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Coherent Terahertz Radiation from 
Multiple Electron Beams Excitation 
within a Plasmonic Crystal-like 
structure
Yaxin Zhang1,2, Yucong Zhou1, Yin Gang1, Guili Jiang1 & Ziqiang Yang1

Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like 
structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 
subwavelength holes array has been proposed in this paper. It has been found that in the structure the 
electromagnetic fields in each hole can be coupled with one another to construct a composite mode 
with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently 
interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the 
interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency 
can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is 
much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation 
system may provide a favorable way to combine photonics structure with electronics excitation to 
generate middle, high power terahertz radiation.

Terahertz (THz) frequency band has been demonstrated of great interest for applications in biomedical imaging, 
communication, and security checking as the electromagnetic (EM) waves have various physical properties merg-
ing photonics and electronics1–3. The exploitation of these applications progresses slowly at present for the lack 
of powerful and compact THz sources. THz waves are usually obtained by optical devices4–6, solid state electron 
devices (SSEDs)7–9 and vacuum electron devices (VEDs)10–12. Although many progresses have been achieved, the 
output power level so far is still hard to keep up with demand of the applications11,12. Compared to the optical 
devices and SSEDs, the VEDs are more favorable to achieve high power since the electron transport medium 
is vacuum, which is a “perfect material” for high power devices12. Among the VEDs, the linear electron beam 
(e-beam)-driven sources have been actively investigated in the THz region13–19. However, for these radiation 
sources, with increased working frequency, higher starting current density is required and lower radiated power 
obtained17. Therefore, many efforts in the linear e-beam-driven sources are concentrated on the design of effec-
tive interaction structures as well as on the interaction mechanism so as to improve the radiation intensity and to 
lower the starting current density.

Multi-beam sources are highly promising candidates to reduce the starting current density and to improve the 
radiated power. Therefore, in the earlier days, multi-beams have been applied in the microwave sources such as 
klystrons and free-electron lasers (FELs)20–23. Recently, there are some papers concentrating on multiple beam–
wave interaction in the THz region. Such as refs 24–27 suggested two sheet e-beams interaction with mimicking 
surface plasmons (MSPs); ref. 28 proposed two sheet e-beams interaction within a composite sandwich structure; 
ref. 29 reported three- and six-beam folded waveguide traveling-wave tube (TWT) operating at fundamental 
mode; refs 30–34 presented two and three e-beams interaction with higher order mode; and ref. 35 theoretically 
investigated wave coupling in multi-beam TWTs. Although strong efforts have been made and some progress has 
been achieved in this aspect, an effective mechanism for the multi-beam interaction still seems to be a problem, 
especially for the case of more than 5 e-beams. Nowadays, the successful exploration of the plasmonic crystal36–38 
may lead to a bright perspective of multi-beam THz radiation sources.

1Terahertz Science and Technology Research Center, School of Physical Electronics, University of Electronic Science 
and Technology of China, Chengdu 610054, China. 2National Key Laboratory of Application Specific Integrated 
Circuit, Hebei Semiconductor Research Institute, China. Correspondence and requests for materials should be 
addressed to Y.Z. (email: zhangyaxin@uestc.edu.cn)

Received: 21 June 2016

accepted: 15 December 2016

Published: 23 January 2017

OPEN

mailto:zhangyaxin@uestc.edu.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 7:41116 | DOI: 10.1038/srep41116

In ref. 16, we have proposed the interaction between a square-shaped e-beam with guiding wave mode in 
multiple stacked layers with single sub-wavelength holes (MSLS). The most important is that the MSLS can be can 
be integrated to construct a plasmonic crystal-like structure that can support multi-beam interaction. Moreover, 
the coupling of the electromagnetic fields may bring an enhancement of the interaction. Therefore, in this paper, 
we have proposed an efficient way to generate THz wave from the multi-beam interaction in such plasmonic 
crystal-like structure.

The plasmonic crystal that made of three-dimensional hole-array layers (3DHA) can support MSP waves which 
give the possibility of electron beam–MSP interaction and can also provide holes array to act as multi-beam chan-
nels. Therefore, multi-beams (9-beams) excitation within such structure which could lead to middle and high output 
power THz radiation has been studied in detail. The results show that such radiation source system leads to a signifi-
cant improvement with higher efficiency and lower starting current density than traditional e-beam-driven sources.

Results
The model and electromagnetic coupling mode. The 3DHA structure is made of multiple stacked 
layers with 3 ×  3 subwavelength holes array. Figure 1(a) illustrates two periodic units, and each periodic unit is 
composed of two different hole-layers. One of them is with a large hole and the other is with uniformly distrib-
uted 3 ×  3 smaller holes array. Each layer can be fabricated separately with metal such as copper. Then, several 
periodic units are assembled to form the 3DHA structure (Fig. 1(b)). Figure 1(c) demonstrates a 3-D view of 
the whole design of this 3DHA THz source. A direct-current (DC) e-beam is extracted from the cathode to the 
anode on which centered 3 ×  3 holes array is constructed. Some electrons are intercepted by the anode while the 
others pass through the 3 ×  3 holes array on it to form 3 ×  3 multi-beam array and then pass through the 3DHA as 
shown in Fig. 1(c,e). The cross-sectional and longitudinal views of this structure with multi-beam trajectories and 
dimensional parameters are shown in Fig. 1(d,e), respectively. It can be found that each hole of the 3DHA acts as 
an e-beam channel where the injected e-beam passes through and interacts with the MSP wave in the structure.

As we know, for the coherent radiation from the beam–wave interaction, the field intensity and distribution in 
the structure are key factors. Firstly, the EM field distribution in the 3DHA has been investigated by applying the 
finite-integral-technique (FIT) eigenmode solver in CST Microwave Studio39.

Figure 2 demonstrates that the field distributions in different hole-array structures, where the boundary con-
dition is perfect electric conductor (PEC). For the 1-hole structure in Fig. 2(a), the field distribution is regular 
around the structure. With the number of holes increasing, the field distribution has been changed as shown in 
Fig. 2(b–d). Due to the wave coupling among the holes, the distortion of the field takes place. On the other hand, 
in the longitudinal section, the contour map of the field distribution demonstrates that the mode in the 3DHA 
has the same EM characteristics of surface plasmons. However, due to the coupling in the center, the mode is not 
an evanescent wave so that this mode is just a mimicking surface plasmon wave.

The dispersion relation further shows the EM characteristics of this mode. It can be found from Fig. 3 that 
with the number of holes decreasing, the upper and cutoff frequencies increase and the dispersion passband 
becomes narrower. It should also be noted that, since the wave can be coupled through the holes array, 1st spatial 
harmonics of the dispersion curves in 3 ×  3 hole-array structures are backward waves while it is forward wave for 
the 1-hole structure.

Figure 1. Sketch map of the 3DHA structure. (a) Two periodic units of the 3DHA. (b) 3DHA consist of 
several periodic units. (c) Metallic modal with multi-beam trajectories (cutaway view) of this source. (d,e) Cross 
section and longitudinal section of the 3DHA, respectively.
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Moreover, by comparing the contour map of the field in Fig. 2, it is shown that the coupling has enhanced 
the field intensity. Next, we have undertaken a comparison of amplitude of the longitudinal electric field (Ez) 
among the modes in the 3DHA, 5-hole, 3-hole, and 1-hole structures under PEC boundary condition by a 3D 
finite-difference time-domain (FDTD) simulation40. From the comparison result shown in Fig. 4, it can be found 
that the field intensities of the mode in the 3DHA are much stronger than those in the rest structures. As we know, 
in the beam–wave interaction, the intensity of Ez at the e-beam location determines the interaction efficiency and 
radiation intensity. Thus, it can be expected that the multiple beam–MSP wave interaction in the 3DHA structure 
may be quite favorable.

Multi-beam interaction in 3DHA. We now analyze the multi-beam excitation and interaction with such 
mode in 3DHA system. First of all, when the longitudinal direct-current (DC) e-beam is injected in the modu-
lation area, the fundamental mode of the structure will be excited. The synchronization and interaction occurs 
when the phase velocity of the mode matches the velocity of the e-beam. During the interaction, the DC e-beams 
exchange energy with the mode so the velocity and density of the DC e-beams will be modulated and the DC 
e-beams be bunched. Figure 3 illustrates the mechanism of the interaction. The synchronization condition is 
fulfilled kz =  ω/vz, where vz is the beam velocity. The intersection between the e-beam line and the dispersion 

Figure 2. The simulated cross-sectional (left) and longitudinal (right) Ez field distributions of the waves 
in structures with different holes. (a) 1-hole structure. (b) 3-hole structure. (c) 5-hole structure. (d) 9-hole 
structure (3DHA).
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Figure 3. Mechanism of the interaction in the 3DHA system and dispersions of the fundamental modes in 
different hole-array structures calculated by CST Microwave Studio. 

Figure 4. Comparison of amplitude of electric field Ez among the coupling modes in the 3DHA, 5-hole, 
3-hole, and 1-hole structures. 

Figure 5. Simulation results of multiple beam–MSP wave interaction in the 3DHA. (a) The contour maps of 
electrical field Ez (normalized) at the cross section (left) and longitudinal section (right). The phase space of the 
multi-beams in profile (b) and 3-D view (c). (d) The energy distribution and average energy of the multi-beams. 
(e,f) The time domain waveform of Ez and its frequency spectrum.
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curve of the mode in the 3DHA (the interaction point shown in Fig. 3) is just fulfilled the condition. Therefore the 
interaction frequency is determined by the dimensional parameters and the beam voltage. The parameters of the 
system are listed in the Table 1.

A 3D simulation has been performed with a fully EM particle-in-cell (PIC) code CHIPIC41 based on the 
FDTD method applying the parameters listed in Table 1 to simulate the interaction. The 3 ×  3 multi-beam array 
pass through the structure to stimulate the EM mode. In Fig. 5(a), the special coupling mode is clearly excited 
and the field distribution is almost the same as the analysis of the eigenmode without the e-beams in Fig. 2(d). 
Figure 5(b,c) demonstrate the phase space of the multi-beams in profile and 3-D view, respectively. During the 
interaction, the DC multi-beams are found to synchronize and interact efficiently with the coupling mode and 
then are gradually modulated and well bunched. It can be observed that in Fig. 5(d) the e-beam exchange the 
energy with the mode efficiently so that the modulation depth which is directly related to the interaction effi-
ciency can reach near 30%. Figure 5(e) shows that the amplitude of Ez in the structure can reach 14.8 kV/mm. 
Both modulation depth and amplitude of Ez are relative high values for VEDs in the THz region. Figure 5(f) 
presents the frequency spectrum, fast Fourier transformed from the time domain waveform (Fig. 5(e)). The inter-
action frequency 0.275 THz agrees well with the dispersion relation portrayed in Fig. 3. More important, the 
operating current density of the interaction is only 6 A/cm2 which is a fairly low value for VEDs in the THz region.

Next, we have studied the coupling among the e-beams. The simulation results are shown as below. The Fig. 6 
is the field intensity of the space charge wave field of the e-beam. The colors describe the field intensity, the deeper 
the larger. It can be found that for one e-beam as shown in Fig. 6(a), the e-beam just interact with the mode of 
its own hole. Therefore, the space charge field is not very strong and concentrates around the hole. It should be 

Parameter Symbol Value

Period of 3DHA L 160 μ m

Number of Periods N 50

Thickness of hole-layer a 80 μ m

Side length of larger hole w 700 μ m

Side length of smaller hole g 180 μ m

Distance between adjacent smaller holes d 40 μ m

Distance between larger hole and side smaller hole h 40 μ m

Electron kinetic energy T 50 keV

Operating current density J 6 A/cm2

Axial guiding magnetic field B 0.5 T

Table 1.  Parameters of the system.

Figure 6. The field intensity distribution of the space charge wave with different numbers of e-beams.  
(a) the one-beam interaction. (b) The 2-beam interaction. (c) The 3-beam interaction. (d) the 5-beam 
interaction. (e) the 9-beam interaction).
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noted that one period of this structure is composed of two layers, the one is with a large hole and the other is 
with 3 ×  3 holes array. Therefore, in the 2-beam interaction shown in Fig. 6(b), when the beams pass the larger 
hole-layer, they meet with each other face to face. Then the space charge waves of both e-beams couple with each 
other through the hole so that the field intensity has been improved. It can be observed that at the border between 
the two beams, the field has enhanced significantly. With the number of e-beam increased, the coupling intensity 
is enhanced. For the 3-beam and 5-beam interaction, the Fig. 6(c,d) demonstrated that hence the center beam 
couple with beside beams the field intensity at the edge becomes larger and the size of the strong field location 
also has been enlarged. As a result, as shown in Fig. 6(e), due to the strong coupling among the 9-beam, the field 
intensity become much higher and such field covers larger region.

Moreover, the space charge wave in the e-beam directly corresponds to the modulation and efficiency. Thus, 
in order to further illustrate the role of coupling in the multi-beams–3DHA interaction, different number of 
holes and e-beams interaction have been applied in the simulation as shown in Fig. 7. It is clear that with the 
beam-number decreasing the modulation depth is becoming smaller. Such results show that the coupling among 
e-beams can enhance the interaction efficiency to improve the modulation depth.

It is known that the coherent radiation requires high current density (generally >  30 A/cm2) for 
the VEDs in THz frequency band11, which is a key factor limiting developments of the e-beam-driven 
THz oscillator-sources. In this radiation system, the starting current density is considerably low. 
In a 50-period 3DHA structure, fixing the beam energy at 50 keV, we sweep the beam current den-
sity. The optimized simulation results are shown as black squares in Fig. 7. The region between the 
threshold and saturation points is the linear growing region where the radiation intensity from the 
interaction linearly increases with the current density. The starting current density is only 5 A/cm2, 
which is a fairly low value for THz radiation sources, and the saturation point is about 65 A/cm2.  
Besides, we also obtained the optimized radiation intensities as a function of the beam current density in the 
5-hole (5-beam) and 3-hole (3-beam) cases, which are respectively illustrated as red circle and blue triangle in 

Figure 7. Comparison of modulation depth of the multi-beams among the interactions in 3DHA, 
5-hole and 3-hole structures with the same current density of the multi-beams around 0.28 THz working 
frequency. 

Figure 8. Radiation intensity versus beam current density in the 3DHA (9-beam), 5-hole (5-beam) and 
3-hole (3-beam) structures simulated by CHIPIC. Fits were made of the form y =  Axα.
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Fig. 8. It can be found that the threshold and saturation current density decrease with the number of e-beams 
increases, which could be considered as the coupling among the multi-beams could enhance the interaction 
coupling impedance so that the starting current can be reduced.

Next, the output structure has been studied. As shown in Fig. 9(a,b) and Fig. 9(c), for this radiation system the 
T-coupler waveguide has been applied to output the radiation. The output window is just a standard waveguide 
port which can connect with an antenna to emit the THz beam. The contour map of the output field is illustrated 
in Fig. 9(d) and (e). It is clearly that the fundamental mode TE01 could be observed.

Moreover, for this structure, the simpler fabrication procedure could be easier than traditional gratings. In 
general, grating, bi-grating and so on are used the entirely machined technique and the parameters of such struc-
tures are always very small at THz, so the microfabrication techniques such as lithographie, galvanoformung und 
abformung process (LIGA) and deep reactive ion etching (DRIE) have been used. For this structure, it can be 
made of stacked multiple planar sub-wavelength holes layers. Thus, we can fabricate the holes layers separately 
and assemble them together to construct the whole structure.

In summary, generation of coherent terahertz radiation from an interaction between multi-electron beam 
with the coupling mode in a plasmonic crystal-like structure (three-dimensional hole-array structure) which 
is made of multiple stacked layers with 3 ×  3 subwavelength holes array is proposed in this paper. The results 
show that such multi-beam interaction mechanism can enhance the modulation depth and reduce the current 
density. Due to multi-beam working, this mechanism can generate high power THz radiation. Moreover, this 
plasmonic crystal-like structure could provide larger size with more number of holes so that more than 3 ×  3 
multi-beam array can be applied in this radiation source. At last, this concept of multi-beam excitation within 
three-dimensional hole-array structure could provide a promising way to develop the compact THz radiation 
sources with middle or high power.
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