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Abstract 

Study Objective:  Shiftwork increases risk for numerous chronic diseases, which is hypothesized to be linked to disruption of circa-
dian timing of lifestyle behaviors. However, empirical data on timing of lifestyle behaviors in real-world shift workers are lacking. To 
address this, we characterized the regularity of timing of lifestyle behaviors in shift-working police trainees.

Methods:  Using a two-group observational study design (N = 18), we compared lifestyle behavior timing during 6 weeks of in-class 
training during dayshift, followed by 6 weeks of field-based training during either dayshift or nightshift. Lifestyle behavior timing, 
including sleep–wake patterns, physical activity, and meals, was captured using wearable activity trackers and mobile devices. The 
regularity of lifestyle behavior timing was quantified as an index score, which reflects day-to-day stability on a 24-hour time scale: 
Sleep Regularity Index, Physical Activity Regularity Index, and Mealtime Regularity Index. Logistic regression was applied to these 
indices to develop a composite score, termed the Behavior Regularity Index (BRI).

Results:  Transitioning from dayshift to nightshift significantly worsened the BRI, relative to maintaining a dayshift schedule. 
Specifically, nightshift led to more irregular sleep–wake timing and meal timing; physical activity timing was not impacted. In con-
trast, maintaining a dayshift schedule did not impact regularity indices.

Conclusions:  Nightshift imposed irregular timing of lifestyle behaviors, which is consistent with the hypothesis that circadian dis-
ruption contributes to chronic disease risk in shift workers. How to mitigate the negative impact of shiftwork on human health as 
mediated by irregular timing of sleep–wake patterns and meals deserves exploration.

This paper is part of the Sleep and Circadian Health in the Justice System Collection.

Key words: shift work; actigraphy; circadian rhythms

Statement of Significance

Shiftwork is essential to a productive society. However, following a shiftwork schedule may impose a lifestyle of circadian rhythm 
disruption that increases chronic disease risk. Despite the widespread prevalence of shiftwork, our empirical knowledge base of 
real-world shiftwork and the timing of lifestyle behaviors is severely lacking. This knowledge gap has delayed progress in the field 
toward developing disease prevention strategies specific to shift workers. Herein, we present a novel and accessible method that 
quantifies the regularity of timing of lifestyle behaviors in shift-working police trainees. We observed that nightshift led to irregular 
timing of sleep–wake cycles and meals. Future research might consider intervening in irregular timing of lifestyle behavior as a 
strategy to mitigate disease risk.
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Introduction
Maintaining regular circadian rhythms is an important feature 
of health [1–3]. Behavior and endogenous circadian clocks have 
a bi-directional relationship; this premise underlies the concept 
that maintaining optimal behavioral patterns promotes robust 
circadian rhythmicity and mitigates disease [4]. In contrast, a 
lifestyle characterized by irregular behavior patterns—particu-
larly in which behaviors are misaligned with endogenous circa-
dian rhythms—may increase susceptibility to chronic disease. 
In support, epidemiological evidence indicates that shiftwork 
is associated with numerous chronic diseases [5–9]. Moreover, 
highly controlled in-patient studies simulating nightshift 
demonstrate that rapid and short-term circadian misalignment 
negatively impacts cardiometabolic health [10–12]. It is pre-
sumed that shift workers undergo frequent and rapid shifts in 
behavior timing imposed by reoccurring schedule changes from 
work to free days. Thus, findings from experimental models that 
artificially simulate nightshift, imply that real-world shift work-
ers undergo repeat, acute disruptions in health. However, the 
extent to which these findings translate to shift workers is not 
fully understood.

To address this knowledge gap, we are in need of empirical 
data on lifestyle behaviors in real-world shift workers. Wearable 
technology and smartphone devices offer promise here, enabling 
real-world data capture applicable over long durations and scaled 
up for assessment of human behaviors [13–15]. From these data, 
analytical approaches that quantify day-to-day regularity of 
behaviors can be readily applied to field settings. One previous 
approach developed an index scoring method to quantify the reg-
ularity of sleep–wake cycles. Termed the sleep regularity index 
(SRI), this metric quantifies the likelihood of sleep–wake episodes 
occurring at the same time within a 24-hour time scale, or day-
to-day variation [16, 17]. Application of this SRI metric has shown 
that the irregular sleep–wake patterns are linked to poorer aca-
demic performance in students, as well as increased cardiomet-
abolic disease risk in adults [16, 17]. In addition to sleep–wake 
episodes, mealtime regularity has been previously quantified by 
a metric termed Composite Phase Deviation (CPD) that was orig-
inally developed to quantify circadian misalignment in humans 
[18, 19]. Informed by these previous approaches, we sought to 
expand and combine these metrics to integrate a composite score 
accounting for three behavior patterns that are known to impact 
health status: sleep–wake patterns, physical activity, and meals.

The primary objective of this study was to characterize the 
effects of nightshift on the regularity of lifestyle behavior tim-
ing in a real-world setting. We used wearable activity trackers to 
assess sleep–wake patterns and physical activity patterns, and 
mobile devices to assess meal timing. We conducted these assess-
ments in two groups of police trainees that followed a real-world 
shiftwork schedule: one group that transitioned from dayshift to 
nightshift, versus a comparator group that maintained a dayshift 
schedule. Accordingly, we assessed day-to-day behavior regular-
ity for three behaviors: sleep–wake patterns, physical activity, and 
meals. We then combined these indices into a composite score, 
termed the Behavior Regularity Index (BRI). We hypothesized that 
nightshift, incorporating a cyclic pattern of night work and off 
days, would be characterized by irregular behavior patterns. To 
test this hypothesis, we compared changes in lifestyle behavior 
regularity (as measured by the BRI) during the transition from 
a dayshift to nightshift schedule relative to changes in life-
style behavior regularity (BRI) during maintenance of a dayshift 
schedule.

Methods
Study design
The study design has been previously described [13]. In brief, 
this was a two-group observational repeated measures study 
design. Police trainees followed 24 weeks of in-class training and 
14 weeks of field training, and the current study protocol was a 
short-term observational period nested within the training sched-
ule. Specifically, we assessed behaviors during the last 6 weeks of 
in-class training (baseline) and the first 6 weeks of field training, 
totaling 12 weeks of observation.

During the first 6 weeks, all participants followed the same 
in-class training schedule, which involved classes held Monday to 
Friday during daytime hours (7:30 am–5:00 pm). During the next 
6 weeks, all participants followed one of the four field-training 
schedules, based on occupational assignment, which involved 
either a day or night shiftwork schedule. Specifically, day shifts 
included either shift A: 6 am–5 pm (N = 5) or shift B: 10 am to 
9 pm (N = 2), thus representing circadian alignment. Night shifts 
included either Shift C: 4 pm–3 am (N = 5) or shift D: 8 pm–7 am 
(N = 6), thus representing circadian misalignment. The same shift 
(A, B, C, or D) was maintained throughout the 6-week observation 
period, with trainees operating on a 4-day on, 4-day off schedule. 
No distinction was made in the analysis between weekdays and 
weekends during in-class training or days on/off during shiftwork 
so as to capture the level of irregularity in the trainees’ behaviors, 
whether imposed or voluntary.

Participants.
Study inclusion criteria have been previously described [13]. 
These included (1) being enrolled in a local public safety train-
ing program and (2) owning a smartphone. Institutional Review 
Board approval was given by Duke University Health System 
Institutional Review Board for Clinical Investigations (IRB# 
Pro00077319). All participants gave informed consent prior to par-
ticipation in this study.

Study protocol
As described above, this was a field-based study. During the 
12-week protocol, participants wore activity trackers (Garmin 
vívosmart HR, Olathe, KS) and used smartphones to report 
recalled mealtimes. From these collection methods, we deter-
mined behavior variability for the following three behaviors: 
sleep–wake patterns, physical activity, and meals, which were 
then used to calculate the BRI.

Wearable assessments.
Activity trackers were used to assess sleep–wake patterns and 
physical activity during in-class training and field-based training. 
The Garmin vívosmart HR was worn on the wrist 24/7 (except 
when charging device) [13]. This activity tracker provides readouts 
of “activity level” and heart rate, which are used to inform sleep–
wake labeling in 15-minute epochs. Garmin vívosmart HR wear 
time of 80% over 24 hours was the criteria used to determine data 
completeness. To be considered for data analysis, at least 50% of 
days were required to meet wear time criteria. We applied a novel 
sleep-labeling method to improve sleep–wake labeling complete-
ness [13]. This method involves a post-data processing step to 
increase labeling accuracy of daytime sleep episodes—which we 
previously observed were frequently mislabeled as non-sleep 
among nightshift workers. We used this sleep-labeling method 
to determine sleep initiation time and sleep duration. Herein, all 
labeled sleep events were considered regardless of duration of 
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time to enable the capture of napping periods, whereas previous 
approaches only considered sleep events exceeding 4 hours [13].

The Garmin vívosmart HR was also used to determine exer-
cise/physical activity duration and intensity. For this, we used 
the Garmin mean motion intensity score. This is a proprietary 
method that takes acceleration and heart rate into account to 
average motion intensity levels within 15-minute epochs, result-
ing in values ranging from 0 to 7.

Meal timing assessments.
Self-reported mealtimes were collected throughout the duration 
of the study protocol. Starting the day after enrollment, partici-
pants responded to a text message prompt that inquired about 
the times of their major meals during the prior calendar day 
(or prior 24 hours). This text message prompt was sent at 4 pm 
regardless of shiftwork schedule, and participants replied when it 
was convenient for them to do so.

Regularity indices
The behaviors of interest—sleep–wake, physical activity, and 
meals—were separately quantified using the following 3 meas-
ures: SRI [16, 17], Physical Activity Regularity Index (PARI), and 
Mealtime Regularity Index (MRI). Each of these metrics range in 
value from 0 to 100 and are further described below.

The SRI, in which sleep versus awake is assessed using our sleep 
detection algorithm in 15-minute epochs, has been described by 
others [16, 17] but is reiterated here for completeness. For a given 
participant, the SRI is calculated across the J 15-minute epochs in 
K observed days as

SRI = −100+
200

J(K− 1)

J∑
j=1

K−1∑
k=1

δ(skj, s(k+1) j)

where Skj denotes the participant’s sleep–wake status (0 or 1) on day 
k during the jth 15-minute epoch, and δ(skj, s(k+1) j) = I(skj = s(k+1) j) 
is an indicator function that assigns the value 1 if the participant 
has the same status, asleep or awake, during the jth epoch on 
consecutive days, or 0 otherwise. Although the SRI could theo-
retically take values between [−100,100], the developers noted 
that negative values are highly unlikely to be observed and so the 
practical range of values is [0,100] [16].

The PARI, in which activity is binned within 15-minute epochs 
as low [0–3], medium [4–6], or high [7] by rounding mean motion 
intensity scores (from Garmin), is computed similar to the previ-
ously described SRI. Specifically, for a given participant, the PARI 
is calculated across the J 15-minute epochs in K observed days as

PARI =
100

J(K− 1)

J∑
j=1

K−1∑
k=1

δ(akj, a(k+1) j)

where akj denotes the participant’s physical activity level (low, 
medium, or high) on day k in epoch j, and δ(akj, a(k+1) j) is the indi-
cator function comparing activity levels during the same 15-minute 
epoch across consecutive days. The PARI is scaled to take values in 
[0,100] by multiplying the average similarity index by 100. This dif-
ference in scaling, relative to the SRI, is due to the increased variabil-
ity associated with three possible physical activity levels rather than 
two, as for sleep. Scaling the PARI as the SRI would result in negative 
PARI values, which are not easily interpretable.

The MRI assesses day-to-day stability of meal timing. The MRI 
extends the metric CPD, which was initially used to quantify 
circadian misalignment in sleep patterns [19] and later applied 
to mealtimes [18]. CPD measures variability by combining how 
different meal timing is compared to that on the previous day 

(regularity) and how far away meal timing is from the average 
mealtime (alignment). For a given participant and meal, CPD is 
calculated across days k = 1,…, K as follows:

∆ Regularityk = ∆ DDk = Meal timek−1 −Meal timek

∆ Alignmentk = ∆ATk = Averagemeal time−Meal timek

CPDk =
»

∆ DD2
k + ∆ AT2

k

CPD =
1
−
K

K∑
k=1

CPDk

To scale the index value between [0,100] and invert it to indi-
cate regularity, we let CPD∗

m = (1− [CPDm/CPDmax])× 100, where 
CPDmax assumes meal m alternates timing by 12 hours each day 
yielding ∆ DD = 12, ∆ AT = 6, and CPDmax = 6

√
5. The MRI, which 

reflects a participant’s average regularity across meals, in hours, 
relative to a perfectly regular pattern of meal timing, can then be 
defined for meals m = 1,…, M as

MRI =
1
M

M∑
m=1

CPD∗
m.

Self-reported mealtimes for the first meal upon awaking and the 
last meal before sleep, for a maximum of two meals per waking 
period, were used for the MRI calculation. Intermediate meals were 
omitted; this resulted in mealtime windows (or duration of eating) 
corresponding to each waking period that was anchored by the time 
of first and last behavioral meals. Any meal that was the only meal 
reported for a given waking period was characterized as both the 
first meal after waking and last meal before sleeping.

Using the three indices described above, we developed the BRI. 
For a given participant, the BRI is the predicted response from a 
multiple logistic regression model with the SRI, PARI, and MRI as 
predictors and expected regularity status as the response Y, as 
given below:

BRI = Pr (Y = 1 | SRI, ARI, MRI) =
exp (β0 + β1SRI+ β2ARI+ β3MRI)

1+ exp (β0 + β1SRI+ β2ARI+ β3MRI)
.

Here, the expected regularity status corresponds to whether the 
trainee was following a dayshift (1) or nightshift (0) schedule, 
regardless of actual observed behavior, with the a priori assump-
tion that nightshift workers revert to a typical daytime schedule 
on days not working. Succinctly, the BRI measures the degree, 
ranging from 0 to 1, to which a participant is performing behav-
iors in a regular pattern, day to day. A BRI value of 0 indicates 
complete irregularity and 1 indicates perfect regularity.

Each component index was calculated separately for in-class 
training and field-based training. For the MRI, average mealtime 
was determined during in-class training as a circular mean (i.e. in 
polar coordinates then converted back to hours) and used for both 
in-class and field-based training computations. The logistic regres-
sion model producing the BRI was then trained on the component 
indices from the two time periods (in-class training and field-based 
training), where each trainee thus contributed two observations. 
We assumed independence of observations within participants 
because accounting for paired samples with a grouping covariate 
resulted in overfitting and the N − 1 grouping coefficients cannot be 
applied in predictions of new observations.

Statistical analysis
R version 4.2.1 was used for mathematical computation and 
data visualization. Statistical analyses were conducted with 
SAS software, Version 9.4 (SAS Institute Inc., Cary, NC, USA). We 
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first determined the impact of transitioning from in-class train-
ing to field-based training in both the dayshift and nightshift 
group (within-group differences) in the SRI, PARI, MRI, and the 
composite BRI using the Wilcoxon signed rank test. To assess the 
impact of nightshift on behavior regularity, we next determined 
if the in-class to field-training transition was different between 
the dayshift and nightshift groups (between-group differences) 
on the same indices using the Kruskal–Wallis test of equality 
test. Behavior regularity during in-class training was compared 
between the dayshift and nightshift groups using the Wilcoxon 
rank sum test. Regularity indices are summarized and reported 
as median (Q1, Q3). Significance of within- and between-group 
differences was accepted at p < 0.05. Estimated odds ratios, 95% 
confidence intervals, and the corresponding p-values are also 
reported for each of the three component indices of the BRI.

Results
Participant characteristics
The current study cohort consisted of 18 individuals, which is a 
subset of our previous cohort [13]. Participants lacking meal tim-
ing data or who were not assigned to one of the four shiftwork 
schedules were excluded. The mean age was 26 (±6.7) years, and 
mean BMI was 26 (±3.8) kg/m2. Representative polar plots display 

the impact of transitioning from a dayshift to a nightshift sched-
ule on sleep–wake patterns, physical activity, and mealtimes, rel-
ative to maintaining a dayshift schedule (Figure 1).

Effect of shiftwork on behavior regularity: input 
indices
Sleep regularity index.
We have reported the SRI for the larger participant cohort else-
where [13]. Transitioning from dayshift in-class training to day-
shift field-based training did not significantly reduce the SRI (70.3 
vs. 64.9; p = 0.578; Table 1), whereas transitioning from dayshift 
in-class training to nightshift field-based training significantly 
reduced the SRI (56.8 vs. 46.6; p = 0.042; Table 1). However, the 
changes in the SRI were not different between groups (p = 0.342; 
Table 1). No differences were observed between groups during the 
in-class training dayshift periods (p = 0.147). Figure 2 shows den-
sity plots of the SRI during all four conditions.

Physical activity regularity index.
The PARI was not significantly impacted by either transitioning from 
dayshift in-class training to dayshift field-based training (63.5 vs. 63.4, 
p = 0.297; Table 1) or transitioning from dayshift in-class training to 
nightshift field-based training (60.9 vs. 59.0, p = 0.365; Table 1). Thus, 

Figure 1. Panels A and B show representative polar plots for an individual participant during 6 weeks of dayshift in-class training followed by 6 weeks 
dayshift field-based training. Panels C and D show representative polar plots for an individual participant during 6 weeks of dayshift in-class training 
followed by 6 weeks nightshift field-based training. Panels A and C show the occurrence of sleep periods (gray lines), meals (light purple and pink), and 
physical activity bouts (dark purple). Panels B and D show the occurrence of physical activity bouts by intensity, including low (light blue), moderate (blue), 
and high (dark purple). The transition from in-class training to field-based training at 6 weeks is indicated by the black concentric circle.



Erickson et al. | 5

changes in the PARI were not different between groups (p = 0.751; 
Table 1). No differences were observed between groups during the 
in-class training dayshift periods (p = 0.085). Figure 3 shows density 
plots of the PARI during all four conditions.

Meal timing regularity index.
The transition from dayshift in-class training to dayshift 
field-based training was not significantly different (84.5 vs. 
84.1, p = 0.375; Table 1). In contrast, the transition from day-
shift in-class training to nightshift field-based training led to 
a significant reduction in meal timing regularity (85.5 vs. 49.2, 
p = 0.001; Table 1). Moreover, changes in the MRI were signif-
icantly different between groups (p < 0.001; Table 1). No dif-
ferences were observed between groups during the dayshift 
in-class training (p = 0.928). Figure 4 shows density plots of the 
MRI during all four conditions.

Effect of shiftwork on BRI
The transition from dayshift in-class training to dayshift field-
based training on the composite BRI was not significantly 
 different in dayshift (1.00 vs. 1.00; p = 0.250; Table 1). In contrast, 

the transition from dayshift in-class training to nightshift field-
based training reduced composite BRI (1.00 vs. 0.00, p = 0.001; 
Table 1). Moreover, changes in the BRI were significantly differ-
ent between dayshift and nightshift groups (p < 0.001; Table 1). 
No differences were observed between groups during dayshift 
in-class training (p = 0.359). Figure 5 shows density plots of the 
BRI during the transition from dayshift in-class training to day-
shift field-based training (panel A) and dayshift in-class training 
to nightshift field-based training (panel B).

The BRI was calculated and rounded to the nearest integer to 
classify participant behaviors as either regular or irregular. Our 
a priori hypothesis was that dayshift schedules would produce 
a BRI classified as regular (closer to 0.5–1) and nightshift sched-
ules would produce a BRI classified as irregular (closer to 0–0.5). 
As shown in the contingency table in Table 2, this hypothesis 
was confirmed for 24 of the 25 participant dayshift observations 
classified as regular and 10 of the 11 participant nightshift obser-
vations classified as irregular. The odds ratio for each behavior 
component index was calculated, but not significant (Table 3). Of 
the three indices, though, the MRI had the largest odds ratio (2.16) 
compared to the PARI (1.39) and SRI (1.09).

Table 1. Lifestyle Behavior Regularity Indices on Dayshift and Nightshift

Indices Sleep regularity Physical activity regularity Mealtime regularity Behavior regularity

Circadian alignment

  In-class/day shift (N = 7) 70.3 (64.6, 77.1) 63.5 (61.2, 67.7) 84.5 (82.4, 88.5) 1.00 (1.00, 1.00)

  Field-based/day shifts
 A (N = 5) and B (N = 2)

64.9 (55.1, 69.9)
—

63.4 (56.6, 67.8)
—

84.1 (76.8, 91.0)
—

1.00 (0.82, 1.00)
—

  Within-group p-values 0.578 0.297 0.375 0.250

Circadian misalignment

  In-class/day shift (N = 11) 56.8 (48.2, 69.0) 60.9 (56.7, 65.5) 85.5 (83.6, 86.5) 1.00 (1.00, 1.00)

  Field-based/night shifts
 C (N = 5) and D (N = 6)

46.6 (42.6, 56.7)
—

59.0 (52.7, 62.1)
—

49.2 (35.3, 74.0)
—

0.00 (0.00, 0.24)
—

  Within-group p-values 0.042* 0.365 0.001* 0.001*

  Between-group p-values 0.342 0.751 <0.001* <0.001*

Values are presented as median (Q1, Q3). *p ≤ 0.05.
Within-group p-values from Wilcoxon signed rank tests applied to within-group differences.
Between-group p-values from Kruskal–Wallis test of equality of within-group differences.

Figure 2. Figure shows density plots of Sleep Regularity Index (SRI) 
of the participant cohort during the transition from dayshift in-class 
training (in-class (D); red line) to dayshift field-training (dayshift; dashed 
red line), as well as during the transition from dayshift in-class training 
(in-class (N); blue line) to nightshift field-training (nightshift; dashed 
blue line). Each index is expressed as a value ranging from 0 to 100, in 
which 0 reflects irregularity and 100 reflects regularity.

Figure 3. Figure shows density plots of Physical Activity Regularity 
Index (PARI) of the participant cohort during the transition from 
dayshift in-class training (in-class (D); red line) to dayshift field-training 
(dayshift; dashed red line), as well as during the transition from dayshift 
in-class training (in-class (N); blue line) to nightshift field-training 
(nightshift; dashed blue line). Each index is expressed as a value ranging 
from 0 to 100, in which 0 reflects irregularity and 100 reflects regularity.
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Discussion
The primary finding of this study was that nightshift reduced the 
regularity of lifestyle behavior timing, whereas dayshift enabled 
maintenance of lifestyle behavior regularity. This finding is con-
sistent with previous work in shift-working nurses that, through 
the use of self-report logs, indicate a variety of sleep–wake pat-
terns are used to cope with shiftwork demands [20]. We extended 
this earlier work to also consider two additional behaviors that 
are relevant for health, namely physical activity and meal tim-
ing. This current work addresses a knowledge gap by generating 
empirical data to confirm that sleep–wake patterns and meal tim-
ing are irregular during nightshift in the real-world. Controlled 
in-patient studies reveal that following a simulated nightshift 
schedule has acute detrimental consequences on cardiometabolic 

health [10–12]. Our findings of irregular sleep–wake patterns and 
meals during nightshift in sample of police trainees—for which 
shiftwork is unavoidable—supports the translation and relevance 
of in-patient studies to real-world settings of shiftwork character-
ized by repeated bouts of nightshift.

The novel BRI quantifies the degree of regularity with which 
behavior events occur at the same point in time, 24 hours apart, 
on a day-to-day timescale. As a test of internal validity, we com-
pared BRI against the known shiftwork schedule, with the a 
priori expectation that participants on nightshift would exhibit 
reduced behavior regularity, whereas participants on dayshift 
would exhibit maintenance of behavior regularity. On average, 
we had successful predictions for matching of behavior regu-
larity compared to the shiftwork schedule. Specifically, 91% of 

Figure 4. Figure shows density plots of Mealtime Regularity Index (MRI) 
of the participant cohort during the transition from dayshift in-class 
training (in-class (D); red line) to dayshift field-training (dayshift; dashed 
red line), as well as during the transition from dayshift in-class training 
(in-class (N); blue line) to nightshift field-training (nightshift; dashed 
blue line). Each index is expressed as a value ranging from 0 to 100, in 
which 0 reflects irregularity and 100 reflects regularity.

Figure 5. Panel A shows density plots of BRI of the participant cohort during the transition from dayshift in-class training (in-class; red line) to 
dayshift field-training (dayshift; dashed red line). Panel B shows density plots of BRI from participant cohort during the transition from dayshift 
in-class training (in-class; blue line) to nightshift field-training (nightshift; dashed blue line). BRI is expressed as a value ranging from 0 to 1, in which 
0 reflects maximum irregularity and 1 reflects maximum regularity. The dashed gray line marks a reference point of 0.5, in which a BRI between 0.5 
and 1 is classified as “regular” and a BRI between 0 and 0.49 is classified as “irregular.”

Table 2. Comparison of Predicted Behavior Regularity Index 
Versus Actual Shiftwork Schedule

Actual shiftwork schedule

Computed behavior regularity Dayshift Nightshift

  Regular 24 1

  Irregular 1 10

Computed behavior regularity index was calculated using linear regression. 
We then compared the predicted shiftwork schedule (e.g. regular behavior 
index was hypothesized to indicate an actual dayshift schedule), whereas an 
irregular behavior index was hypothesized to indicate an actual nightshift 
schedule).

Table 3. Odds Ratio of Component Input Indices

Parameter Odds ratio 95% CI P-value

Sleep regularity index 1.09 (0.89, 1.34) 0.401

Physical activity regularity index 1.39 (0.86, 2.25) 0.184

Mealtime regularity index 2.16 (0.82, 5.68) 0.119
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the observations from nightshift were classified as irregular and 
96% of the observations from dayshift were classified as regular. 
Indeed, this analysis revealed some interesting misclassifications. 
We observed that one participant on nightshift exhibited regu-
larity in lifestyle behavior patterns by maintaining a “nightshift” 
schedule during non-workdays (Figure 6; panel A). Additionally, 
we observed that one participant exhibited irregularity in life-
style behavior patterns during in-class training (Figure 6; panel 
B), possibly related to illness that altered sleep/wake patterns 
and induced irregular mealtimes (MRI = 70). Overall, these find-
ings suggest that, on average, nightshift disrupts the regularity in 
lifestyle behaviors from day-to-day, whereas dayshift enables a 
maintenance of behavior regularity.

We primarily focused on regularity of three lifestyle behav-
iors, which included sleep–wake patterns, physical activity, and 
meals. We also calculated the odds ratio which describes the 
increase in likelihood that a participant will be classified as 
regular for a 1-point increase in a component index. Of these 
three behaviors, meal timing had the largest odds ratio (2.16) 
relative to the physical activity (1.39) and sleep (1.09), sug-
gesting that this behavior had the strongest influence on the 
BRI, although not statistically significant. The observation that 
nightshift led to irregular meal timing may be concerning in the 
context of weight gain; late meal timing relative to circadian 
phase is associated with increased adiposity [21, 22]. Nightshift 
also led to irregular sleep–wake patterns, in agreement with 
previous work [20]. Physical activity regularity was minimally 
impacted by nightshift, and this finding may be explained by 
the low levels of physical activity in our participant cohort. 
Furthermore, in-class training involved some structured physi-
cal exercise (1–2 times per week), which may have contributed 
to increased regularity. Field training, on the other hand, did 
not involve structured physical exercise, and it is possible that 
this resulted in a slight decline in physical activity regularity by 
some participants. Given the well-accepted health benefits of 
physical activity and exercise, this finding may highlight a targ-
etable behavior for intervention specific to shift workers. Thus, 
an advantage of the BRI is that it is designed to be sensitive to 
changes in behavior patterns in physical activity, sleep–wake, 

and meal timing, over a broad range of adaptations in a variety 
of populations.

As with any study utilizing field-based assessments, we encoun-
tered data missingness regarding self-reported mealtimes and sleep–
wake patterns due to noncompliance. Since self-reported mealtimes 
focused on main meals, this may have resulted in missing snacking 
behavior. In addition, there may be some misclassification in sleep–
wake patterns—specifically when the sleep detection algorithm noted 
sleep periods while the participant was supposedly in the classroom or 
on patrol due to low activity levels and heart rate. In these situations, 
classification of meals relative to sleep was done manually and sub-
jectively, considering the participants’ behavior patterns on surround-
ing days when both meal and activity data were collected. In addition, 
meals reported during the detected sleep periods were not accounted 
for in the analysis (e.g. the computation of MRI).

In summary, we observed that nightshift imposed a rapid and 
sustained reduction in regularity of lifestyle behavior timing as 
compared to dayshift. We also identified “behavior” outliers, in 
which the anticipated behavior regularity did not necessarily match 
with the shiftwork schedule, suggesting some variation in behav-
ior strategies to cope with shiftwork. Through the use of wearable 
activity trackers and mobile devices, we demonstrate the use of a 
novel BRI metric that quantifies lifestyle behavior regularity in real-
world settings of shiftwork. One advantage of this approach is that 
it is feasible to scale these assessments to larger participant cohorts 
across long time domains. Future studies might consider using the 
BRI to gain new insight into patterns of behavior in other popula-
tions experiencing circadian disruption.
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