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Abstract Cell-type specification through differential genome regulation is a hallmark of complex

multicellularity. However, it remains unclear how this process evolved during the transition from

unicellular to multicellular organisms. To address this question, we investigated transcriptional

dynamics in the ichthyosporean Creolimax fragrantissima, a relative of animals that undergoes

coenocytic development. We find that Creolimax utilizes dynamic regulation of alternative splicing,

long inter-genic non-coding RNAs and co-regulated gene modules associated with animal

multicellularity in a cell-type specific manner. Moreover, our study suggests that the different cell

types of the three closest animal relatives (ichthyosporeans, filastereans and choanoflagellates) are

the product of lineage-specific innovations. Additionally, a proteomic survey of the secretome

reveals adaptations to a fungal-like lifestyle. In summary, the diversity of cell types among protistan

relatives of animals and their complex genome regulation demonstrates that the last unicellular

ancestor of animals was already capable of elaborate specification of cell types.

DOI: 10.7554/eLife.08904.001

Introduction
The process by which multicellular animals develop from a unicellular zygote is believed to mirror

the first evolutionary steps that led to the origins of animal multicellularity from a unicellular species

(King, 2004). As the development of complex multicellularity is dependent upon differential

genome regulation, the evolutionary onset of animal multicellularity must likewise have involved the

appearance of differential genome regulatory capacities leading to distinct cell types. Many of the

genes involved in the control of animal development and cell type identity, including signaling path-

ways and transcription factors (TFs), pre-date animal origins (Sebe-Pedros et al., 2011; Sebé-

Pedrós et al., 2012; Suga et al., 2012; Richter and King, 2013). As these genes are known to be

present in the genomes of the protistan relatives of animals, the unicellular holozoans (King et al.,

2008; Suga et al., 2013; Fairclough et al., 2013), the evolution of complex multicellularity, with

cell type-specific transcriptional programs, must have involved changes in gene regulation. There-

fore, a key step in understanding the evolution of multicellularity will be to infer the regulatory com-

plexity of the last common ancestor of all living animals.

To address ancestral regulatory complexity, it will be necessary to elucidate the molecular control

of cell differentiation through development in the unicellular relatives of animals. Three distinct

developmental modes that lead to transient simple multicellular forms have been described in the

protistan relatives of animals (Figure 1) (Sebé-Pedrós et al., 2013; Suga and Ruiz-Trillo, 2013;
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Dayel et al., 2011). Colonial clonal development has been shown to involve differential regulation

of a few multicellularity-related genes in the choanoflagellate Salpingoeca rosetta (Fairclough et al.,

2013). On the other hand, the filasterean amoeba Capsaspora owczarzaki exhibits up-regulation of

adhesion-related genes in its aggregative stage (Sebé-Pedrós et al., 2013). To date, however, there

has been no molecular characterization of coenocytic development, a third and completely distinct

mode of development observed in the ichthyosporeans. Ichthyosporeans are the earliest branching

holozoan lineage (Torruella et al., 2012; Paps et al., 2013; Torruella et al., 2015), and coenocytic

development is a shared feature within the group (Glockling et al., 2013; Mendoza et al., 2002).

This developmental mode comprises a growth stage in which nuclei divide synchronously within a

common cytoplasm before undergoing cellularization, followed by release of motile ameboid zoo-

spores (Suga and Ruiz-Trillo, 2013; Marshall et al., 2008). These stages have distinct physiological

and structural characteristics, the amoeboid stage is mono-nucleated, non-diving, and motile

(Figure 1B), while the multinucleate stage has a cell wall, a big central vacuole, and does not move

(Figure 1C). Despite being quite distinct from canonic animal development, coenocytic development

and multinucleate cell types are found in some animal lineages, such as in Drosophila syncytial blas-

toderm (Suga and Ruiz-Trillo, 2013). Thus, in order to infer ancestral regulatory complexity by com-

parison of premetazoan developmental modes, it will be essential to obtain a detailed molecular

characterization of ichthyosporean coenocytic development.

eLife digest All living animals are descended from a single-celled ancestor, and understanding

how these ancestors became the first multicellular animals remains a major challenge in the field of

evolutionary biology. An early breakthrough towards this goal was the realization that, even though

they’re mostly single-celled organisms, the closest living relatives of animals share most of the basic

gene toolkit that animals use to support their multicellular lifestyles.

This shared toolkit also includes the genes that allow each specialized cell type in an animal (for

example, a skin cell or liver cell) to express the subset of genes that it needs to fulfil its specific role.

Discovering how the single-celled relatives of animals regulate these and other “multicellularity-

related” genes during their life cycles is the next crucial step towards understanding how animals

became multicellular.

Creolimax fragrantissima is a single-celled relative of animals. One stage in this organism’s life

cycle involves its nucleus (which contains its genetic material) replicating multiple times without the

cell itself dividing. After this stage of development, new cells are formed, each receiving with a

single nucleus, and released to live freely in the environment. Characterizing how C. fragrantissima

regulates which genes are expressed during these two very different stages of development could

shed new light on how multicellular animals evolved to regulate their genes in specific cell types.

However, little is known about these processes in C. fragrantissima.

Now, de Mendoza et al. have both sequenced C. fragrantissima’s genome and analysed which

genes are expressed during the stages of its life cycle. This analysis reveals that this organism

regulates its gene expression in several ways that are more commonly associated with gene

regulation in multicellular animals. Furthermore, when compared to two other living relatives of

animals that have brief multicellular stages in their life cycles, de Mendoza et al. found that the three

organisms expressed similar genes during these similar life cycle stages.

Furthermore, like fungi, C. fragrantissima digests its food externally and then absorbs the

nutrients. Using a range of techniques, de Mendoza et al. identified the proteins involved in these

processes and discovered that many had evolved independently from their counterparts in fungi.

Furthermore, in some cases, the genes for these proteins had actually been acquired from bacteria

via a process called lateral gene transfer.

Together these findings suggest that it was likely that the last single-celled ancestor of

multicellular animals already had the biological ability to create different cell types. Understanding if

the cell types found in single-celled species resemble cell types from simple animals, such as

sponges and comb jellies, at a molecular level is the next step towards determining what the

ancestor of living animals looked like.

DOI: 10.7554/eLife.08904.002
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Here we describe the transcriptome dynamics of Creolimax fragrantissima, which has been pro-

posed as a model system for ichthyosporeans (Suga and Ruiz-Trillo, 2013; Marshall et al., 2008).

We show that Creolimax employs complex gene regulation including alternative splicing and the use

of long intergenic non-coding RNAs (lincRNA). Through analysis of the Creolimax secretome in silico

and by proteomics, we also provide evidence of secondary adaptation to a specialized osmotrophic

feeding mode through lateral gene transfer (LGT) and gene duplication. Taken together, our results

suggest that the last common unicellular ancestor of animals was already capable of implementing

elaborate, cell type-specific differentiation programs.

Results

Assembly and annotation of a reference genome
As a reference genome for mapping RNA sequencing (RNA-seq) data, we assembled the 45 Mb

draft genome of Creolimax from a combination of 454 reads and mate-paired end Illumina reads

corresponding to a 75� coverage. The draft assembly comprises 82 scaffolds, with an N50 of 1.5

Mb (see Materials and methods). The genome is twice as large as that of Capsaspora but in line with

sequenced choanoflagellate genomes. We annotated 8695 genes, 92% of which are supported by

transcriptional evidence. A diverse array of annotation pipelines rendered functional information on

78% of the predicted protein coding genes (see Material and methods). Among those genes, many

belong to gene families involved in multicellularity and development in animals, such as TFs and sig-

naling pathways, as previously reported in targeted gene family analysis (Suga et al., 2014;

de Mendoza et al., 2013; de Mendoza et al., 2014).

Figure 1. Evolution of developmental and feeding modes across holozoans. (A) The cladogram represents known phylogenetic relationships among

holozoans (Torruella et al., 2012; Torruella et al., 2015). Each lineage is represented by the species proposed as a model system with a schema of its

developmental mode on the right. The evolution of specialized osmotrophy is shown as a blue triangle in the cladogram, while the putative ancestral

phagotrophic feeding mode of opisthokonta is shown as an orange circle (Cavalier-Smith, 2012). Divergence times of the lineages shown in this figure

range between 700 Mya (considered the latest estimates of animal origins) and 1200 Mya (earliest estimates of Opisthokont origins) (Sharpe* et al.,

2015). Micrographs depicting the (B) amoeboid stage and (C) multinucleate stage of Creolimax fragrantissima are shown. Scale bars = 10 mm.

Choanoflagellate adapted from Mark Dayel (CC BY-SA 3.0) www.dayel.com/blog/2010/10/07/ choanoflagellate-illustration.

DOI: 10.7554/eLife.08904.003

The following figure supplement is available for figure 1:

Figure supplement 1. Creolimax synchronized stages.

DOI: 10.7554/eLife.08904.004
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Transcriptional dynamics reveal differences between Creolimax
multinucleate stage and animal development
We isolated two different stages of the Creolimax lifecycle by taking advantage of the cell size differ-

ence between the amoeboid stage and the multinucleate growth stages (Marshall et al., 2008).

After filtering with a 5 mm mesh, we obtained a highly enriched culture of amoebae. The amoebae

encysted and grew for at least 24 hr (Figure 1—figure supplement 1), and then multinucleate coe-

nocytic cysts matured asynchronously, releasing new amoeboid zoospores with different cell sizes to

form a heterogeneous culture. Given the drastic morphological difference between the non-motile

mitotic multinucleate stage pre-dominant in the 24 hr culture and the motile non-dividing amoeba

isolated after filtration, we decided to investigate their transcriptomic differences through RNA-seq

(see Material and methods).

The amoeboid and the multinucleate stage showed distinct transcriptional profiles, consistent

among replicates (Figure 2A), from which we identified 956 genes as significantly differentially

expressed. Functional enrichment analyses of Gene Ontologies (GOs) and PFAM domains (p<0.01,

Fisher’s exact test) revealed that the multinucleate stage shows up-regulation of genes associated

with cell growth, including ribosome, translation, DNA replication, amino acid and RNA metabolism

activities (Figure 2, Figure 2—figure supplement 1). Conversely, in the amoeboid stage, we found

enrichment for signaling activities (GTPases and kinases) and an up-regulation of the actin cytoskele-

ton, most likely involved in the motile behavior of the amoeba (see raw GOs in Figure 2—source

data 1). Strikingly, single-celled amoebas also showed up-regulation of extracellular matrix (ECM)

adhesion, including the up-regulation of the integrin pathway components.

Besides signaling and adhesion activities, regulation through TFs is also considered to be a defin-

ing characteristic of animal development (de Mendoza et al., 2013; Levine and Tjian, 2003). To

address whether that is the case for the multinucleate stage in Creolimax, we compared the stage-

specific expression level of all the TFs encoded in the genome. Contrary to our expectation, the

comparison revealed that TF expression is higher in the amoeboid stage (p<0.05, Wilcoxon signed

rank test, Figure 2—figure supplement 2A). Among the 127 putative TFs found in the genome,

only 5 are significantly up-regulated in the multinucleate stage. These five genes have DNA binding

domains with ambiguous TF activity and include genes containing Myb_DNA-binding and cold-shock

domains (Figure 2—figure supplement 2B). In the amoeboid stage, we found significant up-regula-

tion of 11 TFs, including T-box, Runx and hemophagocytic lymphohistiocytosis TFs, and TF classes

that have important roles in animal development (Sebe-Pedros et al., 2011). Altogether, these data

indicate that, unlike in animal development, the multinucleate stage of Creolimax is not character-

ized by a tight regulation of adhesive, signaling, and TF activities.

Differential alternative splicing down-regulates specific pathways in
Creolimax
Alternative splicing is a widespread mechanism for post-transcriptional gene regulation in animals

and many other eukaryotes. To evaluate the extent to which alternative splicing expands transcrip-

tome complexity in the intron-rich genome of Creolimax (6.5 introns per gene), we undertook a com-

prehensive analysis of intron retention and exon skipping (ES) events, and quantified their inclusion

levels using previously developed pipelines (Braunschweig et al., 2014; Irimia et al., 2014) (see

Material and methods). We observed 3927 intron-retention events that affected 2172 genes. In con-

trast, we found only 211 genes affected by ES. Despite having a two-fold higher intron density and

longer introns compared to Capsaspora, both holozoan species show comparable alternative splic-

ing profiles that are highly dominated by intron retention (Sebé-Pedrós et al., 2013). This provides

further support for the hypothesis that ES-dominated alternative splicing is a unique feature of ani-

mal transcriptomes (Sebé-Pedrós et al., 2013; Mcguire et al., 2008; Irimia and Roy, 2014).

Next, we evaluated the extent to which intron retention is differentially regulated across Creoli-

max stages. We found 865 introns with differential retention between stages (differential percent

intron retention (DPIR) >15), the majority of which were more retained in the amoeboid stage

(Figure 3A). Reverse transcription-polymerase chain reaction (RT-PCR) assays confirmed differential

retention for all 10 tested introns (Figure 3D and Figure 3—figure supplement 2). Despite these

marked differences in intron retention between stages, the size distribution of retained introns was

similar in both stages, and comparable to that of constitutively spliced introns (PIR<2% in all
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samples) (Figure 3—figure supplement 1A,B). GO enrichment analysis of genes with amoeboid-

specific intron retention revealed enrichment in spindle pole formation and other mitosis-related

activities (Figure 3C), supporting an active role of IR in down-regulating these functions in this stage.

Indeed, consistent with recent reports in vertebrates (Braunschweig et al., 2014), genes with amoe-

boid-specific intron retention showed significantly lower steady-state mRNA levels compared to the

multinucleate stage (Figure 3—figure supplement 1C; p<0.0001, Wilcoxon signed rank test; the

converse was true for genes with multinucleate-specific intron retention). Therefore, intron retention

is a conserved mechanism for reducing transcript levels in pathway-specific genes from unicellular

holozoans to vertebrates.

In the case of ES, we found 63 exons with differential inclusion levels across stages (Figure 3B).

RT-PCR assays were used to validate the differential inclusion for all 12 tested cases (Figure 3E and

Figure 3—figure supplement 2). Only a minority of these exons (Torruella et al., 2015) keep the

reading frame upon skipping, and only two of these overlapped with functional Pfam domains, sug-

gesting that, similar to intron retention, ES in Creolimax predominantly contributed to functionally

down-regulating specific genes. GO enrichment analysis revealed that differentially spliced exons

Figure 2. Differential gene expression in Creolimax. (A) Diagram of the amoeboid and multinucleate stages, and heatmap showing the significantly

differentially expressed genes across biological replicates in the pair-wise stage comparison. (B) Gene set enrichment analysis for the two stages.

Orange represents enrichment in the amoeboid stage and blue represents enrichment in the multinucleate stage, color intensity depicts level of

significance (p value). Node size represents the total number of genes in each GO, and edge width represents the total number of genes shared

between each enriched GO category. Functionally related GOs are manually circled in gray shade according to functional and genic redundancy

established by network connectivity. Complete list of GOs and inclusive groupings are found in Figure 2—source data 1. GOs, Gene Ontologies.

DOI: 10.7554/eLife.08904.005

The following source data and figure supplements are available for figure 2:

Source data 1. GOs enrichments and groupings from Figure 2B.

DOI: 10.7554/eLife.08904.006

Figure supplement 1. Pfam domain set enrichments in differentially expressed genes.

DOI: 10.7554/eLife.08904.007

Figure supplement 2. Differential TFome expression.

DOI: 10.7554/eLife.08904.008
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belong to genes involved in various biological processes, including channel activity and histone mod-

ifications (Figure 3F).

Figure 3. Regulated alternative splicing modes in Creolimax. (A) Heatmap showing PIR inclusion levels of differentially retained introns. (B) Heatmap

showing the PSI levels of differentially skipped exons. (C) GO enrichment activities of the genes showing differential IR. Bar length indicates the

significance of the enrichment, orange indicates those with higher inclusion levels in the amoeboid stage and blue those with higher inclusion levels in

the multinucleate stage. (D–E) RT-PCR validations of selected IR and ES events. The values correspond to relative intensity of the alternative isoform

(retained intron or skipped exon) bands in the RT-PCR and the proportions observed for the inclusion values in the RNA-seq. (F) GOs enrichment of

genes with differential ES, in blue those with higher exon inclusion levels in the multinucleate stage. ES, exon skipping; GO, Gene Ontology; IR, intron

retention; PIR, percent intron retention; PSI, percent spliced in; RT-PCR, reverse transcription-polymerase chain reaction; RNA-seq, RNA sequencing.

DOI: 10.7554/eLife.08904.009

The following figure supplements are available for figure 3:

Figure supplement 1. Intron size and transcriptional levels of differentially retained introns.

DOI: 10.7554/eLife.08904.010

Figure supplement 2. Validations of intron retention and ES events.

DOI: 10.7554/eLife.08904.011
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A population of lincRNAs with regulated expression in Creolimax
Another layer of transcriptional complexity is provided by long non-coding RNAs, which are increas-

ingly recognized as important players in animal development and cell type-specific genome regula-

tion (Ulitsky and Bartel, 2013; Morris and Mattick, 2014; Sauvageau et al., 2013). To characterize

the repertoire of long non-coding RNAs in Creolimax, we assembled a de novo transcriptome from

the RNA-seq data. We filtered out transcripts shorter than 200 bp and mapped the rest to the

genome. We then applied a pipeline to identify putative non-coding RNAs, including searches for

coding potential, homology, untranslated region (UTR) mis-annotation, and low expression (see

Material and methods). Restricting our search to transcripts that did not overlap with protein-coding

genes, known as long-intergenic RNAs (lincRNAs ), we identified 692 putative lincRNA loci in Creoli-

max. In comparison to protein-coding transcripts, lincRNAs in Creolimax were shorter in length, har-

bored fewer exons, had longer exons, and had a lower GC content (Figure 4—figure supplement

1). Moreover, overall transcription levels of lincRNAs were significantly lower than those of protein-

coding genes (p<0.01, Wilcoxon rank sum test). Interestingly, all those characteristics have been

reported for animal lincRNAs (Hezroni et al., 2015; Pauli et al., 2012; Gaiti et al., 2015).

To infer possible functions of Creolimax lincRNAs, we first looked at the functional annotations of

the closest neighboring protein-coding genes, as animal lincRNAs are enriched near developmental

genes and TFs (Ulitsky and Bartel, 2013). In Creolimax, the only significantly enriched GOs of

lincRNA closest neighboring genes were metabolic activities (p<0.01). However, when we analyzed

the vicinity of all the TFs, we found that 23.6% had at least one neighboring lincRNA, a significant

enrichment compared to the rest of the genome (14.5%, p=0.0007, Fisher’s exact test). Next, we

searched for putative homologs of the lincRNAs in the transcriptomes of closely related species and

other unicellular holozoans, but we did not retrieve any positive hits. This pattern of rapid evolution-

ary sequence turnover of lincRNAs has also been described for animals (Gaiti et al., 2015;

Kapusta and Feschotte, 2014), where homology detection based on sequence similarity is

restricted to short evolutionary distances.

In animals, expression of lincRNAs is generally restricted to specific tissues and organs

(Ulitsky and Bartel, 2013; Necsulea and Kaessmann, 2014). In Creolimax we detected 51 lincRNA

loci that were differentially expressed between the amoeba and the multinucleate stage (Figure 4).

Overall, only 7% of the total detected lincRNAs are differentially expressed, compared to 10% of

coding genes (p=0.0059, Fisher’s exact test). Thus, in stark contrast to animals, the lincRNAs in Creo-

limax appear to be less cell type-specific than coding genes.

To test whether the transcription of lincRNAs is linked to their upstream genes, we first subdi-

vided lincRNAs into two categories: head-to-head, where the lincRNA and the adjacent protein-cod-

ing gene have opposite orientation and may share the same promoter, and head-to-tail, where the

lincRNA promoter is downstream of the adjacent protein-coding gene (Figure 4—figure supple-

ment 2). Head-to-head orientation was significantly over-represented in the genome (485/692, 70%

of the total vs the 50% expected by chance, p<3.6e-14, c2 test). Furthermore, pairs in this head-to-

head orientation showed a higher proportion of positively correlated expression levels, although this

was similar to pairs of protein-coding genes in the head-to-tail orientation. Moreover, 80% of differ-

entially regulated lincRNAs are in head-to-tail orientation or display uncoupled transcriptional pro-

files in relation to their neighbor genes (p<0.05 Pearson’s correlation coefficient). Although the

possibility that bidirectional promoters are the main source of lincRNAs in Creolimax cannot be

excluded, differential regulation of lincRNA is largely independent of their neighboring protein-cod-

ing genes.

Finally, we analyzed the impact of alternative splicing in lincRNAs. Although the majority of lincR-

NAs have a single exon, 132 (19.1%) loci have two or more exons. Among those multi-exon tran-

scripts, we detected 183 intron-retention events (Figure 4E). Of these, eight events differed

between samples (PIR>15), suggesting differential regulation of lincRNAs also at the level of splic-

ing. Therefore, both transcriptional regulation and alternative splicing may play a role in the active

regulation of lincRNAs in Creolimax.

Evidence of species-specific cell type evolution in Holozoa
Direct comparison of steady-state transcript abundance is useful to reveal cross-species molecular

homologies in animals, as homologous tissues in different species show more similarity in the
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transcriptional profiles than do non-homologous tissues in a single species (Barbosa-Morais et al.,

2012; Chan et al., 2009; Brawand et al., 2011). Using a similar rationale, we sought to compare

the different cell stages of unicellular holozoans. From normalized transcriptional levels of a set of

2177 one-to-one protein-coding orthologs between Salpingoeca, Capsaspora, and Creolimax, we

calculated pairwise Spearman correlation distances, which were then used to perform hierarchical

clustering and neighbor-joining tree reconstructions (Figure 5). Both approaches showed consistent

trees with species-specific clustering for the different stages. The signal obtained from those 2177

genes was enough to cluster samples consistent with their whole transcriptome patterns (except one

sample from Salpingoeca).

Direct cell type comparisons between species revealed that Creolimax multinucleate stage and

Capsaspora cystic stage are the most dissimilar among all samples, whereas the amoeboid stage in

Creolimax has a stronger correlation with the filopodial and aggregative stages of Capsaspora

(Figure 5A). In order to characterize gene sets responsible for those cross-species similarities, we

used a principal component analysis (PCA) to distinguish between the species-specific factors and

the underlying biological similarities. Species-specific variability was captured by PC1 (47.96%); how-

ever, when we plotted PC2 and PC3 we obtained different groupings of cell types independent of

their species of origin (Figure 5C). PC2 grouped the multinucleate stages of Creolimax with the

aggregative and the filopodial stages of Capsaspora. This grouping was explained by top-loading

genes involved in DNA replication and spliceosomal activities (Figure 5D), a pattern consistent with

the down-regulation of mitotic activity and cell growth in the Capsaspora cystic stage (Sebé-

Pedrós et al., 2013). On the other hand, PC3 grouped the amoeboid stage of Creolimax and the

filopodial and aggregative stages of Capsaspora. PC3 was loaded with genes involved in the integrin

Figure 4. Transcriptional and post-transcriptional regulation of lincRNAs in Creolimax. (A) Heatmap showing transcriptional levels of significantly

differentially expressed lincRNAs across biological replicates of amoeboid and multinucleate stages. (B) Example of genomic region where two lincRNA

loci are found in tail-to-tail orientation surrounded by two protein-coding genes. (C) RT-PCR validations of the lincRNA loci. (D) Barplot depicting the

average gene expression of those lincRNA in each stage. (E) Alternative splicing isoforms of lincRNAs showing various degrees of IR. IR, intron

retention; lincRNA, long intergenic non-coding RNAs; RT-PCR, reverse transcription-polymerase chain reaction.

DOI: 10.7554/eLife.08904.012

The following figure supplements are available for figure 4:

Figure supplement 1. Genomic architecture of lincRNAs compared to protein-coding genes.

DOI: 10.7554/eLife.08904.013

Figure supplement 2. Gene orientation and transcriptional co-regulation of neighboring genes.

DOI: 10.7554/eLife.08904.014
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adhesome and amoeboid actin-based motility and signaling activities (Figure 5D). Therefore,

despite the vast phylogenetic divergence among holozoan species, some functional patterns can be

recovered through direct comparison of transcriptional profiles.

We used the same approach to compare RNA-seq data from a wide range of human cell types

and tissues with those of Creolimax (Figure 6A). Certain human cell types showed differential grades

of similarity in the expression profiles with each of the Creolimax stages. The human cell types with a

higher positive correlation with the multinucleate stage were those with high proliferation rates,

including embryonic stem cells, induced pluripotent stem cells and transformed cell lines (293T,

HeLA, K562) (Figure 6B). Similar patterns were obtained using PCA on the normalized steady-state

transcriptional levels from both species. PC1 explained most of the variability due to species-specific

transcriptomic profiles, whereas PC2 distinguished between highly proliferative cell types and the

Figure 5. Holozoan cross-species comparison of transcriptional profiles. (A) Symmetrical heatmap of the pair-wise Spearman correlation coefficients for

the gene expression profiles of each cell stage. For each sample, log2(cRPKM+1) expression levels were obtained for 2177 one-to-one orthologs in the

three species analyzed (see Materials and methods). Dashed-line squares highlight the direct comparisons for 1) Cfra multinucleate stage replicates

against Cowc cystic stage replicates and 2) Cfra amoeboid stage replicates against Cowc aggregate and filopodial stage replicates. (B) Neighbor-

joining tree of the species cell stages based on the aforementioned Spearman correlation distances matrix. Filled circles represent >95% bootstrap

replicate nodal support. (C) The cell types plotted according to the values of the principal components 2 and 3 from a PCA of a dataset of 3030 1-to-1

orthologs between Capsaspora and Creolimax. (D) The significant GO enrichments for the top positive loading genes (>0.03) of the principal

component 2 and 3. Cfra, Creolimax fragrantissima; Cowc, Capsaspora owczarzaki; GO, Gene Ontology; Sros, Salpingoeca rosetta; PCA, principal

component analysis.

DOI: 10.7554/eLife.08904.015
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rest in both species (Figure 6C). Consistent with this observation, GO enrichment analysis of the top

125 genes that most contributed to PC2 showed highly significant enrichment for genes involved in

genome replication and proliferation (Figure 6D). These results suggest that a signal from the evolu-

tionarily conserved machinery for cell proliferation in eukaryotes (Harashima et al., 2013;

Cross et al., 2011) can be detected from direct expression pattern comparisons between the multi-

nucleate stage of Creolimax and highly proliferative human cell types.

Conserved ancient co-regulated gene modules: the Integrin adhesome
To obtain more specific insights into the evolution of co-regulated gene programs across holozoans,

we investigated several gene modules with key roles in animal multicellularity. Despite gene co-regu-

lation providing indirect evidence for shared functionality in a given species (Gerstein et al., 2014;

Stuart, 2003), comparative analysis of transcriptional co-regulated gene modules in different species

may offer additional insights into the functional evolution of the animal multicellular toolkit.

First, we focused on the integrin adhesome, which is crucial for ECM adhesion in animals. The

core components of the integrin adhesome have been identified in Capsaspora (Sebe-Pedros et al.,

2010). Interestingly, these components are significantly up-regulated in the aggregative stage

(Sebé-Pedrós et al., 2013). In contrast, most integrin adhesome components have been lost in

choanoflagellates (Sebe-Pedros et al., 2010). In the case of Creolimax, we found a nearly complete

repertoire of the integrin adhesome components (Figure 7D), and most of them are significantly up-

regulated in the amoeboid stage (Figure 7A). To test whether the integrin adhesome components

constitute a co-regulated gene module in the three unicellular holozoans (ichthyosporeans, filaster-

eans, and choanoflagellates), we calculated the transcriptional Pearson correlation coefficients

between all of the genes encoding the integrin adhesome for each species (Figure 7A–C). In the

case of Creolimax, we observed a remarkable co-regulation among all of the components. The only

exception is the Src tyrosine kinase (Figure 7A), suggesting that tyrosine kinase signaling is not

Figure 6. Comparison of human and Creolimax cell types and tissues. (A) Symmetrical heatmap of the pair-wise Spearman correlation coefficients for

the gene expression profiles of each cell type or tissue. For each sample log2(FPKM+1) expression levels were obtained for 2272 one-to-one orthologs

between Creolimax and human (see Materials and methods). (B) The human cell types sorted by the difference of Spearman correlation between the

amoeboid and the multinucleate cell stages. Highlighted in gray are those that displayed the major differences (>0.05). (C) The cell types plotted

according to values of the principal components 1 and 2 from a PCA of the same transcriptional dataset of 2272 orthologs. The dots in gray are the

human cell lines highlighted in the previous section. (D) The significant GO enrichments for the top positive loading genes of the principal component

2 (>0.04). Sampled human cell types described in Figure 6—source data 1. GO, Gene Ontology; PCA, principal component analysis.

DOI: 10.7554/eLife.08904.016

The following source data is available for figure 6:

Source data 1. Human RNA-seq datasets used in this analysis.

DOI: 10.7554/eLife.08904.017
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connected to the integrin signaling pathway in Creolimax, consistent with the absence of a focal

adhesion kinase in the ichthyosporean lineage (Suga et al., 2014). In the filasterean Capsaspora, we

identified a more complex pattern of co-regulation, grouped in two submodules that are associated

with specific paralogs of both alpha and beta integrins (Figure 7B). This complex pattern of co-regu-

lation could be affected by the number of Capsaspora’s samples, higher than those analysed in Cre-

olimax. In contrast, we did not detect any co-regulation among the few conserved integrin

adhesome components in the choanoflagellate Salpingoeca (Figure 7C), suggesting that gene loss

in the choanoflagellate lineage was accompanied by dismantling of this ancient co-regulatory

module.

In animals, integrins mediate cell-adhesion through binding to ECM proteins, such as laminins

and fibronectins (Cromar et al., 2014). In Capsaspora, laminin-containing genes with predicted

secretion signals are up-regulated in the aggregative stage (Sebé-Pedrós et al., 2013). However,

despite showing a co-regulated integrin adhesome, we did not find any laminin-containing genes in

Creolimax (Figure 7E). The only ECM-related domains that we found in the genome were fibronec-

tins, but those are fused to metabolic domains unrelated to the ECM and none had a secretion

Figure 7. Co-regulation of the integrin adhesome in holozoans. Heatmaps depicting expression levels of integrin adhesome orthologs (red–green) and

their pair-wise Pearson correlation coefficients (white–blue) obtained from genome-wide FPKM transcriptional levels in the ichthyosporean Creolimax

(A), the filasterean Capsaspora (B), and the choanoflagellate Salpingoeca (C). (D) Diagram of integrin adhesome components, those in green are found

in Creolimax and those in white are absent. In gray, a tyrosine kinase receptor with extracellular EGF domains encoded Creolimax genome that could

be interacting with an ECM component. (E) Repertoire of animal ECM domains in the three unicellular holozoan genomes; green = presence, white =

absence. (F) Pfam domain architectures of fibronectin-domain containing genes in Creolimax. ECM, extracellular matrix; FPKM, fragments per kilobase

of exon per million fragments mapped.

DOI: 10.7554/eLife.08904.018

The following figure supplements are available for figure 7:

Figure supplement 1. Co-regulation of the filopodial molecular toolkit genes in holozoans.

DOI: 10.7554/eLife.08904.019

Figure supplement 2. Co-regulation of the pre- and post- synaptic genes in holozoans.

DOI: 10.7554/eLife.08904.020
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signal peptide (Figure 7F). Therefore, it seems unlikely that integrins are involved in adhesion to an

endogenous animal-like ECM in Creolimax.

Next, we investigated the filopodial machinery (Sebé-Pedrós et al., 2013). We observed strong

positive co-regulation of a core set of components in all unicellular holozoans (Figure 7—figure sup-

plement 1), consistent with the use of an ancestral cellular machinery for filopodial formation. In

stark contrast to the situation for cell replication machinery, we did not observe a single co-regu-

lated module in any unicellular species for genes involved in animal neuronal pre-synaptic and post-

synaptic processes, including most pairs of genes that are known to directly interact in animals (with

the exception of syntaxin, synaptobrevin, and synaptogryin, which are involved in secretory vesicle

formation (Burkhardt et al., 2011); Figure 7—figure supplement 2). In fact, a lack of interaction

has been shown for some of the core proteins involved in the post-synaptic scaffold in Salpingoeca

(Burkhardt et al., 2014). Thus, our results suggest that some molecular complexes directly involved

in cell morphology and behavior already formed co-regulated gene modules in unicellular holozoans,

whereas other complexes involved in unique animal cell types were assembled later, despite having

conserved orthologs.

The secretome of Creolimax shows convergent adaptations to a
specialized osmotrophic lifestyle
Ichthyosporeans are an interesting case of convergent evolution of fungal-like traits; in fact, they

were once thought to be fungi based on their lifestyle and morphology (Glockling et al., 2013;

Mendoza et al., 2002). For instance, both groups have a cell wall, similar parasitic lifestyles, and a

specialized osmotrophic feeding mode, unlike any of the other holozoan lineages (Figure 1). Special-

ized osmotrophs are characterized by their highly adapted secretomes that are key to the external

digestion of complex compounds. Therefore, we analyzed the secretome of Creolimax to investigate

the convergent evolution of this specialized osmotrophic feeding mode in the ichthyosporeans. In

addition, secretome analysis should provide further insights into the production and modification of

ECM and signaling ligands.

To characterize the secretome, we performed a combination of in vivo and in silico approaches.

First, using high-throughput proteomics of an in vivo secretome sample in culture conditions, we

identified 91 proteins. Next, we applied an in silico approach to predict 453 proteins that are likely

to be secreted (see Material and methods). Interestingly, only 48 proteins were common to both

datasets, indicating that proteins without a canonical signal peptide or with additional transmem-

brane domains could also be found in the in vivo secretome (Figure 8A). Among the 43 non-canoni-

cally secreted proteins, we detected some with transmembrane domains that could be the product

of shedding, as proposed for other species (Meijer et al., 2014). For instance, we found peptides

corresponding to the extracellular region of both alpha and beta integrins. Although shedding of

integrins has been observed during the inflammatory response in animals (Gomez et al., 2012), the

functional implications of integrin shedding in Creolimax remain elusive.

Both secretome datasets were highly enriched in peptidase and proteolytic activities (Figure 8B),

whereas only the in silico dataset showed further enrichments in other catabolic functions such as

lipase and hydrolase activities. Analysis of Pfam-domain enrichment consistently revealed proteolytic

and peptidase domains in both datasets (Figure 8C). In contrast, an in-depth search for candidate

ECM-related proteins and diffusible ligands based on Pfam domains (using known animal domains

as EGF, DSL, or laminins) retrieved no positive hits. Thus, the proteolytic activity of the Creolimax

secretome does not seem to be related to modifying the endogenous ECM, but possibly to the

adaptation to a specialized osmotrophic feeding mode.

Osmotrophic lifestyles are characterized by the external digestion of complex polymers (Tal-

bot, 2013). Therefore, the enrichment in proteolytic activities observed in the secretome strongly

suggests that proteins and peptides are the main food source of Creolimax, at least under culture

conditions. Such external digestion requires a coupled mechanism for nutrient uptake (Talbot, 2013).

Consistent with this requirement, we found 38 genes with four distinct Pfam domains (PF00324,

PF01490, PF03169 and PF00854) that are predicted to be involved in the amino acid and oligopep-

tide transporter activity.

The most-abundant gene family in Creolimax secretome was the trypsins (15 proteins in the in

vivo proteomic dataset out of the 31 genes found in the genome). Trypsins are usually found in mul-

tiple copies in animal genomes, and they have important roles in the digestive system as serine
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proteases and also as ECM remodellers. To further complement these observations, we profiled a

wide range of eukaryotes and found independent expansions of trypsins in other osmotrophic line-

ages (Figure 9A). Among these, two fungal species (Coemansia reversa and Conidiolobus corona-

tus) and an oomycete (Saprolegnia parasitica) are also animal-dwelling parasites, thus sharing a

similar lifestyle to the known ichthyosporeans. Phylogenetic analyses of Creolimax trypsins

(Figure 9B) revealed that most are the product of rapid lineage-specific gene duplications, a com-

mon source of molecular adaptation (Kondrashov, 2012). Moreover, we found very distinct patterns

of transcript and protein abundance (measured by the number of unique peptides identified) across

the trypsin paralogs (Figure 9B), suggesting a rapid process of functional diversification. Thus, tryp-

sins seem to be a recurrently used effector gene family in osmotrophic eukaryotes, and have evolved

rapidly in Creolimax.

Recurrent prokaryotic LGT events shaped the Creolimax secretome
LGT is a rare but recurrent mechanism for the acquisition of osmotrophy-related genes in both fungi

and oomycetes (Talbot, 2013). We therefore investigated LGT in Creolimax by building automatic

taxon-rich phylogenies. Manual inspection of these trees yielded a list of 163 genes that confidently

Figure 8. Functional enrichments of Creolimax secretome. (A) Venn diagram showing the number of genes identified in the Creolimax secretome

through an in silico approach (see Material and methods) and an in vivo proteomics approach. A circle diagram describes the features of genes only

identified in the in vivo approach, lacking a signalP or having TM domains . (B) GO categories and (C) PFAM domains enriched in the secretome; in

dark blue are those enriched in the in vivo dataset; in pale blue are those enriched in the in silico dataset; in gray are the total amount of PFAM-domain

containing genes in the genome. GO, Gene Ontology.

DOI: 10.7554/eLife.08904.021

The following source data is available for figure 8:

Source data 1. In vivo proteomics of Creolimax secretome.

DOI: 10.7554/eLife.08904.022
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branched within bacterial clades, supporting bacterial origins. Of these, 35 (21.5%) were found only

in Creolimax among all eukaryotes sampled, 50 (30.7%) were shared with the close relative Sphaero-

forma arctica, and 71 (43.6%) were shared with other ichthyosporeans (Figure 10—figure supple-

ment 2). Although most LGT genes (102 out of 163) were intron-less, the vast majority (143, 87.7%)

showed transcriptional support from our polyA-selected RNA-seq, minimizing the possibility of bac-

terial contaminations. LGT from bacteria accounts for 1.8% of the total proteome, which is slightly

higher than in other eukaryotic genomes (Alsmark et al., 2013). Importantly, we found 6 genes

acquired by LGT in the in vivo secretome and 18 more in the in silico secretome (Figure 10—figure

supplement 2). Therefore, similar to other eukaryotic lineages (Richards et al., 2011;

Richards et al., 2011), ichthyosporeans have enriched their osmotrophy-related gene complement

through prokaryotic LGT.

Among the six genes of prokaryotic origin that we found in the in vivo secretome, three belonged

to the spore coat homology (CotH) family (PF08757). CotH proteins were first described as being

fundamental for spore coat formation in the bacteria Bacillus subtilis (Naclerio et al., 1996), but

they have recently been characterized as critical factors for host invasion in the fungus Rhizopus

Figure 9. Trypsin evolution. (A) Barplot showing the total number of Trypsin proteins (PF00089) found in the genomes of diverse eukaryotes. Branches

are color coded according to the taxonomy shown in the legend. (B) Maximum-likelihood phylogenetic tree based on the amino acid sequence of the

Trypsin domain from Creolimax fragrantissima and Sphaeroforma arctica. Expression levels obtained from genome-wide FPKM calculation are shown.

Number of unique peptides obtained from the in vivo secretome proteomic dataset is also shown. In red are those genes that do not present a signal

peptide according to SignalP. FPKM, fragments per kilobase of exon per million fragments mapped.

DOI: 10.7554/eLife.08904.023
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oryzae (Gebremariam et al., 2014). Our phylogenetic reconstruction of CotH family evolution

revealed that the presence of CotH homologs in R. oryzae and other fungi (only belonging to the

class mucorales) originated from an LGT event that was independent of those found in ichthyospor-

eans (Figure 10 and Figure 10—figure supplement 1). Interestingly, both lineages have expanded

their CotH family members after LGT acquisition. Moreover, CotH genes were also found in other

eukaryotic and archaeal lineages, suggesting a complex history of interdomain LGT similar to that

recently described for other gene families (Funkhouser-Jones et al., 2014; Chou et al., 2014).

Active gene duplication and domain shuffling characterized the evolutionary history of CotH in the

ichthyosporea, where we could observe variable transcriptional levels and peptides among distinct

paralogs, as well as the acquisition of an N-terminal LTD domain (PF00932) (Figure 10B). Active

transcription and secretion of Creolimax CotH genes in axenic culture conditions underscore their

putative role in host invasion and highlight the importance of LGT in effector gene acquisition across

different osmotrophic lineages.

Discussion
In this study, we showed how different layers of genome regulation shape the coenocytic develop-

ment and lifecycle of the ichthyosporean Creolimax, a unicellular relative of animals. These regula-

tory layers include complex mechanisms that also play a role in animal development and cellular

differentiation. In Creolimax, differential genome regulation is not only limited to the transcriptional

control of protein coding genes, but also includes cell-stage specific alternative splicing and lincRNA

Figure 10. CotH evolution. (A) Maximum-likelihood phylogenetic tree of the CotH domain (PF08757). Nodal support is shown in key branches (100

maximum likelihood replicates bootstrap values and Bayesian posterior probabilities). Color code indicates taxon distribution in each clade as depicted

in the legend; for a detailed tree, see Figure 10—figure supplement 1. (B) Detail of the phylogenetic tree depicting ichthyosporean CotH sequences,

covering Creolimax, Sphaeroforma arctica, and Amoebidium parasiticum. Expression levels obtained from genome-wide FPKM calculation and the

number of unique peptides obtained from the in vivo secretome proteomic dataset are shown. Domain configurations obtained from a PfamScan

analysis. Gene identifiers in red are those that do not present a signal peptide according to SignalP. FPKM, fragments per kilobase of exon per million

fragments mapped.

DOI: 10.7554/eLife.08904.024

The following figure supplements are available for figure 10:

Figure supplement 1. CotH extended phylogeny.

DOI: 10.7554/eLife.08904.025

Figure supplement 2. Features of prokaryotic LGT.

DOI: 10.7554/eLife.08904.026
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expression. Despite some global similarities to animal regulation, we observed significant differences

in how these regulatory layers are deployed in Creolimax and animals. For example, the population

of lincRNAs that we described in Creolimax does not show a major enrichment near developmental

genes nor a highly specific cell type-dependent expression, both hallmarks of metazoan lincRNAs

(Ulitsky and Bartel, 2013; Gaiti et al., 2015). The differential processing of the intron-rich genes

during alternative splicing in Creolimax is dominated by IR and not ES. Although this is similar to

most other eukaryotic groups including sponges (Fernandez-Valverde et al., 2015), it contrasts

with alternative splicing in more complex animals, which predominantly involves ES (Sebé-

Pedrós et al., 2013; Mcguire et al., 2008). Therefore, while alternative splicing in Creolimax is likely

to contribute to the regulation of gene expression, it does not provide a greater expansion of the

proteome by generating multiple protein isoforms from individual genes as in animals (Irimia and

Roy, 2014).

Intriguingly, while this complex genome regulation in Creolimax often involves similar gene tool-

kits to those employed in animal development, it is the unicellular amoeboid stage and not the mul-

tinucleate stage that is defined by multicellularity-related activities. This is the case for most

differentially expressed TFs, signaling pathways, and adhesion molecules, which are characteristically

associated with animal development and multicellularity. In fact, our results indicate that the tran-

scriptional profile of the multinucleate stage of Creolimax is more similar to those of highly prolifer-

ative cell types in humans, despite the obvious differences in cell morphology and cell division

strategy (cell divison vs. coenocytic nuclear division). Thus, we consider that the multinucleate stage

of Creolimax can be regarded as a highly specialized proliferative cell type. This cell type can be

considered to function in a manner analogous to stem cells, with the undifferentiated nuclei dividing

in the multinucleate cell before differentiation into amoeboid cells closes the lifecycle. This would

suggest that separation of functions as crucial as self-renewal and differentiation can occur in a uni-

cellular context in a temporal manner, which pre-dates the exclusive ability of multicellular organisms

to engulf both functionally distinct cell types within a single entity (Arendt, 2008; Hemmrich et al.,

2012). Drastic differences in cell structure, morphology, function, and molecular signatures found

between stages in protistan relatives of animals indicate that cell stages can be considered cell types

according to established definition (57 and see author’s response section for an in-depth discussion

on this topic).

In addition to assessing the impact of genome regulation in Creolimax, our multiple genome-

wide approaches reveal other novel aspects of ichthyosporean biology. For example, we show that

Creolimax has undergone secondary adaptation to a specialized osmotrophic feeding mode, shap-

ing its secretome and genome through both gene duplication and acquisition of bacterial genes by

LGT. These observations highlight the uniqueness of the different holozoan lineages, each represent-

ing derived specializations from an ancestral state. However, these specializations of unicellular holo-

zoans are achieved through a largely common genetic toolkit shared with animals, including several

signaling pathways, TFs and adhesion molecules (Richter and King, 2013; Suga et al., 2013). More-

over, many of the components of this toolkit are assembled in co-regulated gene modules preserved

since the common ancestor of all holozoans, suggesting that recurrent recruitment of full co-regu-

lated gene programs underlies the evolution of lineage-specific cell types and developmental modes

(Newman, 2012). Additional complementary insights on the evolution of developmental modes will

be provided by studying the immediate out-group of the Holozoa and Holomycota (fungi + Discicris-

toidea) (Torruella et al., 2015). The Holomycota show a wide variety of developmental modes, rang-

ing from aggregative fruiting body formation to several modes of coenocytic development

(Stajich et al., 2009; Brown et al., 2009).

We have shown that the diversity of cellular behaviors and morphologies observed in holozoan

lifecycles is likely to have evolved from lineage-specific specializations. A widely accepted hypothesis

states that the origin of animals involved a clonally dividing organism, similar to choanoflagellate col-

onies, that subsequently evolved specialized cellular differentiation (King, 2004; Nielsen, 2008). A

competing hypothesis, however, suggests that pre-existing cell types and their associated molecular

mechanisms were integrated in the spatiotemporal developmental dynamics of the last common

ancestor of all animals (Mikhailov et al., 2009). Our data suggests a third mixed model, in which the

capacity to build differentiated cell types and transient multicellular entities was not a rare feature in

pre-metazoan evolution. Nevertheless, the rise of animal multicellularity is not directly homologous

to any ancestral developmental mode, and it may be seen as another derived specialization involving
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the integration of ancestral molecular modules and their associated cell behaviors into one single

multicellular entity. Consequently, our results reveal the importance of obtaining complementary

data from multiple lineages before significant insights can be gained into the organism that took the

first steps on the road towards complex animal multicellularity.

Materials and methods

Cell culture and nucleic acid extraction
Creolimax fragrantissima cells (available from the Canadian Centre for the Culture of Microorganisms

under accession numbers CCCM 101 – 107) were grown axenically in liquid medium (marine broth

Difco 2216) at 12ºC. To obtain biological replicates for the RNA extraction, three independent cell

lines were isolated from distinct colonies grown on a marine agar plate (marine agar Difco 2216).

Those initial isolates were then grown in liquid medium (marine broth Difco 2216). After one pass,

new 1/10 subcultures (10 ml) were initiated and grown statically for 5 days in 25 ml flasks. When the

cells became confluent on the fifth day, they were scratched and passed into 50 ml flasks with an

additional 25 ml of fresh medium. These 50 ml flasks were then grown for 48 hr with gentle agitation

(150 rpm), allowing the mature coenocytes to form clumps. Then, the 50 ml flasks were filtered using

a 5.0 mm Isopore membrane filter (Millipore ) and collected into a 50 ml Falcon tube . As only amoe-

bas pass through the 5 mm filter step, filtered cells were then immediately pelleted by centrifugation

at 1500 rcf for 3 min and harvested to get the RNA from the amoeboid stage. For the multinucleate-

stage RNA, filtered cells were re-cultured in a new 50 ml flask, grown for 24 hr and harvested by cen-

trifugation at 3000 rcf for 3 min. For all cell lines and stages, the RNA was extracted using Trizol

reagent (Life Technologies, Carlsbad, CA) with a further step of DNAseI (Roche) to avoid gDNA con-

tamination, and then purified using RNeasy columns (Qiagen).

Genome sequencing, assembly and annotation
We generated 1.7 million 454 single reads and 34 million Illumina 5kb mate-pair reads (both after

trimming, totaling 3.4G bp). Those were combined and preassembled with a Newbler 2.7 assembler

(Roche). The mitochondrial DNA sequence was removed before the assembly. Using the pairing

information of the Illumina mate-pair reads, the 846 pre-scaffolds were broken at unreliable positions

found by REAPR 1 (Hunt et al., 2013) and re-assembled by SSPACE 2 (Boetzer et al., 2011). Some

of the N-stretches within the scaffolds were filled by Gapfiller (Boetzer and Pirovano, 2012). This

array of improvement tools assembled the pre-scaffolds into 196 sequence pieces. We then used

the pairing information of the mate-pair reads for further assembly improvement, breaking and re-

connecting the scaffolds. Finally, we obtained an assembly with 82 final scaffolds, of which 29 were

short (<1000 bp) fragments.

To predict the protein-coding genes from the whole genome sequence, we used Augustus 2.7

(Stanke et al., 2008) combined with RNA-seq data (see details on this data in ‘RNA-seq and differ-

ential expression analysis’ section). We followed the protocol described here: http://bioinf.uni-greifs-

wald.de/bioinf/wiki/pmwiki.php?n=IncorporatingRNAseq.Tophat. Briefly, we pooled all the RNA-seq

samples and mapped them to the genome using Tophat2 (Kim et al., 2013), using the resulting

introns to train Augustus ab initio predictions in an iterative process. The resulting predictions were

manually screened in a genome browser and compared to the spliced-aligned reads resulting from

Tophat2. We further validated our predicted annotation, comparing the data to a set of genes that

we had previously cloned by RT-PCR and rapid amplification of cDNA ends PCR, including highly

expressed genes (e.g. Histone 2B, Tubulin beta) and lowly expressed genes (e.g. Myc, Grainyhead,

p53, Src Tyrosine Kinase).

Moreover, we used the mapped transcriptome to perform a genome-guided Trinity assembly

(Haas et al., 2013). Those transcripts were then used to annotate the UTRs of the protein-coding

genes resulting from the Augustus annotation step. The elongation of the UTRs was done using

PASA (Haas, 2003). The transcripts that did not overlap with Augustus annotations were then

searched against the NCBI non-redundant protein database using tBlastX. Those that retrieved sig-

nificant hits (e-value <10e-3) and had clear open reading frames were then manually annotated as

protein-coding transcripts. The resulting annotation retrieved 8695 genes, which are available here:

10.6084/m9.figshare.1403592.
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To functionally annotate the genes, we used Blast2GO (Gotz et al., 2008), searching the protein

sequences against the NCBI non-redundant database using a BLASTP threshold of 10e-6 and the

default InterProScan settings. We also performed a PfamScan search with PFAM A database version

26 using the default gathering threshold parameters (Punta et al., 2012). As a result, 6814 genes

were functionally annotated.

RNA-seq and differential expression analysis
100-base paired-end libraries were constructed using the TruSeq Stranded mRNA Sample Prep kit

(Illumina, San Diego, CA, USA). The libraries were sequenced in two lanes of an Illumina HiSeq2000

instrument at the CRG genomics unit (Barcelona, Spain). We obtained 417 million reads that were

then mapped to the genome using Tophat2 (Kim et al., 2013), resulting in an average mapping of

82%. Raw gene counts and FPKM (fragments per kilobase of exon per million fragments mapped)

values were obtained using Cufflinks2 (Trapnell et al., 2013). Differential expression analysis was

performed by comparing the three replicates from each stage using DEseq (Anders and Huber,

2010) (threshold 5e-5), EdgeR (Robinson et al., 2010) (threshold 5e-5), Cuffdiff2 (Trapnell et al.,

2013) (threshold 5e-5), and NOIseq (Tarazona et al., 2011) (threshold 0.8). Only the genes that

were identified as differentially expressed with at least three methods were taken, resulting in 956

genes. Data can be downloaded from GEO GSE68616.

GO enrichments were obtained using the Topology-Weighted method in Ontologizer

(Bauer et al., 2008) taking a P value lower than 0.01 as a threshold (see full list in Figure 2—source

data 1). The resulting Gene Ontology (GO) enrichments were then visualized as a network in Cyto-

scape using the Enrichment map plug-in (Merico et al., 2010). Enrichment map plug-in connects

GO terms according to gene annotation; therefore connected GOs belong to the same set of genes

with multiple associated GOs. We used network connectivity between enriched GO terms as a crite-

rion to collapse GO redundancy, shading general GO groups in more inclusive categories as seen in

Figure 2. Inclusive categories complementary relied on the functional similarity between GOs based

on GO definitions (e.g. distinct unconnected aminoacid metabolic pathways are collapsed in ‘Amino-

acid metabolism’ inclusive category). Additionally, PFAM domain enrichments were calculated using

a Fisher’s exact test implemented in R, taking a threshold of 0.01. PFAM enrichments were also visu-

alized as a network using the Enrichment map plug-in, where connected nodes reflect domain pres-

ence in the same genes.

Genome-wide analysis of alternative splicing
Identification and quantification of ES (including events with single or multiple cassette exons and

microexons of 3–15 nucleotides [nt]) and IR were performed as previously described

(Braunschweig et al., 2014; Irimia et al., 2014). For ES, we used two complementary approaches.

First, we implemented a ‘splice site-based module’, which utilizes the joining of all hypothetically

possible exon–exon junction (EEJ) forward combinations from annotated and de novo splice sites (as

described in [Han et al., 2013]). To identify splice sites de novo, for each annotated splice site

donor/acceptor, we scanned two downstream/upstream introns for potential splice-site acceptors/

donors that would constitute a novel EEJ. Next, we mapped our RNA-seq data to this library of all

potential EEJs, and considered ‘novel splice sites’ those supported by at least five reads mapped to

multiple positions of the EEJ. Then, we implemented our recently described ‘microexon module’

(Irimia et al., 2014), which also includes de novo searching of pairs of donor and acceptor splice

sites in intronic sequences to detect novel, very short (3–15 nt) microexons. For IR, we used our

recently described pipeline (Braunschweig et al., 2014), which employs a comprehensive set of ref-

erence sequences comprising exon–intron junctions (EIJs), intron sequences (if introns were longer

than 200 nt, only a mid-intron segment of 200 nt was used), and EEJs formed by intron removal.

Introns were classified as retained when there was a balanced accumulation of reads mapping to 5´

and 3´ EIJs and the intron body sequence, relative to the EEJ sequence. The level of retention was

calculated based on PIR, which is the percentage of transcripts from a given gene in which the intron

sequence is present.

In all modules, quantification of alternative sequence inclusion in the transcripts is derived only

from junction reads (either EEJs or EIJs). To increase the fraction of mapping junction reads within

each RNA-Seq sample, each read was first split into 50 nt read groups using a sliding window of 25
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nt. Therefore, each 100 nt (replicates a and b) and 125 nt (replicate c) read produces 3 and 4 over-

lapping reads, respectively. In addition, both read mates from the paired-end sequencing were

pooled. These 50 nt split reads were then mapped to the genome using Bowtie (Langmead et al.,

2009) with –m 1 –v 2 parameters (unique mapping with no more than two mismatches). Reads that

mapped to the genome were discarded for ES quantifications. For quantification, only one random

count per read group (i.e. all sub-reads coming from the same original read) was considered to avoid

multiple counting of the same original sequenced molecule. In addition, for all modules and alterna-

tive splicing types, final read counts were corrected for the number mappable positions in each EEJ

or EIJ following the formula:

Corrected EEJcount ¼EEJcount �
Maximummappability

EEJmappability

where EEJcount is the number of read groups mapped to the EEJ, Maximummappability the maximum

number of mapping positions that any EEJ can have for reads of length 50 nt (i.e. 35 positions), and

EEJmappability the number of positions that can be mapped uniquely to the EEJ using specific bowtie

parameters (–m 1 –v 2), and thus EEJmappability � Maximummappability (see [Barbosa-Morais et al.,

2012; Han et al., 2013] for details).

The different modules to detect and quantify AS have been integrated into vast-tools (https://

github.com/vastgroup/vast-tools; species key “Cfr”). Associated files can be downloaded at http://

vastdb.crg.eu/libs/vastdb.cfr.31.1.15.tar.gz.

We used a threshold of �20 PIR in at least one stage for positive intron retention events. As a

threshold for ES events we used skipping rates below 90% (measured using the metric Percent

Spliced In, PSI) in at least one stage. In both cases, the minimum coverage allowed was 20 reads per

splice junction. To evaluate differential alternative splicing, we used differences over 15 PSI or PIR

between stages, allowing a standard deviation of <10 between replicates.

lincRNA annotation
From the genome-guided Trinity assembly (see Genome sequencing, assembly and annotation) we

further analyzed the transcripts that did not retrieve any significant TBLASTX hit against the NCBI

non-redundant database (e-value > e-3) and were more than 200 bp long. To avoid lineage-specific

protein-coding genes, we performed an additional TBLASTX search against six frame translations of

the de novo assembled transcriptomes of several closely related species (S. arctica, Ichthyophonus

hoferi, Pirum gemmata, Amoebidium parasiticum, Abeoforma whisleri, Corallochytrium limacispo-

rum, C. owczarzaki, S. rosetta, Monosiga brevicollis) and the protein coding genes of Creolimax, fil-

tering out the positive hits (e-value < e-3). From the remaining transcripts, we performed a

RfamScan_2 search against RFAM 11.0 (Burge et al., 2013) to annotate all known ncRNAs (e.g. U6,

18S, 28S). Additionally, we used the coding potential calculator (Kong et al., 2007) to discard all

those transcripts with putative coding potential (coding potential score < �0.5). With the final list of

transcripts, we selected those that did not overlap with gene+UTRs annotations or were close to

uncertain assembly regions (multi-N stretches). For all those transcripts that were in a head-to-tail

orientation regarding protein-coding genes, we manually inspected those that had an intergenic dis-

tance shorter than 1000 bp to the nearby gene to filter out misannotated UTRs. Additionally, we dis-

carded transcripts overlapping repetitive regions of the genome. Finally, we collapsed all the

remaining transcripts into single loci and quantified their expression level using Cuffcompare and

Cufflinks (Trapnell et al., 2013). From the resulting 2661 loci, to avoid noisy transcription, we filtered

out all those that did not have at least 5 FPKM in at least one sample, and over 1 FPKM in any other

sample.

To detect putative homology, lincRNAs were searched using BLASTN against the same list of

closely related species described above. Differential expression analysis of the lincRNAs was done

using the same parameters as for the coding genes (see RNA-seq and differential expression analy-

sis). Consequently, we only accepted lincRNA loci as differentially expressed when they were identi-

fied by at least 3 out of 4 methods. We validated 6 out of 6 lincRNA using RT-PCR (see below).

Finally, we used the same pipeline to detetect alternative splicing events in coding genes, using a

minimum coverage of 10 reads for each splice junction.
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Reverse transcription-polymerase chain reaction
To validate lincRNAs and alternative splicing events, RNA samples obtained as described in Cell cul-

ture, gDNA and RNA extraction were reverse transcribed to cDNA using SMARTer cDNA kit (Clone-

Tech). For both stages, the same amount of initial purified RNA was used (1 mg). Pairs of primers

with melting temperatures close to 60ºC were designed to capture the lincRNA and the alternative

splicing events, and the PCR was performed using Expand high-fidelity Taq polymerase (Roche). Val-

idations of IR and ES events were preformed using primer pairs spanning the neighboring constitu-

tive exons. Quantification of alternative sequence inclusion levels from gel band intensity was done

using ImageJ software (Schneider et al., 2012).

Comparative transcriptomic cross-species clustering
For the cross-species comparison, we first identified one-to-one orthologs in the proteomes of Creo-

limax, Capsaspora, and Salpingoeca using the Multiparanoid pipeline (Alexeyenko et al., 2006). We

trimmed all RNA-seq datasets into the same length (50 bp) and only mapped the left reads when

paired-end data was available. We then obtained cRPKM (corrected by mappability) values only for

the subset of orthologs, transformed them to log2(cRPKM +1) and further normalized the expression

data using quantile normalization. Hierarchical clustering (‘complete’ method) of samples was

obtained by comparing pairwise distances based on Spearman correlation coefficients in R. To

obtain the neighbor-joining trees and bootstrap supports across the samples, we used the ‘ape’

package in R (Paradis et al., 2004). For the Creolimax/human comparison we followed the same

methodology, using the data detailed in Figure 6—source data 1. The PCA of the expression data

was performed as implemented in R ‘prcomp’ function. GO enrichments were obtained as described

in RNA-seq and differential expression analysis section.

Secretome proteomics and in silico prediction
To obtain the secretome sample for proteomics, we cultured Creolimax cells in liquid medium

(marine broth Difco 2216) at 12ºC for 5 days and allowed the cells to attach to the bottom of the

flask. The medium was then replaced with artificial seawater to avoid excessive protein contamina-

tion, and the culture was incubated for another 24 hr. Then, we collected the medium by gently tilt-

ing the flask to avoid collecting attached cells. The medium was immediately centrifuged at 10,000

rcf for 2 min, and the supernatant was collected and filtered twice through a 0.2 mm filter. The fil-

tered medium was concentrated by ultrafiltration using a molecular weight cut-off membrane (Viva-

spin 6, 3000 MW; Sartorius, Gottingen, Germany) and quantified using the BCA Protein

Quantification Kit (Thermo Fisher Scientific, San Jose, CA). The resulting protein extract was

digested with 5 mg of trypsin (cat # V5113, Promega ) (overnight, 37ºC). Finally, 2 mg of the sample

was analyzed using an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific) coupled to an

EasyLC (Thermo Fisher Scientific (Proxeon), Odense, Denmark) at the CRG proteomics unit (Barce-

lona, Spain). All data were acquired with Xcalibur software v2.2. Proteome Discoverer software suite

(v1.4, Thermo Fisher Scientific) and the Mascot search engine (v2.5, Matrix Science (Perkins et al.,

1999)) were used for peptide identification and quantification. The data were searched against a

database containing Creolimax proteome, a list of common contaminants, and all the corresponding

decoy entries. Resulting data files were filtered for false discovery rate (FDR)<0.05. Finally, we dis-

carded the contaminants and all the proteins that were identified by less than two unique peptides,

resulting in a list of 91 proteins.

To obtain the list of in silico secretome components, we performed an initial search step using

SignalP 3.0 (Dyrløv Bendtsen et al., 2004) (D-cutoff = 0.450) to identify all the proteins with a

canonical signal peptide. We then performed a search step with TMHMM v.2.0 (Krogh et al., 2001)

to discard all those proteins with a transmembrane domain downstream of the first 60 amino acids.

We also filtered out proteins tagged to the mitochondria using TargetP v.1.1 (Emanuelsson et al.,

2007), and proteins with endoplasmic reticulum retention signal with c-terminal motifs KDEL or HDE

[LF] and GPI-anchored proteins using PredGPI (Pierleoni et al., 2008). The resulting list comprised

453 proteins. PFAM and GO enrichment analyses were performed as described in RNA-seq and dif-

ferential expression analysis.
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Ortholog identification, phylogeny and LGT detection
In order to obtain orthology assignments for the various gene families analyzed in this study, we

used a phylogeny-based pipeline. First, we used PFAM domain information to obtain all the mem-

bers of a gene family across a database comprising 108 eukaryotic proteomes. Then, proteins were

aligned using MAFFT software with L-INS-i parameters (Katoh and Standley, 2013). The resulting

alignments were automatically trimmed using trimAl v1.2 (Capella-Gutierrez et al., 2009) (-gt 0.7)

and phylogenies were obtained using RAxML v8.0 (Stamatakis, 2014) (LG model, gamma distribu-

tion, 100 bootstrap supports) and Phylobayes 3 (Lartillot et al., 2009) (LG model, ran until two

chains converged). Tree visualization and annotation was performed using iTol v2 (Letunic and

Bork, 2011).

This pipeline was slightly modified to detect LGT cases. Instead of using PFAM, we gathered

close orthologs of all the proteins in the genome by performing a BLASTP search against the NCBI

non-redundant database plus the 108 eukaryotic genomes. Only those proteins that retrieved lower

e-values for bacterial/archaeal hits were selected for downstream analysis. Those proteins were then

separately searched using BLASTP against all bacteria in nr, all Archaea in nr, and the 108 eukaryotic

proteomes. We selected those sequences that had at least 25 hits with an e-value under e-10, select-

ing a maximum of 50 proteins for bacteria, and 25 for archaea and eukaryotes. We got rid of redun-

dancy using CD-HIT (Li and Godzik, 2006) by filtering for 0.95 identity and then performed

alignment, trimming, and phylogeny as described in the general pipeline above. The resulting trees

were analyzed manually, taking LGT positives when Creolimax (and other ichthyosporean) sequences

branched within bacterial clades with nodal bootstrap supports over 70%. Finally, we manually

checked that the resulting LGT genes were found in distinct parts of the genome and not in genomic

singletons. For those LGT candidates without introns and not found in any other ichthyosporean

(therefore, Creolimax specific) we further checked if they were located in scaffolds with other genes

containing introns. To further discard bacterial contaminations, the neighboring genes to LGT candi-

dates were blasted against NCBI nr to verify their eukaryotic origins. When the immediate neighbor

did not retrieve any hit, the following gene was searched.
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