanisms involved in each cell type across development are likely to be distinct. In dividing 

cells, Chd8 has been shown to be required for expression of S-phase-specific genes and to suppress 
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p53-mediated apoptosis, and loss of Chd8 has been linked to defects in progenitor proliferation 

and differentiation24,28,92. Studies in cultured human neurons suggest that CHD8 regulates target 

genes of the MAPK/ERK pathway, which informs synaptic plasticity93. Damaging mutations in 

CHD8 and other ASD risk-associated genes will thus have pleiotropic effects, altering 

neurodevelopment via the perturbation of multiple cell types and distinct developmental processes, 

potentially throughout the lifespan. Understanding how loss of CHD8 contributes to ASD etiology 

will therefore require a broad approach that incorporates analysis of progenitor proliferation, 

neurogenesis, synaptic maturation, and circuit development and function across all stages of brain 

development in multiple experimental models.  
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Methods 

Generation of Chd8+/− mice 

All animal work was performed in accordance with approved Yale IACUC protocols 

(#2019–11167, #2022-11167, and #2020–07271). The Chd8+/− line was generated at the Yale 

Genome Editing Center. Regions flanking exon 3 of Chd8 transcript NM_20167.3 were isolated 

in silico and input into the CRISPR Design Tool (http://crispr.mit.edu/, now deprecated) to select 

guides with minimal off-targeting effects (determined by high Design Tool Score, minimal 

possible off-target sites genome-wide, and no off-target sites in chromosome 14 exonic regions). 

Guides with off-target binding sites in the genome with 3 or fewer mismatches were removed, as 

were those with targets in coding regions of genes on chromosome 14 to prevent the segregation 

of off-target mutations with the modified locus.  

sgRNA Chr Start End Strand CRISPR sequence Design Tool 
Score 

KO up 1 chr14 52853160 52853182 + CAGCCACTTGATGTGGGTCCTGG 74 
KO up 2 chr14 52853164 52853142 − GGCTGTAACTCTAGCTCCTAGGG 70 
KO down 1 chr14 52852098 52852120 + TCACACGAATATAACCTCACAGG 85 
KO down 2 chr14 52852105 52852083 − TCGTGTGAGCTATGTATAGCAGG 85 
 

The sgRNA linker sequences were cloned into the BbsI site of plasmid pX335-U6-Chimeric_BB-

CBh-hSpCas9n(D10A) (Addgene, #42335) to generate a chimeric sequence of sgRNA-trRNA 

downstream of the T7 promoter94. The plasmid containing the indicated sgRNA target sequences 

were individually PCR amplified and transcribed in vitro using the MEGAshortscript T7 kit 

(ThermoFisher Scientific, AM1354) and purified using the MEGAclear Transcription Clean-Up 

kit (ThermoFisher Scientific, AM1908). The Cas9 nickase (Cas9n) transcript was synthesized 

using the mMessage mMACHINE T7 ULTRA Transcription Kit (ThermoFisher Scientific, 

AM1345) and purified using the RNeasy Mini RNA Cleanup Kit (QIAGEN, #74104) and 
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resuspended in embryo microinjection buffer (10 mM Tris-HCl, pH 7.4, 0.25 mM EDTA). 

Following confirmation of RNA purity and concentration using Agilent Bioanalyzer, sgRNAs (15 

ng/µL each) and Cas9n (30 ng/µL) were combined at the indicated concentrations for injection 

into C57BL/6J zygotes. Following embryo transfer to super-ovulated female mice, live born pups 

were screened by PCR using the Chd8 genotyping primers described in the following section. One 

male founder mouse was obtained with non-homologous end joining (NHEJ) of breakpoints 

generated by Cas9n, deleting exon 3. The Chd8+/− F0 founder was backcrossed to the wild type 

C57BL/6J strain (Jackson Laboratories, #000664) for over 5 generations before experimental use. 

Mice were maintained in a Yale Animal Resources Center (YARC) managed facility under a 

standard 12-hour light/dark cycle and environmental monitoring according to YARC policies and 

procedures. 

 

Genotyping 

For embryonic and postnatal genotyping, tissue was lysed using the DNeasy Blood and 

Tissue Kit (QIAGEN, #69506). Twenty μg of genomic DNA were used as an input for the PCR 

reaction. PCR was performed with Q5 High Fidelity 2X Master Mix (New England Biosciences, 

M0492), 10 µM forward genotyping primer, 10 µM reverse genotyping primer, and nuclease-free 

water. For Chd8 genotyping, PCR was performed under the following conditions: initial 

denaturation at 98°C for 30 seconds followed by 30 cycles at 98°C for 10 seconds, 66°C for 30 

seconds, and 72°C for 1 minute, with a final extension at 72°C for 2 minutes. Forward and reverse 

Chd8 genotyping primer sequences are 5’-AACAGGCTGTCTCATGGGAA-3’ and 5’-

AAGCCACACTGCCTTGAAAG-3’, respectively. PCR products were resolved by 1.5% agarose 

gel electrophoresis and examined for expected product sizes of 1495bp for the wild type allele and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2024. ; https://doi.org/10.1101/2024.08.14.608000doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.608000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 47 

434bp for the edited allele (Fig. S3). Sex was determined by PCR using the primers 5’-

GATGATTTGAGTGGAAATGTGAGGTA-3’ and 5’-

CTTATGTTTATAGGCATGCACCATGTA-3’, as previously described95.  

 

Animal breeding and tissue preparation for immunohistochemistry (IHC) and imaging 

Embryos were collected from timed pregnancies at E12.5, E14.5, E16.0, and E17.5 (E0.5 

= vaginal plug date). Embryonic brains were dissected, immersion-fixed in 4% paraformaldehyde 

for 18-24 hours, and cryoprotected sequentially in 15% and 30% sucrose solution for 24 hours and 

48-72 hours, respectively. The brains were frozen in Tissue-Tek OCT Compound (Electron 

Microscopy Sciences, #62550) on a dry ice-ethanol slurry, stored at -80°C, and cryosectioned into 

30μm coronal or sagittal sections (Leica Biosystems, CM3050 S). For IHC, sections were hydrated 

in PBS, permeabilized in 0.3% Triton X-100 in PBS, and blocked in normal donkey serum (NDS; 

PBS with 5% NDS and 0.3% Triton X-100) for 15 minutes each. Sections were then incubated in 

primary antibody solution (PBS with 5%-7.5% NDS and 0.3% Triton X-100) in a humid chamber 

at room temperature for 23 hours. Following three 10-minute washes with PBS, sections were 

incubated with one of two Cy3 fluorophore-conjugated secondary antibodies raised in donkey 

hosts (Jackson ImmunoResearch; anti-rabbit: #711-165-152; anti-chicken: #703-165-155; 1:300) 

and Hoechst 33342 (ThermoFisher Scientific; 1:300) at room temperature, then washed with PBS 

(3 x 10 minutes). Sections were mounted with ProLong Gold Antifade Mountant (ThermoFisher 

Scientific, P10144). The following primary antibodies were used: CHD8 C-terminus (Abcam, 

ab84527, rabbit, 1:1,000 for E12.5, E14.5, E16.0; 1:600-1:750 for E17.5), POGZ (Abcam, 

ab167408, rabbit, 1:750), TBR1 (EMD Millipore, AB2261, chicken, 1:500-1:750), and PAX6 

(EMD Millipore, AB2237, rabbit, 1:750). Immunostained specimens were imaged on a Carl Zeiss 
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AxioCam MRm coupled to an Axioimager Z2 epifluorescence microscope equipped with the 

ApoTome2 imaging system (Carl Zeiss Microimaging). Image processing was performed using 

Carl Zeiss Axiovision and Carl Zeiss Zen LE software.  

 

Western blotting 

Tissue extracts were obtained by lysing E16.0 mouse cortical samples in 

radioimmunoprecipitation assay (RIPA) buffer supplemented with a protease inhibitor solution 

(cOmplete, EDTA-free Protease Inhibitor Cocktail; Roche, #11873580001) and 100mM PMSF at 

4°C for 2 hours. The lysates were then cleared by centrifugation at 16,000 x g, and the total protein 

concentration was determined with the Pierce BCA Protein Assay Kit (ThermoFisher Scientific, 

#23225). Lysates were mixed with Laemmli sample buffer, and equal amounts of protein samples 

were resolved on a 7.5% SDS-PAGE gel (7.5% Mini-PROTEAN TGX Precast Protein Gels, 10-

well; Bio-Rad, #4561023). The proteins were transferred onto a PVDF membrane and blocked in 

5% nonfat dry milk (NFDM) in TBS with 0.1% Tween-20 (TBS-T). For each primary antibody, 

the membrane was incubated overnight at 4°C, washed with TBS-T after each primary antibody 

incubation, and incubated with secondary antibodies conjugated to horseradish peroxidase for one 

hour at room temperature. 

Primary antibodies used for immunodetection included anti-CHD8 (Abcam, ab114126, 

rabbit), diluted 1:1,000 in TBS-T with 5% BSA, and anti-actin (Abcam, ab8226, mouse), diluted 

1:1,000 in TBS-T with 5% NFDM. Horseradish peroxidase-conjugated secondary antibodies used 

included donkey anti-rabbit secondary antibody (Cytiva, NA934) and sheep anti-mouse secondary 

antibody (Cytiva, NA931), both diluted 1:10,000 in TBS-T with 5% NFDM. Membranes were 

visualized using SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher 
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Scientific, #34096). Western blot quantification was performed on the scanned films based on 

densitometry measured in ImageJ. Actin was used as a loading control and for by-replicate 

normalization. Statistical significance was then determined by one-tailed Welch’s t-test, performed 

on the actin-normalized CHD8 signal (Fig. 1B, Table S1). For sex- and film-matched wild type 

and Chd8+/- comparisons, these actin-normalized CHD8 signal values were then divided by the 

actin-normalized CHD8 signal in the corresponding sex- and film-matched wild type control 

(Table S1).  

 

Sample and library preparation for single-cell RNA-sequencing (scRNA-seq) 

Wild type dams impregnated by Chd8+/− males were euthanized at the indicated embryonic 

stage and the cortices were micro-dissected in ice-cold Hibernate EB media (Brain Bits, HEB). 

Medial structures of the dorsal telencephalon were excluded to avoid capturing the hippocampal 

primordium. After PCR confirmation of genotype and sex, sex- and litter-matched pairs of wild 

type and Chd8+/− cortices were selected for single-cell capture and sequencing. Four litter-matched 

sample pairs, two male and two female, were processed from each stage (Figure S3, Table S2). 

We required samples to exhibit cell viability >85% prior to cell capture, determined using the 

Countess II automated cell counter (ThermoFisher Scientific, AMQAX1000) and Trypan Blue 

staining, per the manufacturer’s guidelines (ThermoFisher Scientific, T10282; Table S2). Cell 

preparations were loaded onto the 10x Genomics Chromium Controller (PN-120270) for single-

cell encapsulation and barcoding, followed by library generation and sample indexing in 

accordance with the 10x Genomics Chromium Next GEM Single-Cell 3’ Reagent Kits for v2 

chemistry (PN-120236, PN-120237, PN-120262)96. Barcoded scRNA-seq libraries were 

sequenced on an Illumina HiSeq2500, with 26 cycles for read 1 and 98 cycles for read 2. Single-
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cell capture, library preparation, and sequencing were performed by the Yale Center for Genome 

Analysis. 

 

Sample and library preparation for single-nucleus RNA-sequencing (snRNA-seq) 

Postnatal day (P) 25 wild type and Chd8 heterozygous, sex-matched littermates were 

euthanized by cervical dislocation followed by decapitation (Table S24). We performed cortical 

dissections in ice-cold Hibernate AB complete media (BrainBits, HAB). For isolating cortical 

structures, each brain was separated by hemisphere, followed by removal of subcerebral structures 

and the hippocampus. To match the cortical tissue collection strategy used for embryonic 

dissections, we discarded the medial cortex, then collected the remaining cortex by cutting along 

the medial edge of the corpus callosum, avoiding the striatum. Tissue samples were blotted dry, 

minced finely, then flash-frozen and stored in liquid nitrogen until nuclei isolation. Four litter-

matched sample pairs (two male and two female) were processed across two batches, with each 

batch corresponding to two litter-matched sample pairs, one male and one female. Nuclei isolation 

was performed using the 10x Genomics Nuclei Isolation Kit with RNase Inhibitor (PN-1000494) 

in accordance with the manufacturer’s instructions. Nuclei integrity, debris contamination, and 

quantification were assessed using ReadyCount Green/Red Viability Stain (acridine 

orange/propidium iodide; ThermoFisher Scientific, A49905) and either a hemocytometer or 

fluorescent automated cell counter (DeNovix, CellDrop FLi). Nuclei preparations were loaded 

onto the 10x Genomics Chromium Controller (PN-120270) for single-nucleus encapsulation and 

barcoding, followed by library generation and sample indexing in accordance with the 10x 

Genomics Chromium Next GEM Single-Cell 3’ Reagent Kits for v3.1 chemistry (PN-1000120, 

PN-1000121, PN-1000213). Barcoded snRNA-seq libraries from the same batch were pooled into 
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a single lane and sequenced on the Illumina NovaSeq 6000 platform, with 28 cycles for read 1 and 

90 cycles for read 2. Single-nucleus capture, library preparation, and sequencing were performed 

by the Yale Center for Genome Analysis. 

 

Sample and library preparation for bulk RNA-sequencing 

We employed the same dissection strategies for collection of (i) the developing cortex from 

E12.5 and E17.5 Chd8+/− and wild type embryos and (ii) the juvenile cortex from P25 Chd8+/− and 

wild type mice as performed for scRNA-seq and snRNA-seq, respectively. Six litter-matched 

sample pairs (three male and three female) were processed for each stage, which included 

microdissection of the cortex in ice-cold PBS and flash-freezing in liquid nitrogen until verification 

of sex and genotype (Table S19). For each sample, RNA was extracted with the miRNeasy Micro 

Kit with on-column DNase digestion (QIAGEN, #217084 and #79254; for E12.5 samples) or the 

miRNeasy Mini Kit with on-column DNase treatment (QIAGEN, #217004 and #79254; for E17.5 

and P25 samples). Sample quality was assessed by Agilent Bioanalyzer to determine the sample’s 

RNA integrity number (RIN), requiring a RIN ≥ 9.0 to proceed to library preparation (Table S19). 

PolyA-enriched cDNA library preparation, using the KAPA mRNA HyperPrep Kit (Roche, 

#08098123702), and paired-end sequencing (2 x 100bp) on the Illumina NovaSeq 6000 platform 

were performed by the Yale Center for Genome Analysis.  

 

Single-Cell and Single-Nucleus Analysis 

Single-cell and single-nucleus RNA-sequencing read alignment 

Reads from all single-cell and single-nucleus RNA-sequencing experiments were aligned 

to the mm10 reference genome using STAR v2.7.9a (GENCODE vM23/Ensembl 98, cellranger 
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reference 2020-A; parameters: --outSAMtype BAM Unsorted --outSAMattributes NH HI AS nM 

CR CY UR UY GX GN --outSAMprimaryFlag AllBestScore --outSAMmultNmax 10  

--outBAMcompression 10)97. Genome indices were generated using the recommended settings  

(--sjdbOverhang 99 --genomeSAsparseD 3). By default, any reads that map to more than 10 loci 

were discarded. In order to mitigate the effect of read alignments to expressed pseudogenes which 

could inflate gene expression counts, we also discarded multi-mapped reads with more than one 

best scoring alignment using SAMtools and a custom shell script available at the GitHub repository 

associated with this paper98. 

For scRNA-seq data, STARsolo was used to generate cell-by-gene count matrices and 

select cells for downstream analysis (implemented in STAR v2.7.9a; parameters: --soloType 

CB_UMI_Simple–-soloCBwhitelist 737K-august-2016.txt–-soloBarcodeReadLength 1  

--soloCBmatchWLtype 1MM_multi–-soloInputSAMattrBarcodeSeq CR UR  

--soloInputSAMattrBarcodeQual CY UY--soloMultiMappers Unique --soloUMIdedup 1MM_CR 

--soloUMIfiltering - --soloCellFilter CellRanger2.2 3000 0.99 10). For snRNA-seq data, count 

matrices were generated using STARsolo with modifications recommended for single-nucleus 

data and 10x Genomics single-cell/nucleus 3’ libraries generated with v3.1 chemistry. Specifically, 

to capture both pre-mRNA and spliced mRNA transcripts, calculation of per-cell gene counts 

utilized reads aligning anywhere within the full gene body, including introns, exons, and exon 

junctions (--soloFeatures GeneFull)97,99. UMI length was also specified based on the read structure 

of libraries generated using 10x Genomics Chromium Next GEM Single-Cell 3’ Reagent Kits for 

v3.1 chemistry (--soloUMIlen 12). Nuclei filtering was performed using the EmptyDrops 

algorithm with default settings (--soloCellFilter EmptyDrops_CR 3000 0.99 10 45000 90000 500 

0.01 20000 0.01 10000)100. 
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Quality control and cell filtering 

For quality control of scRNA-seq data, we inspected the total feature counts per cell 

(nCount_RNA), the total genes detected per cell (nFeature_RNA), and the percentage of counts 

originating from mitochondrial RNA (percent_mito). Discarding multi-mapped reads in the 

previous step greatly reduced the relative contribution of mitochondrial RNA. We also observed 

higher percentages of mitochondrial content in samples collected at later time points compared to 

earlier time points. Therefore, based on the per-sample distributions of these quality metrics, we 

removed cells with >2% mitochondrial content in E12.5 and E14.5 samples and cells with >3% 

mitochondrial content in E16.0 and E17.5 samples (Fig. S4A). We also removed cells with fewer 

than 500 genes (nFeature_RNA < 500) and cells with total feature counts greater than 4 standard 

deviations above the per-sample mean (nCount_RNA.scale > 4; Fig. S4B). For quality control of 

snRNA-seq data, we inspected the percentage of counts originating from mitochondrial RNA per 

nucleus and removed nuclei with >1% mitochondrial content (Fig. S16A). Given that cortical 

neurons and glia have markedly different total counts and numbers of detected genes per nucleus 

(Fig. S16D), we did not employ these metrics for quality control of the snRNA-seq dataset101.  

 

Normalization and regressing out cell cycle differences 

Seurat v4.0.4 was used for preliminary normalization and single-cell analysis102. Counts 

were log-normalized using the “NormalizeData” function (default parameters: 

normalization.method = “LogNormalize”, scale.factor = 10000). For scRNA-seq data, cell cycle 

scores were assigned to each cell based on the expression of G2/M and S phase markers using the 

Seurat function “CellCycleScoring” (ctrl = NULL)103. Human gene symbols were converted to 
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mouse using biomaRt v2.50.3104. Samples were grouped by batch (i.e., samples processed on the 

same cell-barcoding chip), and then each batch was normalized using SCTransform (ncells = 5000, 

residual.features = NULL, variable.features.n = 3000, vars.to.regress = c(“CC.Difference”, 

“percent_mito”), do.scale = F, do.center = T, clip.range = c(-sqrt(x = ncol(x = object[[assay]])/30), 

sqrt(x = ncol(x = object[[assay]])/30)), return.only.var.genes = T, seed.use = 1448145)105. The 

“SCTransform” function was also used to regress out the signal from percent mitochondrial 

content (percent_mito) for single-cell and single-nucleus RNA-sequencing data, along with the 

difference between G2M and S phase scores (CC.Difference) for scRNA-seq data. 

 

Integration and UMAP embedding 

We performed integration using the following Seurat functions with default parameters for 

datasets that have been normalized with SCTransform: “SelectIntegrationFeatures” (nfeatures = 

2000), “PrepSCTIntegration” (sct.clip.range = NULL), “FindIntegrationAnchors” (scale = T, 

normalization.method = “SCT”, set.clip.range = NULL, reduction = “cca”, l2.norm = T, dims = 

1:30, k.anchor = 5, k.filter = 200, k.score = 30, max.features = 200, nn.method = “annoy”, n.trees 

= 50, eps = 0), “IntegrateData” (normalization.method = “SCT”, features = NULL, 

features.to.integrate = NULL, dims = 1:30, k.weight = 100, weight.reduction = NULL, sd.weight 

= 1, sample.tree = NULL, preserve.order = F, eps = 0)33. For the scRNA-seq dataset, we used the 

largest batch that included both male and female samples (batch F) as the reference dataset (Table 

S2). Since the snRNA-seq samples were processed in two batches, we did not specify a reference 

dataset during integration.  

We then performed principal component analysis (PCA) on the integrated datasets and 

embedded the first 12 PCs (for the scRNA-seq data) or first 17 PCs (for the snRNA-seq data) using 
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uniform manifold approximation and projection, implemented in Seurat: “RunPCA” (npcs = 50, 

rev.pca = F, weight.by.var = T, seed.use = 42), “RunUMAP” (single-cell data: dims = 1:12, 

reduction = “pca”, umap.method = “uwot”, n.neighbors = 30, n.components = 2, metric = “cosine”, 

n.epochs = NULL, learning.rate = 1, min.dist = 0.2, spread = 1, set.op.mix.ratio = 1, 

local.connectivity = 1, repulsion.strength = 1, negative.sample.rate = 5, uwot.sgd = F, seed.use = 

42; single-nucleus data: dims = 1:17, min.dist = 0.3, n.neighbors = 40, same parameters 

otherwise)35. 

 

Cluster analysis and post-clustering filters 

We also used Seurat to identify clusters of cells and nuclei. Seurat implements a graph-

based clustering approach. First, a shared nearest neighbor graph was constructed in PCA space 

using the “FindNeighbors” function (single-cell data: reduction = “pca”, dims = 1:12, k.param = 

20, prune.SNN = 1/15, nn.method = “annoy”, n.trees = 50, annoy.metric = “euclidean”, nn.eps = 

0, l2.norm = F; single-nucleus data: dims = 1:17, same parameters otherwise), and then the Louvain 

algorithm was applied to define groups of cells using the “FindClusters” function (single-cell data: 

modularity.fxn = 1, resolution = 0.4, method = “matrix”, algorithm = 1, n.start = 10, n.iter = 10, 

random.seed = 0, group.singletons = T; single-nucleus data: resolution = 0.5, same parameters 

otherwise)106. We used the Seurat function “FindAllMarkers” to identify highly expressed genes 

in each cluster (single-cell data: assay = “RNA”, logfc.threshold = 0.5, test.use = “wilcox”, min.pct 

= 0.1, min.diff.pct = -Inf, only.pos = F, max.cells.per.ident = Inf, random.seed = 1, 

min.cells.feature = 3, min.cells.group = 3, mean.fxn = NULL, base = 2, return.thresh = 0.01; 

single-nucleus data: logfc.threshold = 0.25, same parameters otherwise). We then labeled and 
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merged the initial clustering results (seurat_clusters) into broad cell type clusters based on their 

expression of canonical cell type markers (Fig. S7-S8, Table S3)36–46. 

For the snRNA-seq dataset, we performed additional filtering steps to address doublets, 

clusters containing relatively few nuclei, and clusters disproportionately consisting of nuclei from 

one batch. We observed multiple small clusters (45 to 474 nuclei) marked by genes associated 

with disparate cell types, indicative of doublets within the data (Fig. S17, Table S25). To identify 

doublets, we employed scDblFinder v1.18.0 using default settings and cluster-informed artificial 

doublet generation for each sample (clusters = “seurat_clusters”, samples = “sample.id”, clustCor 

= NULL, artificialDoublets = NULL, knownDoublets = NULL, dbr = NULL, dbr.sd = NULL, 

nfeatures = 1352, dims = 20, k = NULL, removeUnidentifiable = T, includePCs = 19, propRandom 

= 0, propMarkers = 0, aggregateFeatures = F, returnType = “sce”, score = “xgb”, processing = 

“default”, metric = “logloss”, nrounds = 0.25, max_depth = 4, iter = 3, trainingFeatures = NULL, 

unident.th = NULL, multiSampleMode = “split”, threshold = T)107. This approach classified the 

vast majority of droplets in these small clusters as doublets (87.8% to 100% doublets; Fig. S17). 

After removing all droplets classified as doublets, we applied a series of cluster filtering steps 

before proceeding to downstream analyses. Specifically, we excluded any cluster that (i) contained 

<200 nuclei; (ii) could not be assigned a cell type identity, due to ambiguous marker genes (i.e., 

cluster “Ambig”); or (iii) disproportionately consisted of nuclei from one batch (≥75%), indicating 

dissection variability between batches (i.e., clusters mCtx and Str; Fig. S17C-D, Fig. S18-S19, 

gray clusters in Fig. 7B, Tables S26-S27).  

In order to test whether loss of Chd8 had an effect on cell type representation, for each cell 

type we used a two sample, two-tailed t-test (two-tailed Welch’s t-test) to compare the number of 

cells in wild type samples versus Chd8+/− samples (t.test, “n_cells ~ genotype”, alternative = 
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“two.sided”) (Fig. S9, Table S5). The same test was performed to compare cell type representation 

in the single-nucleus data (Fig. S20B, Table S28). 

 

PHATE and pseudotime analysis of single-cell RNA-sequencing data 

We used potential of heat diffusion for affinity-based transition embedding (PHATE) to 

infer gene expression trajectories in our scRNA-seq datasets47. For this analysis, we focused on 

cells in the excitatory neuronal lineage (i.e., radial glia, intermediate progenitors, early neurons, 

upper-layer neurons, and deep-layer neurons). We embedded these cells (the first 50 PCs) using 

PHATE, implemented in phateR v1.0.7 (ndim = 2, knn = 80, decay = 40, n.landmark = 2000, 

gamma = 0, t = 80, mds.solver = “sgd”, knn.dist.method = “euclidean”, mds.method = “metric”, 

mds.dist.method = “euclidean”, npca = 100, seed = 1). To infer pseudotime ordering of cells, we 

fit a principal curve through the primary trajectory of the PHATE embedding (excluding the small, 

secondary trajectory of cells that branched from the primary radial glial population shown in Fig. 

2D) using the “principal_curve” function implemented in princurve v2.1.6 (start = NULL, thresh 

= 0.001, maxit = 10, stretch = 2, smoother = “smooth_spline”, approx_points = 100)48. We 

assigned each cell a value from 0 to 1 based on its arc-length from the beginning of the curve. 

Correlation with Sox2 expression was used to establish the start and end points of the trajectory. 

 

Downsampling count matrices 

In order to account for technical differences in count depth between scRNA-seq datasets, 

we used the “downsampleMatrix” function in DropletUtils v1.14.2 to downsample count matrices 

such that samples within each time point had the same median feature counts (prop = 

downsampling proportion, bycol = F; downsampling proportion was calculated by dividing the 
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median counts per sample by the minimum median counts per time point)108. Downsampled counts 

were used for inferring gene expression trajectories and single-cell differential expression analysis. 

We did not downsample count matrices for snRNA-seq datasets.  

 

Inferring gene expression trajectories 

We defined gene expression trajectories by calculating the conditional mean along 

pseudotime (Fig. S10A). Male and female samples were aggregated for each time point and 

genotype; we then divided cells in the primary trajectory (as defined above) into 20 equally-spaced 

bins along the pseudotime scale and calculated average expression per bin for each gene. Gene 

expression trajectories were then identified as described in “Defining metagenes” below. 

 

Defining metagenes 

We classified gene expression trajectories into metagenes—groups of genes with 

convergent expression along the pseudotime scale. Prior to defining metagenes, we filtered out 

lowly expressed genes (i.e., genes detected in fewer than 5% of cells per bin across all pseudotime 

bins). E12.5 expression data were also excluded given the low representation of intermediate 

progenitors and neurons along the differentiation trajectory at this time point. Gene expression 

trajectories were then centered, scaled, and transformed using symbolic aggregate approximation 

(SAX) implemented in jmotif v1.1.1 (Fig. S10B; paa, paa_num = 8; series_to_chars, a_size = 

9)109,110.  

We then performed k-means clustering (k = 25) on SAX-transformed wild type gene 

expression trajectories using the “kmeans” function in the base R stats package (Fig. S10C; centers 

= 25, iter.max = 20, nstart = 1, algorithm = “Hartigan-Wong”). The resulting clusters of trajectories 
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were further aggregated into 10 metagene centers by hierarchical clustering using correlation 

distance and complete linkage (Fig. S10D; d = 1 – r, where r is the pairwise Pearson correlation 

between k-means cluster centers; hclust, method = “complete”; cutree, h = 0.6). Metagene naming 

order (A through J) was determined using an optimal leaf ordering algorithm that minimizes the 

distance between neighboring objects (i.e., cluster centers) in the dendrogram, implemented in 

seriation v1.3.5 (reorder.hclust, method = “OLO”)111. Finally, each gene expression trajectory 

identified in wild type or Chd8+/- datasets was assigned to a metagene based on highest Pearson 

correlation between the SAX-transformed trajectory and the metagene center (Fig. S10E).  

 

Metagene enrichment analysis 

We performed Gene Ontology (GO) functional enrichment analysis using the g:GOSt tool 

in the g:Profiler web toolset (https://biit.cs.ut.ee/gprofiler/gost), implemented via the gprofiler2 

interface112,113. To test each metagene gene set for enrichment, we used all genes assigned to that 

metagene across the E14.5, E16.0, and E17.5 wild type datasets. All genes, across all metagenes 

and time points, were used as a statistical background (domain_scope). For multiple testing 

correction and significance calling, we used default parameters (user_threshold = 0.05, 

correction_method = “g_SCS"). We then used the Revigo web tool (http://revigo.irb.hr/) to 

summarize the resulting lists of significant GO:BP terms for each metagene (resulting list size = 

Small, species = Mus musculus, semantic similarity measure = SimRel)114. Using the adjusted p-

values generated by g:Profiler, we provided Revigo with values for each GO term equal to -

log10(adjusted p-value); after grouping terms based on semantic similarity, these values were used 

by Revigo to select a representative “parent term” from each group. The full list of significantly 

enriched GO:BP terms is provided in Table S7. We also tested metagenes for enrichment for ASD 
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risk-associated genes, genes associated with developmental and intellectual disability identified 

by the Deciphering Developmental Disorders (DDD) consortium, and genes whose promoters 

were bound by CHD8 in E17.5 mouse cortex using a one-tailed Fisher exact test in R (fisher.test, 

alternative = “greater”; Table S9)2,6,18. For multiple testing correction, we used the “p.adjust” 

function in the base R stats package (method = “BH”). 

 

Pseudotime and metagene analysis of human cortex scRNA-seq data 

Human cortex scRNA-seq data from gestational weeks 17 and 18 were generated by the 

Geschwind laboratory at The University of California, Los Angeles52. We downloaded the raw 

count matrix and associated metadata via the Cortical Development Expression viewer webtool 

(http://solo.bmap.ucla.edu/shiny/webapp/). We log-normalized the count matrix in Seurat using 

the “NormalizeData” function (normalization.method = “LogNormalize”, scale.factor = 10000) 

and identified highly variable features using the “FindVariableFeatures” function with default 

parameters (selection.method = “vst”, loess.span = 0.3, clip.max = “auto”, mean.function = 

FastExpMean, dispersion.function = FastLogVMR, num.bin = 20, binning.method = 

"equal_width", nfeatures = 2000, mean.cutoff = c(0.1, 8), dispersion.cutoff = c(1, Inf)). Using 

variables included in the associated metadata and the “ScaleData” function, we regressed out 

counts per cell (Number_UMI), sample donor, library, percent mitochondrial content, and the 

difference between G2M and S phase scores (S_phase_score - G2M_phase_score). The resulting 

residuals were scaled and centered. We then performed PCA using the “RunPCA” function (npcs 

= 50, rev.pca = F, weight.by.var = T, seed.use = 42).  

Prior to embedding with PHATE, we excluded the following cell types based on cluster 

labels included in the associated metadata: medial ganglionic eminence-derived interneurons 
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(InMGE), caudal ganglionic eminence-derived interneurons (InCGE), oligodendrocyte precursor 

cells (OPC), endothelial cells (End), pericytes (Per), and microglia (Mic)52. We then embedded the 

remaining cells (first 40 PCs) using PHATE (knn = 40, t = 40, gamma = 0, seed = 1) and computed 

pseudotime along the primary trajectory by fitting a principal curve to the PHATE embedding as 

described above (principal_curve, start = NULL, thresh = 0.001, maxit = 10, stretch = 2, smoother 

= “smooth_spline”, approx_points = 100). Gene expression trajectories and metagenes were 

computed as described above (Fig. S10). We calculated the Pearson correlation between human 

metagene centers and mouse metagene centers, and then labeled human metagenes based on 

maximal correlation with mouse metagene centers, denoted with a prime (′) symbol. We used 

g:Profiler and Revigo for GO:BP enrichment analysis as described above. The full list of 

significantly enriched GO:BP terms are provided in Table S12. We used a one-tailed Fisher exact 

test to test for enrichment of ASD risk-associated genes, DDD genes, and genes whose promoters 

were bound by CHD8 in the human mid-fetal cortex as described above (Table S9)2,6,18. 

 

Single-cell and single-nucleus differential expression analyses 

We used Monocle 3 for single-cell and single-nucleus differential expression analysis49,53. 

In order to account for technical differences in count depth, we downsampled scRNA-seq count 

matrices as described above. We did not downsample snRNA-seq count matrices. Differential 

expression analyses were performed within each time point and within defined subsets of cells or 

nuclei. Namely, for scRNA-seq data we analyzed cells in the excitatory neuronal lineage (i.e., the 

“primary trajectory” as defined above) and within cell type partitions that were defined a priori 

based on marker gene expression along pseudotime (Fig. S13C, Table S14). At E12.5, the subplate 

partition was excluded due to low cell count (fewer than 15 cells). For snRNA-seq data, we 
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analyzed clusters of nuclei passing the criteria defined above (i.e., excluding clusters L5-IT_2, 

mCtx, Clau, Str, Ambig, Glia+UL, Glia+iN, AG+DL, MG+UL, MG+DL; Fig. 7B, Table S29) . 

For each comparison, a generalized linear model was fit for each gene using the 

“fit_models” function in Monocle 3; we used formula strings to account for sex and sample batch 

where applicable (e.g., model_formula_str = “~genotype + sex + batch”, expression_family = 

"quasipoisson", clean_model = T). Genes were excluded if they were not detected in at least 10% 

of cells (or nuclei) in either the wild type or Chd8+/− subpopulations. The number of cells per 

comparison, the number of genes tested, formula strings used to specify covariates, and the range 

of pseudotime values corresponding to each cell type partition (for scRNA-seq data) are presented 

in Table S14, and the number of nuclei per comparison, number of genes tested, and formula string 

used to specify covariates (for snRNA-seq data) are presented in Table S29. The 

“coefficient_table” function was used to test each coefficient for significance under the Wald test, 

p-values were adjusted for multiple testing using the Benjamini and Hochberg (BH) method, and 

results were filtered for the “genotypehet” term (Tables S15-S16, Table S30). Genes with a BH-

adjusted p-value < 0.05 were labeled as significantly differentially expressed. We used a one-tailed 

Fisher exact test to determine whether differentially expressed genes were enriched for CHD8 

binding targets in the E17.5 wild type mouse cortex, ASD risk-associated genes, DDD genes, and 

genes associated with risk for epilepsy, schizophrenia, macrocephaly, or microcephaly (fisher.test, 

alternative = “greater”)2,6,54–56. We also tested for enrichment for FMRP binding targets using a 

one-tailed Fisher exact test57. CHD8 binding targets, FMRP binding targets, and NDD risk-

associated gene lists are presented in Table S92,6,54–57. For multiple testing correction, we used the 

“p.adjust” function (method = “BH”). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2024. ; https://doi.org/10.1101/2024.08.14.608000doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.608000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 63 

Bulk RNA-sequencing read alignment and differential expression analysis 

Illumina paired-end reads from bulk RNA-sequencing experiments were trimmed using 

Trimmomatic v0.36 (ILLUMINACLIP:TruSeqAdapters.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36) and aligned to the mm39 reference genome using STAR 

v2.7.9a (GENCODE vM27/Ensembl 104; parameters: --outSAMtype SAM --outSAMunmapped 

Within --outSAMattributes Standard --quantMode GeneCounts)97,115. Genome indices were 

generated using the recommended settings (--sjdbOverhang 99). SAM files were converted to 

sorted BAM files using SAMtools, and a count matrix was generated using the featureCounts 

program in the SourceForge Subread package (v2.0.3; featureCounts -p --countReadPairs -s 2 -T 

6 -a gencode.vM27.annotation.gtf -t exon -g gene_id -o featurecount.txt  <BAM_files>)98,116. 

We used DESeq2 v1.38.3 for bulk RNA-sequencing differential expression analysis117. For 

each time point, we used the “DESeqDataSetFromMatrix” function to create a DESeqDataSet 

object with the following design formula: ~batch + sex + sex:genotype. We tested genes with at 

least 10 counts in at least 3 out of 12 samples per time point: 20,214 genes in E12.5 cortical data 

and 19,141 genes in E17.5 cortical data. Differential expression analysis was performed using the 

likelihood ratio test (LRT), which allowed us to evaluate changes in expression across multiple 

factor levels (DESeq, test = “LRT”, fitType = “parametric”, sfType = “ratio”,  reduced = ~batch 

+ sex, minReplicatesForReplace = 7, minmu = 0.5). Using this test, genes identified as 

differentially expressed were those that changed in expression in any direction (up or down) in 

either sex. We used the function “lfcShrink” to generate results tables with shrunken log2 fold 

changes for the “sexmale.genotypehet” and “sexfemale.genotypehet” coefficients (type = 

“apeglm”, lfcThreshold = 0, svalue = F, apeAdapt = T, apeMethod = "nbinomCR")118. Genes with 

a BH-adjusted p-value < 0.05 were labeled as significantly differentially expressed, and 
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directionality was based on average log2 fold change (avg_log2FC = log2((2^log2FC_male + 

2^log2FC_female)/2). We used a one-tailed Fisher exact test to determine whether differentially 

expressed genes were enriched for CHD8 binding targets in E17.5 mouse cortex, ASD risk-

associated genes, DDD genes, genes associated with risk for epilepsy, schizophrenia, 

macrocephaly, or microcephaly, and FMRP binding targets as described above (Table S9)2,6,54–57. 

 

Gene ontology enrichment analysis of differentially expressed genes 

For single-cell, single-nucleus, and bulk RNA-sequencing datasets, we performed GO:BP 

functional enrichment analysis using the g:GOSt tool in the g:Profiler web toolset 

(https://biit.cs.ut.ee/gprofiler/gost), implemented via the gprofiler2 interface. For the snRNA-seq 

dataset, we also tested for enrichment of pathway terms from the KEGG and Reactome databases 

(sources = c(“GO:BP”, “KEGG”, “REAC”)). To test differentially expressed genes in each cell 

type of interest for functional enrichment, we used significantly upregulated or downregulated 

genes in the Chd8+/- cortex at each time point (E12.5, E14.5, E16.0, E17.5, and P25), as identified 

by Monocle 3 for single-cell and single-nucleus data, or DESeq2 for bulk data. All genes tested 

for differential expression within the corresponding time point and cell type (in the case of scRNA-

seq and snRNA-seq datasets), were used as a statistical background. For multiple testing correction 

and significance calling, we used default parameters (user_threshold = 0.05, correction_method = 

“g_SCS”).  

We then used the Revigo web tool (http://revigo.irb.hr/) to summarize the resulting lists of 

significant GO terms (resulting list size = Tiny, species = Mus musculus, semantic similarity 

measure = SimRel; for bulk RNA-seq data: same parameters, except for resulting list size = Small). 

For scRNA-seq datasets, we used Revigo to summarize a combined list of all GO:BP terms that 
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were significantly enriched among upregulated or downregulated genes in at least one cell type, at 

any time point (252 GO:BP terms). We provided Revigo with values for each GO term equal to -

log10(adjusted p-value), using the adjusted p-values generated by g:Profiler from functional 

enrichment analysis of downregulated genes identified in E12.5 radial glia. After grouping terms 

based on semantic similarity, these values were used by Revigo to select a representative “parent 

term” from each group. The full list of significant GO:BP terms, representative terms, and adjusted 

p-values generated by g:Profiler are provided in Table S22.  

We also used Revigo to summarize the lists of GO:BP terms that were significantly 

enriched among upregulated genes (68 GO:BP terms) or downregulated genes (169 GO:BP terms) 

identified in the E12.5 bulk cortex. We provided values for each GO:BP term equal to -

log10(adjusted p-value); after grouping terms based on semantic similarity, these values were used 

to select a parent term from each group. The term “cell part morphogenesis” (GO:0032990) is a 

duplicate of the term “cellular component morphogenesis” (GO:0032989). The term “regulation 

of neurotransmitter levels” (GO:0001505) is obsolete and was removed from the dataset by 

Revigo. The full list of significantly enriched GO:BP terms are provided in Table S23. No GO:BP 

terms were significantly enriched among upregulated or downregulated genes identified in the 

E17.5 bulk cortex. 

For snRNA-seq datasets, Revigo was employed to summarize significant GO:BP terms 

enriched across multiple cell types, which were split into three groups: terms enriched by 

downregulated genes across multiple clusters (15 GO:BP terms), terms enriched by both 

downregulated and upregulated genes across multiple clusters (3 GO:BP terms), and terms 

enriched by upregulated genes across multiple clusters (5 GO:BP terms) (Fig. S23). Each of these 

three groups of GO:BP terms was independently submitted to Revigo, to avoid removing GO:BP 
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terms with distinct patterns of enrichment across clusters, and we provided values for each GO:BP 

term equal to the number of cell types enriched for that term (Fig. 7D, Fig. S23). After grouping 

terms based on semantic similarity, these values were used to select a parent term from each group. 

For GO:BP terms enriched by downregulated genes across multiple clusters, “GO:BP synaptic 

signaling,” “GO:BP trans-synaptic signaling,” and “GO:BP anterograde trans-synaptic signaling” 

were collapsed under the parent term “GO:BP chemical synaptic transmission”; “GO:BP synapse 

assembly” and “GO:BP cell junction assembly” were collapsed under the parent term “GO:BP 

synapse organization”; and “GO:BP regulation of trans-synaptic signaling” was collapsed under 

the parent term “GO:BP modulation of chemical synaptic transmission.” For GO:BP terms 

enriched by both downregulated and upregulated genes across multiple clusters, the terms “GO:BP 

neurogenesis” and “GO:BP generation of neurons” were collapsed under the parent term “GO:BP 

neuron development.” For GO:BP terms enriched by upregulated genes across multiple clusters, 

“GO:BP neuron differentiation” and “GO:BP nervous system development” were collapsed under 

the parent term “GO:BP neuron projection development.” The full list of significantly enriched 

GO terms is provided in Tables S33-S34 and Figure S23. 

 

Gene Set Enrichment Analysis (GSEA) 

We performed GSEA using the GSEAPreranked module in GSEA v4.3.2 for command 

line60,61. To run GSEA, we provided GSEAPreranked with a GeneMatrix (GMX) file containing 

ASD risk-associated genes, DDD genes, and genes associated with risk for epilepsy, 

schizophrenia, macrocephaly, or microcephaly (Table S9) and pre-ranked gene list files (RNK) 

generated from Monocle 3 differential expression results (for single-cell and single-nucleus 

datasets; Tables S15-S16, Table S30) or DESeq2 differential expression results (for bulk datasets; 
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Tables S19 & S35). For each gene included in the differential expression analyses, we calculated 

a rank metric by multiplying the sign of the log2 fold change by the negative log10 p-value 

generated by Monocle 3 or DESeq2 (rank_metric = sign(avg_log2FC) * -log10(p_value)). To 

avoid infinite values, genes with a nominal p-value of zero were assigned a rank_metric = 

sign(avg_log2FC) * 350. For each pre-ranked gene list, GSEA was run from the command line 

using the following parameters: gsea-cli.sh GSEAPreranked -gmx <GMX_FILE> -rnk 

<RNK_FILE> -rpt_label <LABEL> -out <OUT_FILE> -rnd_seed 149  

-collapse No_Collapse -mode Abs_max_of_probes -norm meandiv -nperm 1000 -scoring_scheme 

weighted -create_svgs false -include_only_symbols true -make_sets true -plot_top_x 10 -set_max 

500 -set_min 1 -zip_report true. GSEA calculates a false discovery rate (FDR) equal to the ratio 

of two distributions: “(1) the actual enrichment score versus the enrichment scores for all gene sets 

against all permutations of the dataset and (2) the actual enrichment score versus the enrichment 

scores of all gene sets against the actual dataset” (https://docs.gsea-

msigdb.org/#GSEA/GSEA_User_Guide/). We labeled gene sets that had an FDR q-value < 0.05 

as significantly enriched: “NEG” if they were enriched at the bottom of the ranked list (i.e., among 

downregulated genes) and “POS” if they were enriched at the top of the ranked list (i.e., among 

upregulated genes).  
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