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Abstract

A common problem in genomics is to test for associations between two or more genomic

features, typically represented as intervals interspersed across the genome. Existing meth-

odologies can test for significant pairwise associations between two genomic intervals; how-

ever, they cannot test for associations involving multiple sets of intervals. This limits our

ability to uncover more complex, yet biologically important associations between multiple

sets of genomic features. We introduce GINOM (Genomic INterval Overlap Model), a new

method that enables testing of significant associations between multiple genomic features.

We demonstrate GINOM’s ability to identify higher-order associations with both simulated

and real data. In particular, we used GINOM to explore L1 retrotransposable element inser-

tion bias in lung cancer and found a significant pairwise association between L1 insertions

and heterochromatic marks. Unlike other methods, GINOM also detected an association

between L1 insertions and gene bodies marked by a facultative heterochromatic mark,

which could explain the observed bias for L1 insertions towards cancer-associated genes.

Author summary

The age of genomics has made a large number of datasets available for the wider scientific

community. Many of these datasets come in the form of genomics tracks, represented as

features associated with a collections of genomic intervals along chromosomes. A com-

mon talk in genomics is to identify putative associations between these features that can

lead to new insights about genome organization and function. For example, activity of

certain classes of genes might be influenced by the presence of specific combinations of

chromatin modifications and binding of transcription factors at their promoters or

enhancers. Here, we present a novel methodology, named GINOM (Genomic INterval

Overlap Model), to test for the significance of these associations. We apply it to the prob-

lem of detecting biases of the locations along chromosomes where mobile genetic
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elements tend to insert themselves, and identify a potential preference for L1 elements

towards gene bodies marked by a facultative heterochromatic mark.

Introduction

A fundamental question in genome biology is whether two or more genomic features, for

example gene promoters/bodies and histone modifications, are associated. These associations

can shed light on fundamental regulatory mechanisms, such as the epigenetic regulation of

gene expression. Genomic features can be represented as intervals, and thus the question

becomes whether one set of genomic intervals, the query set, overlaps another set or sets of

intervals, the reference set(s), significantly more or less than what would be expected by

chance. The results of this test can guide the exploration of the underlying nature of the associ-

ation; for example, if a histone modification is found to be associated with promoters of tran-

scribed genes, one might hypothesize that the modification is required for active transcription.

Thus, there is a widespread need for an accurate and computationally-efficient statistical test

of genomic interval overlap.

Several statistical strategies to examine genomic interval overlap have been developed

[1–5]. One study tested for associations of transposable element insertions in the genome with

various epigenomic features [1]. Using transposon mutagenesis, [1] created a database of

transposable element insertions across the mouse genome and subsequently tested for inser-

tion site bias with respect to a randomized control set. Another method, MULTOVL, performs

a Monte Carlo shuffling of the intervals uniformly throughout the genome to obtain an empir-

ical null distribution of overlap lengths in order to test for significance [2]. The Binary Interval

Search (BITS) algorithm also uses a Monte Carlo simulation by uniformly shuffling the query

intervals many times and obtaining an empirical null distribution of the intersection count [3].

The Genome Association Test (GAT) presented in [4] is another statistical test of overlap

length based on Monte Carlo simulations as in [2], but the randomization procedure used to

form this empirical null distribution can be designed to exclude regions such as gaps and

repetitive sequences. Another method called GenometriCorr is an R package that includes

four different statistical tests for spatial relationships of genomic intervals [5]. Two of the tests

(the absolute distance test and the Jaccard test) rely on Monte Carlo randomization to formu-

late and test against an empirical null, and the other two tests (the relative distance test and the

projection test) use analytical null distributions. The main limitation of these statistical strate-

gies is their pairwise treatment of genomic intervals, where a query interval set is compared to

one or multiple reference sets individually. These methods cannot reveal any higher order

associations, i.e. any association between a query interval set and multiple reference sets

simultaneously.

We present a robust statistical framework called GINOM (Genomic INterval Overlap

Model) that adds more flexibility to the study of associations between genomic intervals. We

impose a parameterized probability model, i.e. a density function, on query interval location

with respect to any number of reference sets. Given query interval data, the model parameters

are estimated through likelihood-based methods. Each parameter value is interpreted as the

amount of departure from the null distribution on the genomic loci and is indicative of the

query interval overlap with a certain reference set or group of reference sets. To specifically

address the inclusion of higher order associations, we design the model in GINOM to consider

any possible combination of reference sets rather than restricting to only pairwise compari-

sons. Since it is possible that some combinations will have no effect on query interval location,
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we provide an automatic selection procedure to keep only the model terms that best describe

the data.

Methods

Here we define a statistical model, i.e. a probability density, of the location of a query interval

with respect to multiple sets of reference intervals. We design the model to reflect the tenden-

cies of a query interval to overlap a reference set or a combination of reference sets more or

less than would be expected according to a predefined null distribution. In this section we

explicitly formulate the model equation and explain how to estimate and interpret the parame-

ter values given a set of query intervals. Furthermore, we discuss hypothesis testing and

restricting the number of model parameters through model selection.

Notation and problem setup

Our goal is to define the probability density function of a query interval starting point location

conditional on a given query interval length with respect to known sets of reference intervals.

This density will be defined over all possible genomic loci and formulated as a mixture of devi-

ations from a given null distribution. These deviations from the null occur only on the geno-

mic index sets that would indicate an overlap of a query interval of the given length with one

or more of the reference sets.

Define the discrete set of nucleotides that comprise an organism’s genome as

G ¼ f1; . . . ; Lg, where L is the length of the genome. A query interval qðX;YÞ � G is defined

from two discrete random variables—the starting point location X and the length (or cardinal-

ity) Y—and is given as q(X, Y) = {X, X + 1, . . ., X + Y − 1}. From here onward, we use the nota-

tion of capital X and Y when referring to the random variables and lower case x and y when

referring to observations of the respective random variables. Since the distribution of query

interval starting points depends on the query interval length, we are concerned with modeling

the conditional distribution of X|Y. We denote f(x|y) as the probability density function of

X|Y.

Let R1, R2, . . ., RN be N known reference sets, where each Ri is defined as the union of a set

of intervals on G. In practice, each Ri is set to represent a particular feature of the genome that

may influence the distribution of X|Y; for example, Ri could consist of all the loci that lie within

genic regions. We say that a query interval q(x, y) overlaps Ri if the intersection of q(x, y) and

Ri is non-empty. Let ri(x|y) be the overlap indicator function for q(x, y) and Ri, which is given

by

riðxjyÞ ¼
1; if qðx; yÞ \ Ri 6¼ ;

0; otherwise:

(

ð1Þ

In other words, ri(x|y) equals 1 over all x such that a query interval q(x, y) would overlap Ri,

and it equals 0 over all x where q(x, y) would not overlap Ri.

Note that it is possible for a query interval to overlap more than one reference set at a time;

therefore, we must define the overlap indicator function for multiple reference sets. Consider a

non-empty subset of reference set indices given by π� {1, 2, . . ., N}. For example, if N = 3, all

possible values of π are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. The overlap indicator

function indexed by the set π is defined as rπ(x|y) = ∏i2π ri(x|y). It is the indicator function

of the simultaneous overlap of q(x, y) with all the reference sets given in the index set π. E.g. if

π = {1, 2, 3}, then r{1,2,3}(x|y) equals 1 over all values of x where q(x, y) would overlap reference

sets R1, R2, and R3 simultaneously and equals 0 otherwise.

GINOM: The statistics of interval overlap of multiple genomic features
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Suppose further that, conditional on the length Y = y, we have defined a null distribution

f0(x|y) of query interval starting point locations. For example, the null distribution could be

defined as the discrete uniform distribution over G0ðyÞ � G, the set of all x where q(x, y)

would lie completely within the mappable regions of G. That is,

f0ðxjyÞ ¼
1=jG0ðyÞj if x 2 G0ðyÞ

0 otherwise;

(

ð2Þ

where | � | denotes set cardinality. This null distribution suggests that a query interval has an

equal chance of lying anywhere inside the mappable regions of the genome and no chance of

lying outside. The restriction to the mappable regions is due to the impossibility of observing a

query interval in any non-mappable region. Although we develop the theory behind GINOM

to incorporate any arbitrary null distribution, in practice we use the null provided above in

Eq (2).

Model formulation and interpretation

In our model we take the density of a query interval to be

f ðxjyÞ ¼ cðy; yÞf0ðxjyÞ exp
X

p

yprpðxjyÞ

( )

; ð3Þ

where c(θ, y) is the normalizing constant and the summation is over the non-empty subsets of

{1, 2, . . ., N}, i.e. all possible combinations of reference sets. Here, θ is the vector of model

parameters. We choose a model density with log-linear form for various reasons. First, since

the equation is formulated as an additive mixture of effects (in the logarithmic sense), model

interpretation is intuitive and achieved through examining the value of θ. The components of

θ describe different types of departures from the null distribution. As θπ increases (decreases),

fixing all other components of θ, the probability that a random query interval intersects all of

the reference sets in π increases (decreases). As θπ approaches infinity (negative infinity),

fixing all other components of θ, the probability approaches 1 (0). A further advantage to

the log-linear form is that the model equation belongs to an exponential family of distribu-

tions. This distribution family satisfies many regularity conditions that allow for a straightfor-

ward application of various techniques for statistical inference and hypothesis testing.

Finally, in this formulation each component of θ can take any value in R, and thus an optimi-

zation over θ is unconstrained and computationally more efficient than a constrained

optimization.

One can use θ to define a query interval enrichment profile across the genome in the follow-

ing manner. The ratio f ðxjyÞ=f ð~xjyÞ gives the relative likelihood of a random query interval of

length y having its left endpoint at x versus another location ~x. Comparing the model in Eq (3)

with the null distribution f0, we say that the endpoint x has been enriched (depleted) relative to

~x under our model if the ratio f ðxjyÞ=f ð~xjyÞ is greater than (less than) f0ðxjyÞ=f0ð~xjyÞ. The

function

hðxjyÞ ¼
X

p

yprpðxjyÞ; ð4Þ

which is a summation of certain components of θ, may be regarded as giving an enrichment

profile. If h(x|y) is greater than (less than) hð~xjyÞ, then it follows that f ðxjyÞ=f ð~xjyÞ is greater

than (less than) f0ðxjyÞ=f0ð~xjyÞ, and thus x is enriched (depleted) relative to ~x . Moreover,

the ratio between the two ratios above, ðf ðxjyÞ=f ð~xjyÞÞ=ðf0ðxjyÞ=f0ð~xjyÞÞ, is equal to
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expfhðxjyÞ � hð~xjyÞg. This quantity provides a measure of the degree of enrichment (deple-

tion) at x relative to ~x under our model. Using this expression, it may be seen that increasing

(decreasing) the value of θπ increases (decreases) the degree of enrichment for all locations x
where q(x, y) intersects all of the reference sets in π relative to all other locations ~x.

Note that the expressions presented in the above paragraph simplify when using the stan-

dard null distribution provided in Eq (2). Assuming that locations x and ~x are both mappable,

then f0ðxjyÞ=f0ð~xjyÞ ¼ 1. We say that x is enriched (depleted) with respect to ~x if

f ðxjyÞ=f ð~xjyÞ ¼ expfhðxjyÞ � hð~xjyÞg is greater than (less than) 1, i.e. if h(x|y) is greater than

(less than) hð~xjyÞ. Typically, we are interested in studying the enrichment of x with respect to

a mappable ~x such that qð~x; yÞ would not overlap any of the reference sets. In this case of ~x in

the so-called “background” portion of the genome, hð~xjyÞ ¼ 0, and, therefore, x is enriched

(depleted) simply if h(x|y) is positive (negative). From this point onward, we exclusively use

this simplified condition when determining the enrichment of x.

To help with the above model interpretation, we provide a simple example with N = 2

and f0 as in Eq (2). Since N = 2, the model terms are given by the set indices π = {1}, {2}, {1, 2}.

Suppose that θ = (θ{1}, θ{2}, θ{1,2})
0 = (0.5, 0.7, − 0.2)0, where the prime denotes vector

transpose. Now, for an x such that q(x, y) overlaps R1 but not R2, the enrichment is given by

h(x|y) = θ{1} = 0.5, which is positive. Thus, the set of all such x’s are enriched, and the probabil-

ity of q(x, y) is e0.5 = 1.65 times greater than qð~x; yÞ, where ~x is in the background. Similarly,

the set of all x’s such that q(x, y) overlaps R2 but not R1 are enriched, and the probability of

q(x, y) is e0.7 = 2.01 times that of qð~x; yÞ. For an x such that q(x, y) overlaps both R1 and R2, the

enrichment is given by h(x|y) = θ{1} + θ{2} + θ{1,2} = 1.0. In this case, the probability of q(x, y)

is e1.0 = 2.72 times that of qð~x; yÞ. Notice that even though the individual model parameter

θ{1,2} is less than zero, there is still enrichment in these x’s rather than depletion. The model

parameter θ{1,2} represents the interaction effect of R1 and R2—the effect of R1 and R2 beyond

that of simply adding the two individual effects together. In this case, the overall effect of R1

and R2 is slightly less than their additive effect due to the negative interaction term. For more

details on model interpretation, see the Model Interpretation section of S1 Text.

In general, since there are 2N − 1 possible non-empty subsets of {1, 2, . . ., N}, there are that

many possible model parameters in Eq (3). In practical implementations, 2N − 1 can be quite a

large number, and the inclusion of all possible parameters can yield an unnecessarily complex

model. Therefore, to avoid overfitting, we typically restrict to a smaller submodel by setting the

less important parameters equal to zero and thus effectively dropping those terms from the

model equation. For example, for ease of interpretation, we could decide that any term with

third-order interactions or higher—that is, if π contains three or more reference set indices—is

too complex to include in the model. Thus, we would automatically exclude those terms from

consideration in the model equation, and the summation would be over all π such that |π|� 2.

From here on, we denote d as the number of model parameters included in the model. If all pos-

sible parameters are included in the model, i.e. if d = 2N − 1, then we say that f is the full model.

Parameter estimation, hypothesis testing, and model selection

Suppose we are given data in the form of n query intervals {q(xi, yi), i = 1, . . ., n}, and let us

assume that the xi’s are conditionally independent given the yi’s. In order to fit the model to

the data, we seek the maximum likelihood estimate (MLE) of θ given the data. To compute the

MLE ŷ, we maximize over the likelihood function, which is equal to the joint density function

Yn

i¼1

f ðxijyiÞ ¼
Yn

i¼1

cðy; yiÞf0ðxijyiÞ

 !

exp fy0Tg; ð5Þ
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where the prime denotes vector transpose and T is a length d vector with the π-th component

given by tp ¼
Pn

i¼1
rpðxijyiÞ. The value tπ is the number of query intervals in the dataset that

overlap all of the reference sets given in the index set π simultaneously. After taking the loga-

rithm of the above function and dropping terms that are constant in θ, we are left with the fol-

lowing objective function:

‘ðyÞ ¼ y
0T þ

Xn

i¼1

log ðcðy; yiÞÞ: ð6Þ

The MLE is thus computed as

ŷ ¼ argmax
y2Rd

‘ðyÞf g: ð7Þ

See S1 Text for an efficient method to compute the optimization in Eq (7) as well as approxi-

mate confidence intervals for each component of θ.

Now that we have a means for computing the MLE, and since the density f satisfies all the

necessary regularity conditions, we can use the generalized likelihood ratio test (GLRT) for

hypothesis testing (see Ch. 8 of [6]). In particular, we use the GLRT to test whether a specific

component of θ differs from zero or not, i.e. whether a certain reference set or combination of

reference sets affects query interval location. In order to perform this statistical test for the π-th

component, one must solve Eq (7) twice—once allowing θπ to be unconstrained in the optimi-

zation and once with the constraint that θπ = 0. If the value of ‘ðŷÞ changes enough with addi-

tion of this constraint, i.e. with the removal of the π-th model term, then we claim that θπ is

not equal to zero. For more detailed information on the GLRT, including the computation of a

p-value for the test, see S1 Text.

In order to select the model parameter configuration that best describes the data, we

implement the widely-used bidirectional stepwise model selection algorithm [7]. This algo-

rithm systematically adds and removes model terms one at a time in an effort to find a configu-

ration that minimizes the Bayesian Information Criterion (BIC) [8], which is given by

BIC ¼ d log n � 2‘ðŷÞ. The BIC is a log-likelihood function that is penalized by the number of

model parameters; therefore, the model configuration with optimal BIC is one that offers a

high likelihood value with a small number of model parameters. The result of the stepwise

algorithm is a model that contains only the most influential parameters, allowing for an easy

yet biologically meaningful model interpretation.

Results/Discussion

In what follows, we first apply GINOM to in silico data to demonstrate its performance and

compare its predictive ability to that of currently available software. We then apply it to a real

biological dataset and again compare its performance to the same software.

Simulated query intervals

We analyzed the performance of GINOM on query interval sets simulated directly from the

model equation Eq (3) using the nine reference sets listed in Table 1. This is the same set of fea-

tures used in the LINE-1 insertion bias study we discuss later and contains a combination of

genomic and epigenomic features associated with genome accessibility and transcriptional

regulation. For simplicity in our simulations, we fix the query interval length to be Y = 1 unless

stated otherwise and assume all loci in G are mappable when forming the null distribution in

Eq (2). A simulation is done by first selecting N reference sets to consider, then optionally

GINOM: The statistics of interval overlap of multiple genomic features
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restricting the domain to a subset of the entire genome, followed by setting the true values for

each component of θ, and then finally generating a random sample of size n via acceptance/

rejection algorithm. The result of the simulation is a set of n query intervals that are indepen-

dently and identically distributed according to the specified model.

Computation time. First, we performed two computation time experiments running

GINOM in MATLAB on a laptop with a 2.6 GHz processor. The computation times reported

below for GINOM include the time necessary for data preprocessing as well as an unrestricted

stepwise model selection. Fig 1 (left) shows how computation time scales with an increase in

the length of the genome L, and Fig 1 (right) shows how computation time scales with an

increase in the number of reference sets N considered in model selection. We also scaled the

query sample size n, fixing everything else; however, we found that n only slightly affects the

preprocessing stage and does not factor at all into model selection. Since the parts of GINOM

that are influenced by n represent only a small fraction of the overall computation time, we

omit the results of any computation time experiment versus n.

For the experiment in Fig 1 (left), we used N = 5 reference sets—specifically, sets 3, 4, 6, 7,

and 8. For each value of L, we randomly generated ten query interval datasets, each of size

n = 2540, with model terms θ{6} = 1.0, θ{7} = 0.5, θ{6,7} = −1.0, and all other possible model

terms set to equal zero. The parameter vector of this model is written simply as θ = (θ{6}, θ{7},

θ{6,7})
0 = (1.0, 0.5, − 1.0)0, dropping all of the zero-valued model terms. We used a sample size

of n = 2540 because it is the same size as the real query interval dataset used later in the paper.

We increased L systematically by starting with a domain G equal to all loci in chromosomes X

and Y, and then appending an additional chromosome to G until the entire genome was con-

sidered. For each value of L, we ran GINOM with an unrestricted model selection for each of

the ten replicates and averaged the computation time. From the plot in Fig 1 (left), we con-

clude that computation time scales on the order of L2. In this configuration, GINOM ran on

the entire genome in an average of 268 seconds.

For the experiment in Fig 1 (right), we randomly generated one query interval dataset of

size n = 2540 using the same value of θ as before with domain G equal to all loci in chromo-

some 19. We ran GINOM with unrestricted stepwise model selection nine times, each time

considering an additional reference set until all nine reference sets in Table 1 were considered.

From the plot in Fig 1 (right), we see that computation time increases rapidly with N. There-

fore, for higher values of N, it becomes more beneficial to restrict the model selection in some

way. For example, one could consider only lower-order terms like those with |π|� 3, or one

could restrict to a specific, predetermined list of biologically meaningful combinations. With

the maximum value N = 9 in the experiment, GINOM ran on chromosome 19 in 5 hours and

21 minutes.

Table 1. List of reference sets.

Name Index

H3K4me3 1

gene bodies 2

H3K36me3 3

H3K79me2 4

hypomethylation 5

H3K9me3 6

H3K27me3 7

LADs 8

late-replicating 9

https://doi.org/10.1371/journal.pcbi.1005586.t001
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Performance of parameter estimation and model selection with convergence and iden-

tifiability study. Next, we performed an experiment on chromosome 19 to compute an

empirical distribution of ŷ when fitting the true model to simulated data. This time, we ran-

domly generated 1000 query interval datasets of fixed size n = 2540 using the same parameter

vector θ = (θ{6}, θ{7}, θ{6,7})
0 = (1.0, 0.5, − 1.0)0. For each dataset, we fit the true model, i.e. we

solved Eq (7) with all terms besides θ{6}, θ{7}, and θ{6,7} constrained to be zero. Table 2 shows

the mean and standard deviation of each component of ŷ, and Fig 2 shows the corresponding

histogram for each component.

Table 2. GINOM parameter estimation performance on simulated data.

Model Term True θ Mean ŷ Std. ŷ

{6} 1.0 0.9998 0.04486

{7} 0.5 0.4981 0.06459

{6, 7} −1.0 −1.002 0.09500

The experiment was performed with sample size n = 2540 and 1000 replicates.

https://doi.org/10.1371/journal.pcbi.1005586.t002

Fig 1. GINOM computation time experiments with simulated data. Left: Computation time v. L with fixed values

of N = 5 and n = 2540. Right: Computation time v. N on chromosome 19 (L = 5.9 × 107) with n = 2540.

https://doi.org/10.1371/journal.pcbi.1005586.g001
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Using the same simulated data, we additionally ran the stepwise model selection for each of

the 1000 datasets. In this experiment, we restricted the model selection to consider all possible

combinations of reference sets 3, 4, 6, 7, and 8. Table 3 shows the top ten selected model con-

figurations, percentage-wise. The true model configuration is shown in bold and is correctly

selected 89.1% of the time. Each of the three correct model terms, θ{6}, θ{7}, and θ{6,7}, were

selected 100% of the time, and no other incorrect model term was selected more than 1% of

the time. In other words, the false negative rate for each correct model term was 0%, and the

false positive rate for each incorrect model term was no more than 1% for this experiment.

The rate of including at least one incorrect model term was 10.9%. The results of the simula-

tion experiment as seen in Tables 2 and 3 provide not only a validation that the algorithms

Fig 2. Histograms of estimated model parameter values. The components of ŷ were computed from 1000 simulations of sample size

n = 2540.

https://doi.org/10.1371/journal.pcbi.1005586.g002

Table 3. GINOM model selection performance for simulated data.

Selected Model Perc. Selected Req. Samp. Size

{ 6 }, { 7 }, { 6, 7 } 89.1 % 44

{6}, {7}, {6, 7}, {4, 6, 8} 0.9% 1250

{6}, {7}, {6, 7}, {4, 7, 8} 0.7% 2300

{6}, {7}, {6, 7}, {7, 8} 0.7% 57

{6}, {7}, {6, 7}, {3, 4, 8} 0.6% 2000

{6}, {7}, {6, 7}, {3, 8} 0.6% 240

{6}, {7}, {6, 7}, {4, 8} 0.6% 900

{6}, {7}, {6, 7}, {6, 8} 0.6% 57

{6}, {7}, {6, 7}, {3, 4, 7} 0.5% 680

{6}, {7}, {6, 7}, {4, 7} 0.5% 500

Others Remaining 5.2%

The model selection was performed using the stepwise algorithm with BIC penalty on simulated data with

sample size n = 2540 and 1000 replicates. The required sample size for 99% convergence was computed by

varying n and computing the proportion of convergence over 5000 replicates for each value of n.

https://doi.org/10.1371/journal.pcbi.1005586.t003
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associated with GINOM are working properly but also a measure of error associated with esti-

mation and model fitting in a scenario that incorporates the given reference sets.

The estimation in Eq (7) fails to converge when at least one of the components of ŷ goes to

positive or negative infinity. Below, we list some of the conditions that must be met for conver-

gence. The list is not exhaustive, as more complicated models can yield more complicated con-

vergence criteria. The simplest condition for convergence is to have no component of T equal

to 0, where T was introduced in Eq (5). That is, for each index set π included in the model, we

need at least one query interval in the data set to simultaneously overlap all of the reference

sets in π. Convergence also requires that, when there exist two model terms indexed by ~p and

π such that ~p � p, then tπ cannot equal t~p . As the sample size n increases, the probability of sat-

isfying these criteria increases, and convergence is more certain.

The third column of Table 3 shows the minimum required sample size n to achieve a 99%

convergence rate for that particular model configuration. To compute the convergence rate for

a given n and a given model configuration, we first simulated 5000 query interval datasets of

size n using the true model parameter values. Then, we computed the proportion of times that

all components of ŷ had an absolute value less than 5, i.e. the estimate did not drift off to posi-

tive or negative infinity. Fig B in (S1 Text) shows a plot of convergence percentage versus n for

the first two model configurations listed in Table 3.

In addition to convergence, model identifiability is another technical consideration when

analyzing the results of GINOM. When a model is not identifiable, the MLE is not unique.

Unlike convergence, identifiability is not affected by the query sample size n but rather the

locations of the reference sets in relation to one another. The condition necessary for identifia-

bility is easiest to describe when considering a full model with N reference sets and y = 1. For

example, the model that we used in all of our simulation experiments, where θ = (θ{6}, θ{7},

θ{6,7})
0, is a full model. This is because, for N = 2, the model terms consist of exactly all of the

possible 2N − 1 combinations of reference sets 6 and 7. For a general N, notice that the refer-

ence sets partition G0ð1Þ, the mappable part of the genome, into 2N disjoint sets. If any of these

disjoint sets are empty, i.e. they do not exist, then the full model is not identifiable. Continuing

with our example, in order for this full model to be identifiable, the sets R6\R7, R7\R6, R6 \ R7,

and G0ð1ÞnðR6 [ R7Þmust all be non-empty. In other words, R6 cannot be contained entirely

within R7 (and vice versa), R6 and R7 cannot be disjoint, and the union of R6 and R7 cannot be

G0ð1Þ. Indeed, this is the case for these reference sets. Furthermore, the full model with all

N = 9 reference sets listed in Table 1 is identifiable in this sense when including all chromo-

somes in the domain, as all 29 disjoint sets are non-empty. Identifiability becomes more com-

plicated to describe when considering submodels and cases when y> 1, but it is easy to verify

numerically in the data preprocessing stage of GINOM.

Comparison with current methods. We compared the analysis from GINOM with that

of four other methods—BITS, MULTOVL, GAT, and GenometricCorr—on one simulated

dataset. As before, we simulated a dataset of n = 2540 query intervals from the density in

Eq (3) with θ = (θ{6}, θ{7}, θ{6,7})
0 = (1.0, 0.5, − 1.0)0. Since one of the methods, GAT, does not

work for query intervals of length y = 1, we set each yi equal to a randomly-selected query

interval length from the real dataset used later in the paper, which does not contain any query

intervals of length 1. We provide the results in (S1 Table).

Each of the four other methods performs their analysis in a pairwise fashion, where they

compute query interval overlap statistics individually for each reference set. In order to com-

pare GINOM directly to the other methods, we fit 9 models, each consisting of only one model

term π = {j}, for j = 1, 2, . . ., 9. The differences in outputs between GINOM when run in a pair-

wise fashion and each of the four methods are due to different statistical tests as well as
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differences in data preprocessing techniques. On the other hand, these results were similar for

all five methods in the sense that some significant effects were detected outside of the true

effects of R6 and R7. For example, R3 was reported as a significant effect for all methods except

GAT. This phenomenon is actually due to R3’s association with the enriched set R6 rather than

an association with the query set itself. A large amount of R3 (45% of all x 2 R3) is contained

within R6, and thus, query interval enrichment due to the effect of R6 was additionally and

falsely attributed to R3 in the pairwise analysis.

GINOM has a significant advantage over the other four methods in that it is not con-

strained to a pairwise analysis; rather, it can analyze the effects of all combinations of reference

sets simultaneously. The stepwise model selection in GINOM is more likely to eliminate the

false associations that arise from a pairwise analysis, outputting a simplified model configura-

tion that best describes the data according to the BIC. When running GINOM a single time

with an unrestricted stepwise model selection that considered all N = 9 reference sets, it recov-

ered the true model with no false associations. The results of GINOM from running both the

pairwise analysis as well as the stepwise model selection are shown in (S1 Table).

A study of L1 insertion bias

We provide an application for GINOM using real data. For this example, we examine somatic

insertions of the active Long INterspersed Element-1 (LINE-1 or L1) retrotransposon into the

genome and test for insertion biases. LINEs are mobile elements present in many eukaryotes;

their number can increase through a copy-and-paste mechanism and they have been impli-

cated in several diseases [9]. Recently, somatic retrotransposition was identified as a frequent

event in many human cancers and in the adult human brain [10–18]. A major biological ques-

tion arising from this work is whether LINE-1, the active human retrotransposon, displays a

bias in the locations of somatic retrotransposition. Various and sometimes contradictory

biases for L1 retrotransposon insertions have been identified. Prior experimental work on the

L1 protein machinery identified a retrotransposition bias for accessible DNA [19] and an L1

endonuclease recognition motif (TTAAAA) [20]. High-throughput studies of somatic retro-

transposition uncovered a disproportionate bias towards affecting protein-coding genes in the

brain and towards genes commonly mutated in cancer [11, 17]. Contradicting this view, high-

throughput studies of germ-line retrotranspositions were identified to display depletion in

protein-coding regions [21, 22]. One other interesting bias is that somatic L1 retrotransposi-

tions in cancer are enriched towards regions that also display DNA hypomethylation [17]. We

aim to rigorously test the biases associated with somatic L1 retrotranspositions. To do so, we

compiled a dataset consisting of 2540 somatic L1 retrotranspositions available from a single

tissue that were identified in lung cancer from two independent studies [13, 18]. The Helman

et al study identified 363 somatic retrotransposition events in lung adenocarcinoma (39

events) and lung squamous cell carcinoma (324 events) from The Cancer Genome Atlas

(TCGA) [13]. Tubio et al identified 2177 L1 retrotransposition events from various lung can-

cer sources including primary tumor samples, cell-lines, and TCGA samples [18].

Here, we examine the overlaps of the lung cancer somatic L1 retrotransposition query set:

2540 events (hg19 coordinates) with respect to nine curated reference sets that represent fea-

tures of protein-coding genes, euchromatin, and heterochromatin. We reasoned that the abil-

ity of novel LINE-1 copies to insert themselves into a given region might be affected by this

region’s accessibility; hence, we selected a set of genomic and epigenomic features that are

known to be associated with genome accessibility and active transcription. The gene feature

reference set includes RefSeq gene bodies (UCSC version update 10/06/15). Euchromatic

tracks include broad peaks identified by the ENCODE project for histone marks H3K36me3,
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H3K79me2, and H3K4me3 in lung cancer cell-line A549 [23]. Our selected heterochromatic

marks include additional ENCODE broad peaks for histone marks H3K9me3 and H3K27me3

in A549 cells [23], which have a role in repressing gene expression. We also included a track

for two additional heterochromatic features, lamina associated domains (LADs) and late DNA

replicating regions that, although defined in fibroblasts, are partially conserved between cell-

types [24, 25]. Finally, we included a track for regions hypomethylated in cancer cells [26].

We compared our method with four other methods: BITS, MULTOVL, GAT, and Geno-

metriCorr. However, unlike our method, which can examine multiple features simultaneously,

these other methods test for significant overlap in a pairwise manner. Somatic L1 retrotranspo-

sitions in lung cancer displayed a bias for heterochromatic marks including H3K9me3,

H3K27me3, lamina-associated domains (LADs), and late-replicating regions according to

BITS, MULTOVL, GAT, and GenometricCorr by the Jaccard measure (S2 Table). In addition,

consistent with Lee et al. [17], somatic L1 retrotransposition also displayed a preferential bias

towards regions hypomethylated in cancer according to BITS, MULTOVL, GAT, and Geno-

metricCorr by the Jaccard measure (S2 Table). Conversely, and consistent with studies of

germ-line retrotransposition, somatic L1 insertions displayed a bias against gene regions and

euchromatin marks including H3K4me3, H3K36me3, and H3K79me2 according to MUL-

TOVL, GAT, and GenometricCorr by the Jaccard measure (S2 Table). Therefore, using the

pairwise approach, we did not observe a bias of lung somatic L1 retrotranspositions towards

gene regions. We hypothesized that our new method GINOM, which can examine combina-

tions of overlaps, might be able to recover gene regions that account for previously observed

biases of somatic retrotranspositions towards cancer mutations [17].

We examined the lung L1 somatic retrotransposition query set with respect to all nine refer-

ence sets using GINOM with the BIC penalty in model selection (see Model Selection subsec-

tion within Materials and methods section). Our null model is that of Eq (2) with G0ðyÞ being

the set of loci x such that q(x, y) would lie entirely within the mappable regions of G. GINOM

reports significant model parameters and their associated MLE and p-value of the GLRT, and

we show the results in Table 4.

For ease of interpretation, we label the significant model terms as either a primary effect or a

secondary effect. A primary effect indexed by model term π is such that there exists no other

significant model parameter indexed by ~p where ~p � p. For example, model term {2, 7} is a

primary effect because no model term with its index set contained in {2, 7} (e.g. either term {2}

or term {7}) is significant (Table 4). A secondary effect is a model term that has at least one

Table 4. GINOM model selection on lung cancer L1 somatic retrotransposition data.

Model Term Primary Effect ŷ p-value

{5} Yes 0.7654 <10−16

{6} Yes 0.3780 <10−16

{8} Yes 0.4929 <10−16

{9} Yes 0.4968 <10−16

{2, 7} Yes 0.2528 1.675 × 10−5

{5, 8, 9} No −0.4497 1.432 × 10−10

{6, 7, 8} No −0.2907 5.480 × 10−4

{2, 4, 6, 9} No −1.668 0.001337

{2, 3, 4, 5, 6} No −1.985 0.003666

The experiment was performed on data consisting of lung cancer somatic L1 retrotranspositions as query intervals and the reference set collection: (1)

H3K4me3, (2) genic regions, (3) H3K36me3, (4) H3K79me2, (5) hypomethylation, (6) H3K9me3, (7) H3K27me3, (8) LADs, (9) late-replicating.

https://doi.org/10.1371/journal.pcbi.1005586.t004
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primary effect contained within its index set. For example, model term {6, 7, 8} is a secondary

effect because primary effects {6} and {8} are contained within {6, 7, 8} (Table 4).

The primary effects in the model selected by GINOM under the BIC penalty were hypo-

methylation, late-replicating, LADs, H3K9me3, and the combination of gene regions and

H3K27me3 (Fig 3). Here, all primary effects showed enrichment with respect to the back-

ground, and, interestingly, the strongest of these enrichments occured in hypomethylation,

model term {5}, which was consistent with Lee et al. [17] (Fig 3). With respect to ~x in the back-

ground, the enrichment of a location x such that q(x, y) overlaps R5 only (and not any other

reference set) is hðxjyÞ ¼ ŷf5g ¼ 0:7654. Therefore, the probability of a query interval q(x, y) is

e0.7654 = 2.15 times that of qð~x; yÞ. The model was also able to recover gene regions when

paired with the facultative heterochromatin mark H3K27me3, given by model term {2, 7}. The

euchromatin marks were also frequently incorporated into secondary effects. For example,

model term {2, 4, 6, 9}, which represents the combination of gene regions, H3K79me2,

H3K9me3, and late-replicating regions, was assigned a parameter value of ŷf2;4;6;9g ¼ � 1:668.

It therefore acts antagonistically to and with greater magnitude than the sum of the effects con-

tained within it (terms {6} and {9}) so that the overall combined effect of R2, R4, R6, and R9 is

negative. Specifically, for a location x such that q(x, y) simultaneously overlaps R2, R4, R6, and

R9 only, the enrichment is given by hðxjyÞ ¼ ŷf6g þ ŷf9g þ ŷf2;4;6;9g ¼ � 0:7932. Therefore,

such an x is depleted, with the probability of q(x, y) being e−0.7932 = 0.4524 times that of qð~x; yÞ
in the background, which is consistent with somatic transpositions being biased against

euchromatin.

Finally, we sought to more closely examine the main effect resulting from the intersection

of gene regions and H3K27me3. It was recently reported that L1 retrotranspositions display a

bias towards cancer genes [17]. To test this in our dataset, we utilized the cancer gene lists

from Lee et al, which include the COSMIC cancer gene census and the Memorial Sloan-

Kettering Cancer Center cancer gene list (S3 Table). In the L1 lung cancer insertion dataset,

we observed that 759 genes bodies overlap a somatic L1 retrotransposition. Of these, a

Fig 3. Primary effects of lung cancer somatic L1 retrotransposition. The results were output from GINOM model

selection under BIC penalty.

https://doi.org/10.1371/journal.pcbi.1005586.g003
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significant proportion (37/759) are cancer genes (p-value = 0.027, hypergeometric test, S1

Text). We then looked more specifically at the L1 insertions in gene bodies marked by

H3K27me3, which represented a significant main effect in the GINOM model. Of the 759

gene bodies that overlap a somatic L1 retrotransposition, 309 genes also intersect a H3K27me3

broad peak, and are significantly enriched for cancer genes (22/309, p-value 0.001, hypergeo-

metric test, S1 Text). Hence, we speculate that L1 insertion bias towards cancer genes could be

a consequence of L1 bias towards genes located within the facultative heterochromatin marked

by H3K27me3.

Together our results reconcile some of the discrepancies in observations between somatic

L1 retrotranspositions and germ-line retrotransposition events. Overall, somatic L1 retrotran-

spositions display a bias towards features typically associated with constitutive heterochroma-

tin, similar to germline transposition events. However, some genes, e.g. cancer genes and genes

marked by H3K27me3, also display a bias for somatic L1 transposition events in lung cancer.

Conclusion

We developed a Genomic INterval Overlap Model that allows for the interrogation of signifi-

cant associations between many genomic features simultaneously. Unlike prior methods,

which test for associations in a pairwise manner, GINOM treats query interval location as a

random variable of log-linear distribution with model terms formed from any possible combi-

nation, or interaction, of multiple reference sets. In this fashion, GINOM can uncover any

higher-order interaction among reference sets that has a significant effect on query interval

location. Through an implementation of a stepwise model selection routine, GINOM can han-

dle an arbitrarily large number of reference sets simultaneously as input and subsequently out-

put a reduced model that satisfies an optimal trade-off between number of model terms and

likelihood value. The end result is a set of significant model terms with associated parameter

values that defines a profile of query interval enrichment at a level of detail beyond that of pair-

wise comparisons.

To highlight this unique capability of GINOM, we fit the model using a query interval set of

lung cancer somatic L1 retrotranspositions and a collection of reference sets representing pro-

tein-coding genes, euchromatin, and heterochromatin features. The output of GINOM indi-

cates enrichment towards the individual heterochromatic reference sets, as do other current

methods. However, GINOM uncovers more nuanced associations than the other methods by

identifying a significant enrichment within genes only when paired with the H3K27me3 het-

erochromatic mark. Conversely, it also indicates depletion within genes when paired with cer-

tain euchromatic marks. The association of L1 somatic retrotranspositions and gene bodies,

when marked by H3K27me3, is not recovered by other methods because they only consider

pairwise associations.

Our results demonstrate GINOM’s ability to test for significance of interval overlap

between multiple genomic features. As more data of this type becomes available, it will provide

an effective method to screen for yet-uncharacterized higher-order associations between geno-

mic features.
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