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Low-light image enhancement is a preprocessing work for many recognition and tracking tasks for autonomous driving at night.
It needs to handle various factors simultaneously including uneven lighting, low contrast, and artifacts. We propose a novel end-
to-end Retinex-based illumination attention low-light enhancement network. Specifically, our proposed method adopts mul-
tibranch architecture to extract rich features for different depth levels. Meanwhile, we consider the features from different scales in
built-in illumination attention module. We encode reflectance features and illumination features into latent space based on
Retinex in each submodule, which could cater for highly ill-posed image decomposition tasks. It aims to enhance the desired
illumination features under different receptive fields. Subsequently, we propose a memory gate mechanism to learn adaptively
long-term and short-term memory. *eir weight could control how many high-level and low-level features should be reserved.
*is method could improve the image quality from both different feature scales and feature levels. Comprehensive experiments on
BDD10K and cityscapes datasets demonstrate that our proposed method outperforms various types of methods in terms of visual
quality and quantitative metrics. We also show that our proposed method has certain antinoise capability and generalizes well
without fine-tuning when dealing with unseen images. Meanwhile, our restoration performance is comparable to that of advanced
computationally intensive models.1

1. Introduction

Object detection [1], classification [2], identification [3],
tracking [4, 5], and semantic segmentation [6] have shown
impressive results in intelligent traffic [7]. *ese technologies
are mostly based on normal lighting and clear weather; most
of them are not suitable for poor light conditions. Traffic
safety statistics [8] point out that 51.1% of fatal car crashes in
the US happen at night (from 6pm to 6am), especially under
extremely low-light conditions. To improve the safety of
intelligent driving, the fundamental goal is to resolve these
degraded traffic scenes. Low-light image enhancement needs
to deal with poor visibility, low contrast, and missing color
information. It is a challenging task especially in countryside
with extremely low light. It is necessary to keep the enhanced
image visually natural while improving the image contrast
and visibility and restoring the color information.

*e earliest methods enhanced the brightness and
contrast of low-light images based on histogram equaliza-
tion. Subsequently, Retinex theory was proposed to de-
compose reflectance and illumination from low-light
images. Classical histogram equalization and Retinex theory
have developed many improvements in low-light image
enhancement. Histogram equalization will merge certain
gray levels, resulting in oversaturation and loss of regional
information. Meanwhile, the noise of image maybe further
amplified. *e original Retinex low-light enhancement al-
gorithm and subsequent improved algorithms considering
its color distortion all need to obtain the illumination map
first, but the priors used in the estimation of illumination
map are all artificially produced. *ese methods show poor
generalization. In recent years, data-driven neural networks
for low-light enhancement methods have been widely
proposed and improved. Most Retinex-based methods use
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two-stage strategy to decompose low-light enhancement
process, and Retinex theory is generally used for preen-
hancement operation in the first stage. We incorporate the
Retinex theory into the illumination attention module, and
the whole network is trained in an end-to-end manner. *e
detailed methods are given in the related work.

*econtributions of this paper are summarized as follows:

(i) We propose an end-to-end Retinex-based illumi-
nation attention low-light enhancement network.
*e proposed network incorporates illumination
attentionmodule based on Retinex andmemory gate
unit in classical convolutional neural network. It
adopts multibranch architecture to extract rich
features for different depth levels. Reflectance fea-
tures and illumination features are encoded into
latent space separately based on Retinex in each
submodule. *e built-in content learning branches
are expected to preserve reflectance components and
ensure image details. *e built-in illumination at-
tention mechanism aims to enhance the desired
illumination features under different receptive fields.

(ii) We propose a memory gate mechanism to rea-
sonably use enhanced long-term memory and
short-term memory. *e gate architecture could
adaptively learn the weight between different depth
level features; it could control how many high-level
and low-level features should be reserved. *e
outputs of these long-term and short-term mem-
ories are fused to recover the low-light images with
realistic tone and normal illumination.

(iii) Our method is compared with several state-of-the-
art methods via comprehensive experiments. *e
results are measured in terms of visual quality and
quantitative assessment. Moreover, to investigate
the generalizability with our method, we employ the
model trained on the BDD100K_test dataset to
restore the test scenes in cityscape dataset. All re-
sults demonstrate the superiority of our method.

*e rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the proposed
methods in detail, including image processing pipeline,
network architecture, and loss function. Section 4 shows
experiment results. Finally, conclusions and future per-
spectives are drawn in Section 5.

2. Related Work

To effectively improve image visibility, enhance image
contrast, and restore color information in low-light en-
hancement task, the recent methods can be divided into two
categories, namely, physical model-based methods and
learning-based methods.

2.1. Physical Model-Based Methods

2.1.1. HE-Based Methods. Most physical model-based
methods consider histogram equalization [9, 10] and their

variations. Histogram equalization-based method changes
the grayscale histogram of the original image from a certain
scope to a uniform distribution. After being stretched, the
distribution of the image becomes more uniform and rea-
sonable, which enables enhancing the local contrast.
However, this method usually cannot deal with brightness,
texture details, and color synchronously, and there is still
local exposure. Many improved histogram equalization-
based methods have been proposed. Celik and Tjahjadi [11]
proposed to use interpixel context information to enhance
the contrast of input images, and the Frobenius norm is
constructed using the correlation between image pixels and
neighboring pixels to map the diagonal elements of the input
histogram to the diagonal elements of the target histogram.
Lee et al. [12] proposed a contrast enhancement algorithm
(LDR) based on hierarchical difference representation of
two-dimensional histograms by amplifying the grayscale
differences between adjacent pixels. Reza [13] proposed the
Contrast-LimitedAdaptiveHistogramEqualization (CLAHE)
algorithm, which limits the enhancement of local contrast
by setting a threshold and uses an interpolation algorithm
to improve patches. *e histogram equalization-based
methods have achieved certain results, but the similar gray
levels of the image will merge with each other, resulting in
the loss of some gray levels and eventually the loss of image
details. Some patches of the image may also be under-
exposed or overexposed.

2.1.2. Retinex-Based Methods. Retinex theory is an impor-
tant method proposed in 1963, which can adjust the
brightness and improve the color. It decomposes the image
into illumination components and reflectance component. It
is characterized by compressed dynamic range and color
constancy. Both single-scale and multiscale Retinex theories
are classic methods. *e scale factor in the single-scale
Retinex (SSR) [14] will greatly affect the quality of image
enhancement. Multiscale Retinex (MSR) [15] performs
image enhancement by selecting different scale factors
multiple times on the basis of SSR. However, these two
methods may introduce noise, resulting in local color dis-
tortion. In response to this problem, a color recovery factor
is introduced in MSRCR to adjust the proportional rela-
tionship of RGB channels in the original image, which can
highlight the darker patches and eliminate color distortion.
Hao et al. [16] proposed a novel Retinex-based low-light
image enhancement method; the image decomposition is
achieved in an efficient semidecoupled way. Specifically, the
illumination component is gradually estimated only from
the input image by the proposed Gaussian Total Variation
model, while the reflectance component is jointly estimated
by the input image and the intermediate illumination
output. Hou et al. [17] proposed a new pixel-level nonlocal
Haar transform-based illumination and reflectance de-
composition method named NLHD, in which the illumi-
nation component is to reconstruct by the low-frequency
coefficient of Haar transform on each similar pixel group,
while the reflectance component is to realize by the rest of all
high-frequency coefficients.
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2.2. Learning-Based Methods

2.2.1. CNN-Based Methods. DLN [18] consists of several
Lightening Back Projection (LBP) blocks to perform the
lightening and darkening process iteratively to learn the
residual for normal-light estimation. It also proposes a
Feature Aggregation (FA) block that adaptively fuses the
results of different LBPs by making use of global and local
features. Liang et al. [19] extracted feature guided by the
illumination map and noise map to predict local affine
coefficients in the bilateral space. Zhang et al. [20] adopt
Maximum Entropy-based Retinex (ME-Retinex) model to
construct the illumination enhancement network ICE-Net,
and the network introduces a new constraint that the
maximum channel of the reflectance image is consistent with
the maximum channel of the light image. Zheng and Gupta
[21] proposed a semantic-guided low-light enhancement
network, designing an enhancement factor extraction net-
work using depthwise separable convolution. *is algorithm
also considers high resolution by a recurrent image en-
hancement network and preserves semantic information by
a semantic segmentation network. SurroundNet [22] is
regarded as a novel extension of single-scale Retinex; it
consists of several Adaptive Retinex Blocks (ARBlock). *e
ARBlock aims to estimate illumination by an adaptive
surround function. TSDNet [23] proposed multiscale at-
tention module to learn image distribution, and it also
adopted two-branch extraction module and multifeature
fusion module to integrate all characteristic information.

2.2.2. GAN-Based Methods. Chen et al. [24] proposed a
bidirectional generative adversarial network framework,
adding global features to the network and using an adaptive
weighting scheme for training, which can significantly im-
prove the stability of training. WESPE [25] is also based on a
bidirectional generator, which uses multiple residual blocks.
Its main feature is the use of anticolor loss, antitexture loss,
and smoothing loss to guide the update of networks. Yi et al.
[26] use the UNet model as the attention generator and uses
the global local discriminator structure to guide the gen-
erator to pay attention to both global and local information.
LEUGAN [27] proposed an unsupervised generation net-
work with attention guidance to handle the low-light en-
hancement task. It adapted an edge auxiliary module that
restores sharper edges and an attention guidance module
that recovers more realistic colors. UEGAN [28] embeds
modulation and attention mechanisms to capture richer
global and local features, combining fidelity loss and quality
loss to preserve the desired characteristics. QAGAN [29]
proposed a quality attention generative adversarial network
embedded with a quality attention module. *e proposed
QAM allows the generator to effectively select semantic-
related characteristics from the spatial-wise and adaptively
incorporate style-related attributes from the channel-wise.
Sun et al. [30] proposed a lightweight one-path conditional
generative adversarial network, which consists of two
complementary modules: the pixel-wise self-modulation
(PSM) aims to adjust the feature distribution of the input

image, and the channel-wise conditional modulation (CCM)
aims to learn from the features of both the low-light and the
reference image. PDGAN [31] adopts zeroDCE to recover
illumination and use the residual dense block encoder-de-
coder structure to eliminate noise and adjust illumination.
At the same time, the discriminator can integrate into
fractional differential gradient masks to enhance details.
RGNET [32] divides the enhancement task into two stages
from coarse to precise, where it roughly amplifies the input
image nonlinearly using an unsupervised network and
builds a two-path network to restore image details, of which
one is used for residual restoration and the other is used for
contextual attention. Liu et al. [33] introduced fractional
order differentiation into both generator and discriminator;
it can better distinguish noise and high-frequency details. It
also adopts a global discriminator to improve the overall
reconstruction quality and restore brightness. Li and Chen
[34] proposed to combine DCGAN (deep convolutional
generative adversarial network) and MSRCP (multiscale
Retinex with chromaticity preservation) algorithm to de-
termine the mapping from night to day.

2.2.3. Retinex-Based Learning Methods. Wei et al. [35] in-
troduce Retinex theory into deep learning to achieve low-
light enhancement tasks. Its overall idea has been continued
in the subsequent low-light enhancement based on Retinex
deep networks. Decomposition network aims to learn the
different illumination components between paired low-light
images and normal-light images.*e reflectance component
aims at denoising; the illumination enhancement network
adopts an encoder-decoder architecture, and it also intro-
duces a multiscale concatenation to adjust the illumination
from hierarchical perspectives. Hu et al. [36] proposed a
two-stage low-light enhancement method, including
preenhancement and postrefinement. *e RGB images are
preprocessed and decomposed based on Retinex theory;
then, the traditional image processing technology is applied
to the illumination component, and just adaptive tone
mapping is used to enhance the illumination component.
*e refinement network further improves the image quality
by adversarial training to resist noise. Wu et al. [37] also
construct Decom-RNet based on Retinex theory to de-
compose RGB images. Subsequently, multiple residual
structures are used to adjust the illumination components,
and deeper levels and the shallower level are mapped
identically in Enhance-RNet. Finally, the refinement net-
work is also used for noise removal. Weligampola et al. [38]
proposed a novel deep learning pipeline, in which CNNs and
GANs are optimized to minimize standard losses and
adversarial loss. *e proposed model divides the enhance-
ment process into two parts; the decomp-net decomposes
the images into reflectance and illumination based on
Retinex, and it pays more attention to local information.*e
enhancement net focuses on local and global information.
EUIEF [39] adopts a Luminous Transform (LT) to enhance
underexposed images as a preprocessingmodule on the basis
of their bright value. And the other enhanced image is
generated by invert-Image enhancement method. *e final
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enhanced image is the fusion between these two interme-
diate enhanced images. UFANet [40] adopts a feature at-
tention network, combining pixel estimation and channel
estimation to decompose low-light images into reflectance
and illumination.

2.2.4. Attention-Based Learning Methods. EnlightenGAN
[41] integrates self-regularized attention in UNet generator
to enhance underexposed regions and avoid overexposed
regions. *ey adopt dual discriminator to direct global and
local information, and they also leverage self-feature pre-
serving loss to guide the training process and maintain the
textures and structures. For attention mechanism, specifi-
cally, they reverse the normalized illumination channel of
RGB image as self-regularized attention map and then
multiply it with all intermediate feature maps to improve the
visual quality consistently. Zhang et al. [42] employ mixed
attention strategy to recover low-light image; specifically,
they use nonlocal operation as spatial attention module to
obtain a wider range of information in spatial domain; this
way could guide the network to learn what should be in a
seriously degraded scene. And they combine channel at-
tention module to model the interdependence between
channels for refining redundant color features. It is noted
that their proposed module aims to deal with extreme dark
raw images. Lv et al. [43] leverage two attention maps to
guide the brightness enhancement and denoising tasks,
respectively. *e first attention map aims at concatenating
on unexposed patches, and the second attentionmap focuses
on identifying noises from real textures. *ey combine a
reinforcement net to further enhance color and contrast. For
attention mechanism, specifically, they use spatial attention
in paired images to construct an inverted ue-attention map
to correctly enhance the underexposed regions and avoid
overenhancing normally exposed regions. For denoising
task, they also leverage spatial attention to estimate noise
map, avoiding unwanted blurring effect. Li et al. [44] pro-
pose a luminance-aware pyramid network to recovery low-
light image in a coarse-to-fine way; they adopt three
branches to extract feature and learn light mapping between
input and target images. Besides, they use multiscale contrast
feature block including channel split and shuffle and con-
trast attention mechanism. *ey leverage channel attention
to focus on contrast feature and then to calibrate the weight
of each channel based on the importance of candidate
features. Wang et al. [45] adopt normalizing flow model to
construct the one-to-many relationship in highly ill-posed
tasks; they use an invertible network to regard the low-light
images as the condition and then to map the distribution of
normal-light image into a Gaussian distribution.*e learned
invertible network could deal with the other inference di-
rection to restore low-light images. *ey propose to use the
gradient maps in different direction as attention map for
removing noise. Chen et al. [46] propose an attention-based
broadly self-guided network; its architecture is a top-down
self-guidance to efficiently incorporate multiscale and local
features to recover images. *e architecture consists of
several multilevel guided dense blocks.*ey propose a global

spatial attention module to generate better results; the
module includes convolution, pooling, and spatial attention
operation.

2.2.5. Other Methods

(1) Color Channel-Based Methods. Zhao et al. [47] input
partial channel combination to obtain multiple enhance-
ment results. And a multiscale feature shuffle module
(MFCS) aims to combine image features at different scales;
this way makes the fusion images preserve more rich in-
formation. Atoum et al. [48] proposed a color-wise at-
tention network (CWAN), in which CWAN_AB allows the
color information drive attention, while CWAN_L focuses
on enhancing image lightness and denoising simulta-
neously. It searches for any useful color cues in the low-light
image to aid in the color enhancement process.

(2) RNN-Based Methods. Zhao et al. [49] adopted in-
vertible neural networks (INN) for bidirectional feature
learning to ensure the mutual propagation invertible; this
invertible mechanism with bidirectional feature transfor-
mation could avoid color bias and recover the content for
enhancement task. It also proposes a new recurrent residual
attention module (RRAM) to gradually perform the desired
color adjustments. Ren et al. [50] proposed a network that
consists of two distinct streams to learn the global content
and the salient structures of the clear image simultaneously
in a unified network. It also adopts a novel spatially variant
recurrent neural network as an edge stream to preserve edge
details.

(3) Superpixel Methods. DALE [51] (dark region-aware
low-light image enhancement) makes use of a visual at-
tention module to accurately recognize dark regions and
enhance brightness. *is method adopts superpixel to es-
timate visual attention and can preserve the color, tone, and
brightness of the original images and prevent normally il-
luminated areas of the image from being saturated and
distorted.

3. Our Proposed Methodology

In this section, we firstly introduce a data pipeline to
generate paired low-light and normal-light images under
extremely low light; these paired images are used for
subsequent training of the proposed network. *e image
generation pipeline is shown in Figure 1(a). Next, we
introduce the whole architecture of the proposed end-to-
end illumination attention network for low-light en-
hancement task, shown in Figure 1(b); it mainly consists
of three modules: (a) horizontal feature transfer module,
(b) multiscale illumination attention based on Retinex
module, and (c) long- and short-term memory fusion
module. *e entire architecture extends in both hori-
zontal and vertical dimensions, and the features
extracted from the original low-light images are trans-
ferred horizontally. Meanwhile, the features under dif-
ferent receptive fields are, respectively, sent to the feature
enhancement module guided by the illumination
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attention. Finally, an adaptive gate mechanism is used to
control the weights of long-term memory and short-term
memory to obtain the final enhanced image.

3.1. Paired Image Generation Method. We use the BDD10K
dataset with normal daytime lighting as the ground truth,
which is the most classic and largest open driving dataset.
We use the classic superpixel segmentation algorithm and
simple linear interactive clustering [52] (SLIC) to distinguish
low-light and normal-light images. SLIC converts RGB
images to CIELAB color space and five-dimensional feature
vector.*en, we construct a distance metric for these feature
vectors to cluster image pixels. *e images in BDD10K are
720∗1280, we set the step size as 135, the estimated number
of pixel blocks is 200, and the calculated number of pixel
blocks is 180. To avoid underexposure, it is judged as a dark
image patch when the average pixel value of each image

patch is lower than 50, and when the number of dark image
patches exceeds 45, we regard this image as a low-light
image, and it will not be regarded as the ground truth for a
low-normal-light image pair. As shown in Figure 2, they are
examples of superpixel segmentation by means of SLIC.
According to the above parameter settings, we get 1278
images in the BDD10K_test and 512 images in the
BDD10K_val as normal-light images. *e 1790 normal-
lighting images are screened out and processed by the image
processing pipeline. *ere are two steps: gamma correction
and contrast adjustment. *e output is defined as

Ilight � α · scale · gain ·
I

scale
 

c

 , (1)

where I is the original input image, Ilight is the processed image,
the scale is a constant determined by the maximum pixel of
input image, and the gain usually takes the default value 1.
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Figure 1: (a) Pipeline of constructing the proposed low-light simulation dataset. *e details are shown in the next section. (b)*e proposed
network with three submodules. Feature transfer module includes ten convolution operations, the output of each feature transfer inputs
both the next feature transfer submodule and feature enhancement submodule.*en, the feature pyramid is simultaneously used for content
and illumination learning, and the desired illumination feature module is used to estimate the attention of illumination. Finally, short-term
and long-term memory are all input into the memory gate unit; it adaptively learns different features by means of 1∗ 1 convolution
operation to combine features from different channels.

Figure 2: Example of superpixel image segmentation by means of SLIC.
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When c> 1, the image pixels get darker under mapping re-
lationship, and we choose c ∼ uniform(1, 6). For contrast
adjustment coefficient, we set α ∼ uniform(0.1, 1). Several
examples of the final generated low-light images are shown in
Figure 3.

3.2. Network Architecture. *e proposed end-to-end low-
light enhanced network consists of three functional mod-
ules, and the whole architecture adopts a convolutional
neural network as the baseline and incorporates an illu-
mination attention module based on Retinex and memory
gate unit. *e input is low-light image and the output is an
enhanced normal-light image. *e multilevel feature
transfer module includes 10 convolutional layers and keeps
the feature map size consistent with the original image size
all time. *ere is no downsampling and upsampling in the
feature transfer flow at different depth levels. *e output of
each layer in the feature transfer module will be input to the
Retinex-based illumination attention module, and the final
gate unit mechanism will adaptively fuse the features under
different receptive fields to obtain an enhanced image.

3.2.1. Multilevel Feature Extract Module. CNN extracts
feature through layer-by-layer abstraction, and different
receptive fields could capture features at different levels. *e
low-level feature has a smaller receptive field and a strong
ability to represent geometric detail information. Although
the resolution is high, the ability to represent semantic
information is weak.*e receptive field of high-level features
is large, and the semantic information representation ability
is strong, but the resolution of the featuremap is low, and the
expression ability of geometric information is weak.

We propose a feature transfer flow structure, which
contains a total of 10 convolutional layers. *e input of the
first layer is a three-channel image, and the outputs of each
layer are all RH×W×32. Not only do the features flow in the
feature transfer stream, but they are also fed into the Ret-
inex-based illumination attention feature enhanced module.

3.2.2. Illumination Attention Feature Enhancement Module.
Most previous Retinex-based low-light enhancement
methods have been carefully designed with more constraints
and parameters.*e proposed illumination attention feature
enhancement module simply adopts Retinex to decompose
the input features into reflectance features and illumination
features. According to Retinex theory, an image can be
decomposed into an illumination map and a reflectance
map; it is represented as

X � I · R, (2)

where X is the RGB image and I and R are illumination and
reflectance map, respectively.

As other Retinex-based methods, we regard reflectance
component as content component. To take full advantage of the
feature maps at different scales, we resize the feature maps at
each depth level into three scales. Specifically, the features
transferred from the feature extraction module are down-
sampled by means of average pooling to preserve the multiscale
feature. *e three-scale features are characterized by RH×W×32,
R(H/4)×(W/4)×32, and R(H/9)×(W/9)×32, respectively. *en, we
concatenate these features and feed them into illumination
learning submodule GI and content learning submodule Gc

based on Retinex. *ey are as follows:

Xcat feature � conca Xfea,Avgpoolkernel�4 Xfea( ,(

Avgpoolkernel�9 Xfea( ,

Xinter � 
9

i�0
G

i
I Xcatfea  · G

i
c Xcatfea ,

(3)

where Xfea represents extracted features from different depth
levels, Avgpool represents average pooling operation inPyTorch,
kernel � 4 means to average the pixels of four rows and four
columns, and conca is a mapping function to concatenate
features by channel. GI tries to generate multiple intermediate
illumination feature masks, Gc aims to produce multiple in-
termediate content feature masks, and I denotes ith intermediate
result; namely, we can get ith intermediate content mask and ith
intermediate illumination mask.

*e input of each attention module is 32-channel fea-
ture, and the outputs are illumination feature mask and
content feature mask. Specifically, the input feature of il-
lumination attentional module is RH×W×32, for outputs, il-
lumination mask I is RH×W×10, and content mask C is
RH×W×30, where each channel of the illumination feature
mask is copied to three channels to multiply the corre-
sponding content feature mask. *e illumination feature
masks are expected to learn the illumination distribution of
normal-light images guided by ground truth images. *en,
we concatenate these intermediate results to get enhanced
feature, and it is represented as

XEnhan � conca Xinter( . (4)

3.2.3. Memory Gate Unit. As mentioned above, we decom-
pose features into content and illumination based on Retinex
at different levels and scales.*en, we propose amemory gate

Figure 3: Generated extremely low-light images through the image processing pipeline.
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unit that allows the network to adaptively control how many
enhanced low-level features should be retained andhowmany
enhanced high-level features should be stored. *e formu-
lation of the memory gate unit can be written as

EnImages � Wgate XEnhan( , (5)

where Wgate denotes the function of 1∗ 1 convolutional
layer, and it could learn the relationship between enhanced
feature channels at different levels without loss of resolution.

3.3. Loss Function. To implement the low-light enhance-
ment task, our loss function needs to simultaneously con-
sider structure, content, and uneven lighting conditions.*e
optimization objective of the proposed network can be
expressed as

L � Lstr + Lcontent + Lregion, (6)

where Lstr , Lcontent, and Lregion are structural loss, content
loss, and region loss, respectively, and their weighted co-
efficients all are 1 determined by multiple trials.

3.3.1. Structure Loss. In addition to the low-light en-
hancement task, this paper also focuses on texture pre-
serving and the brightness is allowed to be fluctuant around
the ground truth. In particular, the captured low-light im-
ages usually show structural distortion during the en-
hancement process. *e SSIM [53] between x and y is
calculated as follows:

Lssim �
2μxμy + C1

μ2x + μ2y + C1
·

2σxy + C2

σ2x + σ2y + C2
, (7)

where μx, μy, σ2x, σ
2
y, and σxy are the mean of x, the mean

of y, the variance of x, the variance of y, and the co-
variance of x and y, respectively. Both C1 and C2 are
constants, C1 � (K1 · L)2 and C2 � (K2 · L)2, K1 � 0.01, K2
� 0.03, and L � 255. Lssim is in range (0, 1], in which 1
means that the two images are totally the same.

Meanwhile, SSIM performs well under a specific con-
figuration, while MS-SSIM could maintain stable perfor-
mance for images of different resolutions. *erefore, we
combine SSIM and MS-SSIM for structured perception of
images. It is noted that we use SSIM and MS-SSIM in the
pytorch_msssim package. *e loss function for MS-SSIM is
defined as follows:

Lms−ssim �
1
5



5

i�1
weighti ·

2μxiμyi + C1

μ2xi + μ2yi + C1
·
2σi

xi,yi + C2

σ2xi + σ2yi + C2
. (8)

In the pytorch_msssim package, MS-SSIM downsamples
the original input image four times in turn, i ∈ [1, 2, 3, 4, 5],
i � 1 represents the original size image, and the weights
corresponding to each input scale are 0.0448, 0.2856,{

0.3001, 0.2363, 0.1333}. *e total structure loss is defined as
follows:

Lstr � Lssim + Lms−ssim. (9)

3.3.2. Content Loss. Johnson et al. [54] proposed to adopt a
pretrained VGG as a perceptual loss to model higher-level
features images, which was widely used for many low-level
vision tasks [55, 56]. We adopt a pretrained VGG to con-
strain the feature distance between enhanced images and
corresponding ground truth, where (xi, xj) denotes the
input low-light image, G represents low-light enhancement
network, GT denotes the matched normal-light image, and
VGG denotes the pretrained feature extract network. In this
work, we use the output of the third block in VGG19 to
extract higher-level features:

Lcontent � VGG G xi, xj   − VGG(GT)
����� ‖1. (10)

3.3.3. Region Loss. For the uneven illumination in low-light
enhancement tasks, we need to adaptively learn global il-
lumination and local illumination to avoid overexposure or
underexposure. We use the region loss proposed in
MBLLEN [57] to separate the low-light areas from the image
and then allocate a larger optimization weight to the first
40% of the darkest pixels in the entire image.

*e region loss is defined as follows:

Lregion � wL ·
1

w · h


w

i�1


h

j�1
‖GL xi, xj , GTL‖1 

+wH ·
1

w · h


w

i�1


h

j�1
‖GH xi, xj , GTH‖1 ,

(11)

where w an dh are input images width and height, GL(xi, xj)

and GTL denote the low-light parts of the enhanced image
and ground truth, GH(xi, xj) and GTH are the rest parts of
the images,wL andwH denote low-light regions and normal-
light region weighted coefficient, and we use wL � 4 and
wH � 1.

4. Experiments

4.1. Experiment Settings. We implemented our network by
PyTorch on Tesla V100.We trained the network using Adam
optimizer with default parameters for 200 iterations. *e
initial learning rate is 0.002. We adopt the strategy of
learning rate exponential attenuation, and the attenuation
coefficient is 0.99. For training, we used the proposed data
pipeline to process normal-light images in BDD10K_test
dataset; then, we get 1278 paired extremely low-light and
normal-light images. We compared our proposed network
with ten state-of-the-art low-light enhancement methods,
including based physical methods, based-learning methods,
and attention-based learning methods, namely, LIME [58],
MSRCR [14], RetinexNet [35], WESPE [25], DeepUPE [59],
HDRNet [60], zeroDCE [61], EnlightenGAN [41], ABSGNet
[46], and LLFlow [45].

4.2. Quantitative and Perceptual Comparisons. We quanti-
tatively evaluated the ability of our network in low-light
image enhancement. For fair comparison, we use the
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parameters provided by the recommended parameter set-
tings for nonlearning methods. For learning-based methods,
we retrain each method on the BDD10K_test dataset. For
testing, we compared the results of 720∗1280 resolution in
BDD10K_val [62] and 512∗1024 resolution cityscapes
datasets [63], and they are 512 and 1100, respectively. We
leverage Peak Signal-to-Noise Ratio (PSNR), Multiscale
Structural Similarity (MS-SSIM) [64], Learned Perceptual
Image Patch Similarity (LPIPS) [65], Universal Quality
Index (UQI) [66], and Feature Similarity Index Measure
(FSIM) [67]. *e higher PSNR indicates that our method
could remove artifacts. For MS-SSIM, these results show our
method could better preserve structural information. LPIPS
as a perceptual metric aligned with human perception. UQI
considers loss of correlation, luminance distortion, and
contrast distortion to model image distortion. FSIM em-
phasizes that the human visual system understands the
image mainly based on the low-level features of the image
and replaces the statistical features in SSIM with image
features. *e quantitative comparison results of
BDD10K_val (512 images) and cityscapes (1100 images) are
as shown in the left and right parts of Table 1. *e results we
report are all average values.

We train the first group in the 720∗1280 resolution in
our generated dataset; we can see that we achieve a dramatic
improvement in most of quantitative evaluation metrics
compared to other eight methods. For the parts of cityscapes
dataset show, our method reveals the gratifying generaliz-
ability in most metrics. We can see that ABSGNet and

LLFlow are relatively computationally intensive in Table 2;
therefore, we train these two networks in 512∗ 512 due to
memory constraints. For a fair comparison, we also train our
methods at 512∗ 512 resolution. *e last three rows of
Table 1 compare the three sets of results. We could see that
the quantitative results of these three methods are not much
different, and each method has its own advantages.
According to the results of the second group in Table 1, we
can see that several attention-based low-light enhancement
methods achieve better performance for most metrics on
BDD10K_val and cityscapes datasets, which means atten-
tion-based methods are better able to focus on low-light
regions and recover image texture and details.

On the premise of achieving better algorithm perfor-
mance, we have to consider important factors that affect the
deployment ability of the algorithm, including model pa-
rameters, multiply-accumulate operations, CPU inference
time, and memory size. We compare three top-performing
methods (ABSGNet, LLFlow, and ours) in Table 2. *e test
images we use are 240,360 and 720∗1280 RGB images, and
we run them on Intel i7-8750H CPU with 16GB RAM to
compare CPU inference time, and all results are the average
of five runs after the warm-up. It is evident that our method
has the fewest parameters; it requires the least amount of
computing resources. Our trained model memory is
22∼108X smaller. All training parameters of three methods
will be used for inference, so the trained model size is
consistent with model parameters. For FLOPs and CPU
inference time, we infer on 240∗ 360 and 720∗1280 RGB

Table 1: Quantitative comparison of the enhancement results.

Methods
Metrics

BDD10K_val (512 images) Cityscapes (1100 images)
msssim↑ PSNR↑ LPIPS↓ UQI↑ FSIM↑ msssim↑ PSNR↑ LPIPS↓ UQI↑ FSIM↑

First group (720∗1280)

LIME 0.650 9.717 0.163 0.313 0.949 0.623 12.073 0.179 0.205 0.950
MSRCR 0.741 14.201 0.117 0.779 0.966 0.710 11.961 0.161 0.679 0.955

RetinexNet 0.669 15.374 0.167 0.807 0.950 0.652 19.489 0.178 0.868 0.942
WESPE 0.637 15.276 0.136 0.783 0.943 0.617 18.056 0.160 0.846 0.926
DeepUPE 0.677 14.172 0.148 0.530 0.962 0.664 13.374 0.148 0.273 0.958
HDRNet 0.798 16.129 0.079 0.727 0.970 0.774 16.194 0.105 0.629 0.953
zeroDCE 0.657 13.264 0.161 0.506 0.965 0.639 12.753 0.158 0.236 0.955

Enlightengan 0.711 15.998 0.113 0.812 0.951 0.638 17.548 0.154 0.801 0.931
Ours 0.842 21.863 0.062 0.915 0.971 0.800 21.974 0.097 0.897 0.955

Second group (512∗ 512)
ours512∗512 0.859 22.247 0.075 0.923 0.976 0.811 21.992 0.114 0.899 0.957
ABSGNet 0.848 23.445 0.066 0.929 0.973 0.773 22.133 0.105 0.908 0.947
LLFlow 0.860 22.179 0.070 0.921 0.975 0.795 21.707 0.112 0.903 0.952

Note.*e best result is in bold and the second best is underlined. Due tomemory limitations and computing speed, we downsampled all generated images and
ground truth to 240∗ 480 to calculate LPIPS and FSIM. *e network used by LPIPS is Alex and the version is 0.0.

Table 2: Computation complexity and deployment ability metrics in 240∗ 360 (first group) and 720∗1280 (second group) RGB image.

Methods Trainable parameters↓ FLOPs (GMACs) ↓ CPU inference time (second)↓ Memory (Mb)↓

First group
ABSGNet 820∗ e4 365.78 3.582 31.33
LLFlow 3886∗ e4 412.27 10.112 148.77
Ours 35 ∗ e4 30.62 1.119 1.37

Second group
ABSGNet — 3901.68 37.613 —
LLFlow — 4174.2 86.705 —
Ours — 326.63 10.397 —
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l) (m)

Figure 4: Examples of the enhanced BDD10K_val dataset. *e results of our method show the most realistic and natural lighting,
meanwhile preserving the whole scene details. (a) Low-light image. (b) LIME. (c) MSRCR. (d) RetinexNet. (e) WESPE. (f ) DeepUPE.
(g) HDRNet. (h) zeroDCE. (i) Enlightengan. (j) Ours. (k) Ours 512∗ 512. (l) ABSGNet. (m) LLFlow.
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images. Our method is about one-tenth of the other two for
FLOPs. Our future work could improve the inference speed
of the network by means of input parallelization.

Figures 4 and 5 are visual comparisons of low-light
enhancement methods on the BDD10K_val and cityscapes
datasets, respectively. Figure 4 shows the enhanced images of
eleven methods for three low-light images. Comparing with
Figure 4(b) to Figure 4(k), our method shows superior

performances; we could preserve structured information,
avoid color distortion, and eliminate artifacts simulta-
neously. We can see that the images enhanced by the lime
and RetinexNet methods are oversaturated, resulting in
unnatural color restoration. Meanwhile, their textures are
not smooth. For MSRCR, WESPE, and DeepUPE methods,
the entire generated images are extremely not smooth; they
are with obvious artifacts and noise, and even large instances

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l) (m)

Figure 5: Visual comparison of Stuttgart city scene in cityscapes dataset. low-light images (a). LIME (b). MSRCR (c). RetinexNet (d).
WESPE (e). DeepUPE (f). HDRNet (g). zeroDCE (h). Enlightengan (i). Ours (j). Ours 512∗ 512 (k). ABSGNet (l). LLFlow (m).

(a) (b)

Figure 6: Intuitive performance of noise after low-light enhancement. HDRNet (a). Ours (b).
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fail to maintain smooth edges. For zeroDCE, its brightness is
not enhanced enough, and there is color oversaturation. For
EnlightenGAN, its local enhancement effect is better, but the
generation details need to be improved. Among the first
eight compared methods, HDRNet could achieve similar
visual results as our proposed method.*en, we zoom in the
enhanced images of HDRNet and our method in Figure 6.
Due to the memory limit and fair comparison, Figures 4(l) to
4(n) show the results of ABSGNet, LLFlow, and our method
in 512∗512 size, and they all work well. Please refer to Table 1
for their quantitative evaluation.

We zoomed in the enhanced results for HDRNet and
ours in Figure 5. *e results show that our proposed method
has good antinoise ability. Our network achieves highly ill-
posed image decomposition based on multilevel and mul-
tiscale feature transfer. It could map illumination features
well while preserving content features. In this way, the image
details could be better maintained and the noise could be
reduced. Compared with several methods for low-light
enhancement, special noise removal modules are introduced
[19, 31, 33, 43, 45]. Our network architecture used full-
resolution features, not downsampling and upsampling
operations to encode and decode features. In this way, it
avoids the introduction of noise in the feature recovery
process.

4.3. Generalizability. To improve the enhanced image
quality, the existing state-of-the-art low-light enhancement
methods build a model with high complexity, which makes
themodel easy to overfit on a specific dataset. To compare the
generalizability of these models, we use themodels trained on
the BDD10K_test datasets to recover untrained Stuttgart city
scenes in cityscapes datasets for quantitative and visual

comparisons. *e right part of Table 1 reports the average
quantitative results over 1100 images. It can be seen that the
generalizability of our proposed method performs better in
most of metrics. Figure 5 is the visual comparison of the
eleven methods, the images enhanced by LIME, RetinexNet,
DeepUPE, and zeroDCE are too saturated, and there are also
too much color distortion. For WESPE, the generated image
is also far from smooth. HDRNet could not enhance
brightness enough. For Enlightengan, there are some artifacts
but its color recovery effect is better. Our method achieves
some generalization advantage compared with these
methods. But we can see that the enhancement results of
ABSGNet and LLFlow show obvious advantages; they could
not only enhance the brightness within the expectation but
also restore the image color. Our method demonstrates
superior performance on real night scenes from Figure 7. Our
method shows the more realistic yellow tint along with
ABSGNet and LLFlow.

5. Conclusion and Future Perspectives

Low-light image enhancement in traffic environment is a
challenging task for intelligent driving tasks. We propose a
data pipeline to generate paired low-light and normal-light
images under extremely low-light, and these paired images
are used for subsequent training of the proposed network.
Our proposed method comprehensively considers detail
preservation, color recovery, and illumination compensa-
tion for traffic scenes. We qualitatively and quantitatively
compare our method with traditional and data-driven low-
light enhancement methods, and the results show that our
method has excellent performance in dealing with uneven
illumination, low contrast, and artifacts. Meanwhile, there
are fewer parameters, it is not easy to overfit, and the

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l) (m)

Figure 7: Enhanced real night scenes. *e result of our method shows less artifacts compared with most of the methods, the lighting is
consistent with realistic yellow hue, and there is no color distortion. Low-light images (a). LIME (b). MSRCR (c). RetinexNet (d). WESPE
(e). DeepUPE (f). HDRNet (g). zeroDCE (h). Enlightengan (i). Ours (j). Ours 512∗ 512 (k). ABSGNet (l). LLFlow (m).

Computational Intelligence and Neuroscience 11



network shows better generalizability on the enhancement
of other generated untrained low-light images and real low-
light images. Our method is able to enhance low-light traffic
scenes more effectively, increasing the overall brightness
while making the final enhancement more natural, avoiding
color distortion and numerous artifacts. Our work does
better preliminary work for the subsequent target recog-
nition and tracking of intelligent driving tasks, as well as
semantic segmentation. *e study shown in this paper can
be extended along this direction. Our future work will also
focus on the real-life deployment ability and further im-
proving inference speed.
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