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Abstract: Gastroesophageal reflux disease (GERD) is a common disease with high prevalence, and
its endoscopic severity can be evaluated using the Los Angeles classification (LA grade). This paper
proposes a deep learning model (i.e., GERD-VGGNet) that employs convolutional neural networks
for automatic classification and interpretation of routine GERD LA grade. The proposed model
employs a data augmentation technique, a two-stage no-freezing fine-tuning policy, and an early
stopping criterion. As a result, the proposed model exhibits high generalizability. A dataset of images
from 464 patients was used for model training and validation. An additional 32 patients served as a
test set to evaluate the accuracy of both the model and our trainees. Experimental results demonstrate
that the best model for the development set exhibited an overall accuracy of 99.2% (grade A–B),
100% (grade C–D), and 100% (normal group) using narrow-band image (NBI) endoscopy. On the test
set, the proposed model resulted in an accuracy of 87.9%, which was significantly higher than the
results of the trainees (75.0% and 65.6%). The proposed GERD-VGGNet model can assist automatic
classification of GERD in conventional and NBI environments and thereby increase the accuracy of
interpretation of the results by inexperienced endoscopists.

Keywords: gastroesophageal reflux disease classification; artificial intelligence; deep learning; con-
ventional endoscopy; narrow-band image

1. Introduction

Gastroesophageal reflux disease (GERD), which is a condition that develops when the
reflux of stomach contents causes symptoms of discomfort and/or associated complica-
tions [1], is among the diseases with the highest prevalence over the past two decades [2,3].
GERD can be classified as either erosive or non-erosive esophagitis and is characterized by
endoscopically visible breaks in the distal esophageal mucosa in the former category and a
lack of such breaks in the latter [4,5]. Although double-contrast barium swallow examina-
tion has been previously used to diagnose GERD [6], esophagogastroduodenoscopy (EGD)
is now the gold standard test for suspected GERD to evaluate the alarming features and/or
the possibility of Barrett’s esophagus in high-risk patients [7,8]. In addition, the popular
and powerful Los Angeles classification (LA grade) system, which was established more
than 20 years ago, is used in endoscopy examinations to classify GERD [9].

Previous studies have focused on inter-observer [10] and intra-observer [11] variations
of the LA grade, and those results found the agreement on LA grade between experienced

Int. J. Environ. Res. Public Health 2021, 18, 2428. https://doi.org/10.3390/ijerph18052428 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-8222-0503
https://orcid.org/0000-0003-2449-9769
https://orcid.org/0000-0001-8868-1610
https://doi.org/10.3390/ijerph18052428
https://doi.org/10.3390/ijerph18052428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18052428
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/5/2428?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 2428 2 of 14

endoscopists to be better than that of less experienced endoscopists [11,12]. Compared to
conventional endoscopy, which is referred to as white light endoscopy, narrow-band image
(NBI), which filters out the red spectrum of light, improves the consistency of esophagitis
grading in both inter-observer and intra-observer settings in the previous study [13].

Due to technological improvements in artificial intelligence (AI), basic screening
surveillance methods, e.g., chest X-rays, are likely to be replaced by AI in the near future.
Deep learning comprises a series of computational methods that allows an algorithm to
program itself by learning from a large number of examples that demonstrate the desired
behavior without the need to regulate the rules. Compared to traditional machine learning
algorithms that must extract image features based on manual experience, deep learning is
a hierarchical feature learning architecture that can automatically capture features from
image data for disease prediction. There are successful examples of AI applications in
the medical field, e.g., radiology image interpretation [14,15], obstructive pulmonary dis-
ease recognition in computed tomography [16], diabetic retinopathy screening [17–19],
esophageal cancer endoscopic diagnosis [20], dysplasia in Barrett’s esophagus, and detec-
tion of early gastric cancers [21]. Therefore, AI can assist or even replace basic interpretation
techniques in the medical field.

To the best of our knowledge, only two studies have investigated GERD prediction us-
ing AI technologies. One study suggested that the combination between the QUestionario
Italiano Diagnostico (QUID) questionnaire and an artificial neural network (ANN)-assisted
algorithm is useful to differentiate GERD patients from healthy individuals but fails to
further discriminate erosive from non-erosive patients [22]. The other study proposed a hi-
erarchical heterogeneous descriptor fusion support vector machine (HHDF-SVM) method
for GERD diagnosis from conventional endoscopic images [23]. However, the AI systems
are only applicable to GERD prediction in binary classification. Therefore, to the best of
our knowledge, our study is the first to develop a deep learning model for computer-aided
diagnosis that focuses on automatic grading of GERD according to LA grades.

We attempted to train AI to identify GERD endoscopic features using the LA classifica-
tion by developing a deep learning model from endoscopic images of the esophago-cardiac
junction (EC-J). We then compared the performance of the endoscopic images under con-
ventional and NBI endoscopy by the proposed AI model. We further evaluated the accuracy
of the AI predictions and the results from trainees in an endoscopy society.

The remainder of this paper is organized as follows: the materials and methods are
introduced in the Section 2. In the Section 3, the results and analysis of why improved
results were obtained using the proposed method are explained in detail. The data results
and results from other studies are discussed in the Section 4. The Section 5 is the conclusion.

2. Materials and Methods

For AI training development, endoscopic pictures of the EG-J were obtained retrospec-
tively from the endoscopic system at Chung Shan Medical University Hospital. The quality
of the endoscopic images and GERD classification were confirmed by two instructors
at the Digestive Endoscopy Society of Taiwan. The images were taken from the records
of 496 people who had received an EGD exam for either symptomatic diseases or as a
health examination between December 2019 and March 2020. All images were deidentified
prior to transfer to the study’s investigators, and all methods were performed according
to relevant local regulations under the surveillance of the Institutional Review Board of
Chung Shan Medical University Hospital.

2.1. Grading

We found that all endoscopic images were adequate for reviewing the entire structure
of the EC-J. Notably, the brightness and contrast of the images were not artificially altered.
The LA grading system was employed as the evaluation scale. An LA grade of A is
described as mucosal breaks no longer than 5 mm that do not extend between the tops of
two mucosal folds, a grade B includes mucosal breaks of more than 5 mm in length that
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do not extend between the tops of two mucosal folds; and a C–D grade includes one (or
more) mucosal break that are continuous between the tops of two or more mucosal folds
but involve equal to or less than 75% of the circumference. The image samples are listed in
Figure 1. We divided all images into three groups, i.e., LA grade A–B, LA grade C–D, and
normal EC-J.
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2.2. Study Design

In this study, 2000 adult cases were collected retrospectively from the endoscopic
system at Chung Shan Medical University Hospital from December 2019 to March 2020.
Here, an image quality evaluation was performed to confirm the intactness of the EC-J
image, identify the image resolution, and identify any foreign body interference. The
endoscopic images of the EC-J from the 496 patients that passed the quality evaluation
were then divided into development and test sets. Images of 464 cases were selected
as the development set; however, not all cases had both conventional and NBI pictures.
Eventually, we obtained 247 GERD A–B images, 155 GERD C–D images, and 62 normal
EC-J images from the conventional images. Initially, we obtained 244 GERD A–B images,
157 GERD C–D, images, and 48 normal EC-J images from the NBI images. Note that the
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original image set was a clinical dataset; thus, data imbalance was evident. In addition, the
GERD images had rotation invariance; therefore, this study first employed a static data
augmentation approach to overcome image skewness in some categories. Specifically, 222
and 233 images were augmented in the NBI and conventional modes by rotating the axis
of the original GERD C–D and normal EC-J images, respectively. Finally, we constructed
a balanced development set for AI model training and internal validation. For external
validation, we reserved 32 images to test the recognition of the trained AI system and
inexperienced trainees. The tests of the young trainees, who were blinded to this study,
were performed using an email system. A detailed flowchart of the study design is shown
in Figure 2.
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2.3. Model Development

In this study, the visual geometry group (VGG) neural network model pretrained
by ImageNet [24] was employed as the base model for image feature extraction. This
technique adjusts the structure of certain pretrained neural network models using transfer
learning [25] to perform other different image classification tasks.
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In consideration of the balance between network capacity and validation accuracy
and by discussing the influence of different regularization and optimization strategies [26],
we designed a deep convolutional neural network (CNN) architecture with high generaliz-
ability. The proposed CNN architecture is called GERD-VGGNet (Figure 3).

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Convolutional neural network classifier architecture of the proposed GERD-VGGNet 
model. Figure 3. Convolutional neural network classifier architecture of the proposed GERD-VGGNet model.



Int. J. Environ. Res. Public Health 2021, 18, 2428 6 of 14

The proposed GERD-VGGNet architecture includes 13 convolutional layers, five max
pooling layers, one global average pooling layer, four dense layers, four batch normalization
layers [27], four activation layers using the rectified linear unit (ReLU) function [26,28],
and the last dense layer with softmax classification.

This model employs the Adam optimizer with a batch size of 64 examples for two-
stage optimization training of the entire network architecture using a non-freezing transfer
learning method [26]. Here, in the first training stage, the learning rate is set to 10−4 for
network training up to 600 epochs. The second fine-tuning stage uses 400 epochs for
network tuning with a smaller learning rate of 10−5.

To enhance the generalizability of the model, dynamic data augmentation is considered
an effective method to train a generally applicable model using a limited amount of training
data [26,29]. To make up for the lack of data, a dynamic data augmentation technique is
included in the training. After applying image translation and flipping processing, the original
images in the training subset of the development set were altered to create more images to
allow the model to continue learning. Specifically, for image translation, we used random
shifts in a maximum range of 20% of the total width or height of the image. For image flipping,
we randomly applied horizontal and vertical flips. Taking NBI endoscopy as an example, we
ended up with a total of ((244 + 229 + 198) × 0.9) × 1000 = 603 × 1000 = 603,000 training
images after 1000 learning epochs. It is worth noting that data augmentation should be not
performed on the validation set and the test set.

The entire training process applied a callback mechanism to store a copy of the network
model parameters each time the accuracy of the validation set was improved. After the
training algorithm was terminated, the best network model parameters were selected using
the early stopping criterion [30] to obtain the model with the lowest validation set error.
Here, we expected that the verification task would support improved generalizability.

2.4. Model Evaluation

To evaluate the advantages and disadvantages of the proposed model, we applied
10-fold cross-validation for verification, where the development set was randomly divided
into 10 subsets by selecting one subset as the validation set and considering the remaining
nine subsets as the training set. This experiment was repeated 10 times until each subset
was used as a validation set. Finally, the average and standard deviation of the classification
results of all 10 experiments were calculated as indicators of the model’s quality.

The GERD images were recombined into three categories of classification problems,
i.e., LA grade A–B, LA grade B–C, and normal. In addition, a confusion matrix was used
as a model performance evaluation tool; the overall rate of accuracy and rate of accuracy
for each category were calculated.

2.5. Classifier Performance Comparison

The statistic Ps [31], which uses the classical hypothesis testing paradigm to compare
the performance of classifier models M1 and M2, is expressed follows:

Ps =
|E1 − E2|√
q(1− q)

( 2
n
) (1)

where, E1 and E2 are the error rates for models M1 and M2, respectively, q is (E1 + E2)/2,
and n is the number of examples in the test set. If the value of Ps ≥ 2, one can be 95%
confident that the difference in the test set performance between models M1 and M2
is significant.

The proposed GERD-VGGNet model was developed using the Python programming
language (version 3.8), the TensorFlow 2.3 framework, the Pandas library (version 1.2),
and the NumPy library (version 1.19). The complete training and testing processes were
performed on an Nvidia GTX 1080 Ti (11 GB RAM) with CUDA version 10.2 and cuDNN
version 7.



Int. J. Environ. Res. Public Health 2021, 18, 2428 7 of 14

3. Results and Analysis

The development and test sets were collected to evaluate the model’s training and
performance. These sets were mutually independent, and there was no identical image
record data. Table 1 lists the patient numbers and image numbers in the development and
test sets.

Table 1. Baseline characteristics of development and test sets.

Characteristics
Patient Number

Development Set N = 464 Test Set N = 32

N % N %

Conventional images
LA grade 1 A–B 247 35.4 12 37.5
LA grade C–D 225 32.3 10 31.3

Normal 225 32.3 10 31.3

NBI 2 images
LA grade A–B 244 36.3 12 37.5
LA grade C–D 229 34.2 10 31.3

Normal 198 29.5 10 31.3

Augmentation
(conventional)
LA grade A–B 0 NA 0 NA
LA grade C–D 70 NA 0 NA

Normal 163 NA 0 NA

Augmentation (NBI)
LA grade A–B 0 NA 0 NA
LA grade C–D 72 NA 0 NA

Normal 150 NA 0 NA
1 Los Angeles classification = LA grade. 2 Narrow-band image = NBI.

3.1. Analysis of Experimental Results

Different pretrained models have different degrees of image feature extraction ability.
In this study, the development set was employed to compare four common pretrained
models, i.e., VGG16 [24], ResNet50 [32], ResNet101 [32], and InceptionV3 [33], into the
proposed classification model. Classification accuracy was evaluated to determine which
model was the most appropriate for use as the pretrained model. The results of the training
using the four models are compared in Figure 4. In addition, the time costs of model
training were evaluated. Here Resnet 101 required the most time, which consumed more
CPU time than inceptionv3, res-net50, and VGG16 (in order of decreasing time cost). The
results confirm that the pretrained VGG16 model demonstrated the best training accuracy,
validation accuracy, and lowest time costs. Thus, in subsequent testing, the pretrained
VGG16 model was used as the image feature extraction model.

Figure 5a shows the model training history in the NBI mode without dynamic data
augmentation. As can be seen, the validation accuracy trained by the model shows worse
performance; however, with dynamic data augmentation, as shown in Figure 5b, the
validation accuracy is better performance, which demonstrates showing that the dynamic
data augmentation technique improved classification performance (Figure 6).
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In fact, the number of original training images was relatively small, i.e., only 603 sam-
ples were used in the no data augmentation case. After 1000 learning epochs, the number of
augmented training images was increased to 603,000 samples using dynamic data augmen-
tation. As shown in Figure 6, the experimental results clearly indicate that implementing
data augmentation in the training process realized better accuracy for both the training and
validation sets than training without data augmentation. The results shown in Figure 6
demonstrate that accuracy was improved from 98.5% to 100% in the training set and 59.5%
to 89.3% in the validation set using data augmentation. When data augmentation was used
for model training, the trained model reduced the overfitting phenomenon effectively. In
addition, data augmentation ensured good model generalizability.

Figure 7 compares the classification performance of the proposed GERD-VGGNet
model and four machine learning models, i.e., the RBF-SVM, Decision Tree, Random Forest,
and Adaboost classifiers. As can be seen, the training and validation accuracies of the
proposed GERD-VGGNet are better than that of the compared classifiers.
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3.2. Model Training and Validation Performance Evaluation

After conducting 10-fold cross-validation, the training, validation, and overall (mean± stan-
dard deviation) accuracy rates were 1.000 ± 0.001, 0.893 ± 0.050, and 0.989 ± 0.005, re-
spectively, in NBI mode. For the conventional mode, the training, validation, and overall
accuracy rates were 1.000 ± 0.001, 0.865 ± 0.042, and 0.986 ± 0.004, respectively. These
results demonstrate that the model training and validation performance of NBI mode was
slightly better than that of the conventional mode. The confusion matrix of the proposed
GERD-VGGNet model for the NBI development set is shown in Table 2. Here, the results
demonstrate that the overall accuracy rate was up to 0.997, and two images were misclas-
sified in each of the A–B and C–D categories. In contrast, with the conventional mode,
the overall accuracy rate was 0.994 (Table 2), and two images were misclassified in the
A–B category, three images were misclassified in the C–D category, and one image was
misclassified in the normal category.
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Table 2. Confusion matrix of proposed GERD-VGGNet on the development set.

Image Type Conventional NBI 2

Real LA 1 Classification A–B C–D Normal A–B C–D Normal

GERD-
VGGNet

A–B 247 4 0 242 0 0
C–D 0 221 0 1 229 0

Normal 0 0 225 1 0 198

Accuracy 100% 98.2% 100% 99.2% 100% 100%
1 Los Angeles classification = LA grade. 2 Narrow-band image = NBI.

3.3. Model Testing Performance Evaluation

Table 3 shows the confusion matrix of the proposed model and the results of the
trainees. In the NBI case, the results demonstrate that the proposed GERD-VGGNet
misclassified two images of GERD A–B grade, one image of GERD C–D grade, and one
image of normal. In addition, the overall accuracy rates were 0.875 for GERD-VGGNet,
0.750 for trainee 1, and 0.656 for trainee 2. The accuracy rates for the A–B category were
0.833 for GERD-VGGNet, 0.750 for trainee 1, and 0.417 for trainee 2. The accuracy rates for
the C–D category were 1.0 for GERD-VGGNet, 0.7 for trainee 1, and 0.7 for trainee 2. The
correct rates for the normal category were 0.8 for GERD-VGGNet, 0.8 for trainee 1, and 0.9
for trainee 2. The overall accuracy under NBI endoscopy appeared to be better in the AI
model than it was for the trainees.

Table 3. Confusion matrices of GERD-VGGNet and trainees on the test set.

Image Type Conventional NBI 2

Real LA 1 Classification A–B C–D Normal A–B C–D Normal

GERD-VGGNet

A–B 11 4 2 10 0 2
C–D 1 6 0 1 10 0

Normal 0 0 8 1 0 8

Accuracy 91.7% 60% 80% 83.3% 100% 80%

Trainee 1

A–B 8 3 2 9 3 2
C–D 2 7 1 1 7 0

Normal 2 0 7 2 0 8

Accuracy 66.7% 70% 70% 75% 70% 80%

Trainee 2

A–B 8 2 1 5 3 1
C–D 3 8 0 5 7 0

Normal 1 0 9 2 0 9

Accuracy 66.7% 80% 90% 41.7% 70% 90%
1 Los Angeles classification = LA grade. 2 Narrow-band image = NBI.

For the conventional mode, the results demonstrate that seven imagers were misclas-
sified by the proposed GERD-VGGNet), 10 images were misclassified by trainee 1, and
seven images were misclassified by trainee 2. This means that the overall accuracy was
0.781 for GERD-VGGNet, 0.688 for trainee 1, and 0.781 for trainee 2. The accuracy rates
of the A–B category were 0.917 for the proposed GERD-VGGNet, 0.667 for trainee 1, and
0.667 for trainee 2. For the C–D category, the accuracy rates were 0.6 for the proposed
GERD-VGGNet, 0.7 for trainee 1, and 0.8 for trainee 2. The correct rates for the normal
category were 0.8 for the proposed GERD-VGGNet, 0.7 for trainee 1, and 0.9 for trainee 2.
The overall accuracy under conventional endoscopy was similar between the AI model
and the trainees (Table 3).

Table 4 compares the Ps values of the four classifier models. Here, we conclude
that, by using the NBI mode, the proposed GERD-VGGNet outperformed trainee 2 at
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95% confidence level, as marked * in Table 4. In addition, the proposed GERD-VGGNet
outperformed trainee 1 under NBI endoscopy; however, statistical significance was not
observed in this case.

Table 4. Model comparisons between the proposed AI model and trainees with NBI and conven-
tional endoscopy.

Model 1 Model 2 Ps

GERD-VGGNet-NBI 1 Trainee1-NBI 1.281
GERD-VGGNet-NBI Trainee 2-NBI 2.068 *

Trainee 1-NBI Trainee 2-NBI 0.823
GERD-VGGNet-

conventional Trainee 1-conventional 0.552

GERD-VGGNet-
conventional Trainee 2-conventional 0.293

Trainee 1-conventional Trainee 2-conventional 0.842

GERD-VGGNet-NBI GERD-VGGNet
-conventional 1.281

Trainee 1-NBI Trainee 1-conventional 0.552
Trainee 2-NBI Trainee 2-conventional 1.112

1 Narrow-band image = NBI.

Table 5 compares the performance of the proposed GERD-VGGNet model and the
existing methods [22,23]. As shown in Table 5, the proposed model outperformed the
method proposed by Huang et al. [23]. In addition, the proposed model demonstrated
similar performance as the method proposed by Pace et al. [22]. Note that the existing meth-
ods [22,23] were only applicable to binary classification of GERD, and one method [22] used
questionnaire data rather than image data. We found that direct use of image data to predict
the GERD grade is more beneficial to clinical diagnosis than collecting questionnaire data.

Table 5. Performance comparison of different AI systems for prediction of gastroesophageal reflux disease.

Task Algorithm Data Used Evaluation
Method Overall Accuracy Sensitivity Specificity

Binary
classification

Machine learning
(ANN) [22]

QUID 1 questionnaire
(577 GERD 2 patients,

94 normal cases)
hold-out 99.2% 99.1% 99.8%

Binary
classification

Machine learning
(HHDF-SVM)

[23]

147 RGB images
(39 GERD patients,
108 normal cases)

10-fold
cross-validation 93.2% 94.9% 92.6%

Three-class
classification

Deep learning +
data

augmentation
(proposed

GERD-VGGNet)

603,068 NBI 3 images
(GERD A–B: GERD
C–D: normal EC-J =

244:229:198)

10-fold cross
validation 98.9% ± 1% 99.8% ± 0.2% 99.7%± 0.2%

1 QUestionario Italiano Diagnostico = QUID. 2 Gastroesophageal reflux disease = GERD. 3 Narrow-band image = NBI.

4. Discussion
4.1. Model Training and Validation Performance

The original image set was a clinical dataset; thus, data imbalance was evident in
the dataset. Therefore, we employed data augmentation to overcome the image skewness
problem in some categories. We then applied a dynamic data augmentation approach for
AI model training. The experimental results clearly demonstrate that data augmentation
is key to training a deep learning neural network. The results shown in Figures 5 and 6
clearly demonstrate that the trained model exhibited serious overfitting problems when
data augmentation technology was not applied. In contrast, with data augmentation, the
established model effectively reduced the overfitting phenomenon and demonstrated good
generalizability.
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In our analysis, the AI interpretation of GERD endoscopic classifications improved
after deep learning, and the validation quality was good, especially after at least 600
learning epochs (Figure 4). The external validation demonstrated that the test accuracy
of the proposed GERD-VGGNet model was 91.7% for the conventional A–B grade, 60%
for the conventional C–D grade, and 80% for the normal group). In addition, the external
validation showed that the test accuracy of the proposed GERD-VGGNet model under NBI
endoscopy was 83.3% for the A–B grade, 100% for the C–D grade, and 80% for the normal
group. The overall prediction accuracy for normal cases increased under NBI endoscopy
compared to conventional endoscopy, and this phenomenon is consistent with previous
studies that investigated manual interpretation [13].

Overall, the experimental results indicate that the proposed method can automatically
diagnose and grade GERD without manual selection of a region of interest, with automatic
feature extraction from image data, and achieve better accuracy compared to state-of-the-
art AI systems for endoscopic GERD classification. To the best of our knowledge, this study
is the first to develop a deep learning model for computer-aided diagnosis and automatic
GERD grading according to LA grades.

4.2. Performance of NBI in AI Prediction

The prediction accuracy under NBI was significantly better with the proposed GERD-
VGGNet model compared to trainee 2. The proposed GERD-VGGNet model under NBI
endoscopy obtained higher accuracy than conventional endoscopy; however, the difference
did not demonstrate statistical significance. These results suggest that interpretation of
the AI model can be influenced by image contrast, which implies that NBI images can be
interpreted with better accuracy. NBI endoscopy enhances the contrast of the mucosal
surface and helps diagnose and grade GERD in manual interpretations [34]. This effect
is similar to previous NBI applications in GERD [34,35] and in the NBI-guided diagnosis
of Barrett’s esophagus in England [36], but it was first confirmed in the proposed AI
prediction model.

4.3. Limitations

This was a pioneer study in endoscopic GERD LA classification comparisons with
trainees; thus, we acknowledge that the number of examined cases was small. In addition,
the comparison of conventional endoscopy and NBI endoscopy further limited our case
numbers because NBI observation is not performed routinely in our daily practice, particu-
larly in case of normal or grade A GERD under initial conventional endoscopy. Although
our test set was small, statistical significance was observed between the proposed GERD-
VGGNet model and trainee 2 under the NBI endoscopy. Thus, due to the limited amount
of data, future large-scale studies are required to further confirm the results presented in
this paper.

5. Conclusions

In this paper, we have proposed the GERD-VGGNet model. The experimental results
have confirmed that the proposed model and training strategies can automatically diagnose
and grade GERD without manual selection of a region of interest and achieves higher
accuracy than state-of-the-art AI systems. Given the outcomes of the interpretation of LA
GERD classification in the AI model, we believe that the proposed GERD-VGGNet model
can assist endoscopic findings for trainees and that NBI endoscopy increases the accuracy
of the interpretation results in AI systems, which has been previously demonstrated in
manual interpretations.

In future research, we will try to integrate different XAI (explainable artificial intelli-
gence) analysis technologies and attention models to improve interpretation capabilities of
the proposed AI model.
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