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Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network
pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from
the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets
were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between
YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses
were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking
approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF
and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were
screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in
treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results
indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the
multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific
basis for the intervention of asthma by traditional Chinese medicine YPF.

1. Introduction

Asthma is a complex chronic airway inflammatory disorder
characterized by recurrent wheezing, shortness of breath,
and chest tightness, which usually starts in childhood [1,
2]. The disease presents a global healthcare burden, with
more than 300 million people suffering from asthma globally
[3]. Standardized asthma treatments are vital for improving
quality of life. Currently, inhalant therapy is performed as
the main treatment for asthma control, including inhaled
glucocorticoids (ICS), β2-receptor agonist, and M-receptor
blockers [4, 5]. However, fear of suspicious side effects from
some inhaled drugs, especially ICS, leads to poor adherence

and is associated with poor asthma control [6, 7]. Biological
preparations such as omalizumab were introduced as severe
asthma treatments, but the strict clinical indications and the
relatively high price limit the application [8–10]. Therefore,
a safer and more effective therapeutic regimen or alternative
therapy for asthma is still needed.

Traditional Chinese medicine (TCM) has a long history.
In recent years, great attention has been focused on TCM
because of its relative safety and unique superiority. TCM
such as Xin Guan-1 Formula and LianHuaQingWen Cap-
sule had significant beneficial effects in treating patients
infected with COVID-19 [11, 12]. YuPingFeng (YPF) is a
classical TCM that comes from famous doctors of the Yuan
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Dynasty in China. The YuPingFeng formula consists of
three herbs: Radix Astragali (Huang Qi (HQ)), Rhizoma
Atractylodis Macrocephalae (Bai Zhu (BZ)), and Radix
Saposhnikoviae (Fang Feng (FF)). A previous study [13]
found that YPF is effective for treating chronic obstructive
pulmonary disease (COPD), and the researchers explored
the potential mechanisms behind the curative effects of the
drug based on network pharmacology technology. A recent

study has indicated that YPF is beneficial for relieving the
relapse of asthma induced by house dust mites [14]. COPD
and asthma are linked diseases; therefore, understanding
the relationship between targets and the mechanism of
YPF against asthma would be worthy of research.

Network pharmacology is an emerging discipline that
combines bioinformatics, molecular biology, and traditional
pharmacology [15]. It conducts systematic analysis by
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Figure 1: Flowchart of network pharmacology and molecular docking.
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constructing a “drug-gene-target-disease” interaction net-
work and reveals the synergistic interaction mechanism of
the drug against disease. Based on the scientific strategy of
network pharmacology, the current research is aimed at sys-
tematically exploring the relevant targets and potential sig-
naling pathways of YPF against asthma. The entire
workflow of this study is shown in Figure 1.

2. Materials and Methods

2.1. YPF Active Ingredients and Targets. We obtained the
YPF active ingredients and the related targets from the Tra-
ditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform (TCMSP) (https://tcmsp-e.com/)
[16], which is an open database of Chinese herbal medicines
and shows the relationships between drugs, targets, and dis-
eases. The active ingredients of the YPF herbs, including
“Huang Qi,” “Bai Zhu,” and “Fang Feng,” were screened
with the conditions oral bioavailability ðOBÞ ≧ 30% and
drug-likeness ðDLÞ ≧ 0:18 [17]. The protein targets related
to active ingredients were also retrieved from TCMSP. After-
ward, all the obtained targets were standardized with the
UniProt database (https://www.uniprot.org/). Finally, valid
gene symbols were obtained after removing mismatches
and redundant duplicates.

2.2. Prediction of Asthma-Related Target Genes. Targets rel-
evant to asthma were collected from five databases with
the keyword “asthma”: the Human Gene Database (https://
www.genecards.org/, GeneCards), Online Mendelian Inheri-
tance in Man (https://omim.org/, OMIM), DrugBank Online
(https://go.drugbank.com/, DrugBank), Pharmacogenomics
Knowledgebase (https://www.pharmgkb.org/, PharmGKB),
and Therapeutic Target Database (http://db.idrblab.net/ttd/,
TTD). The union of all the search results was used to establish

an asthma-related gene set, and the set was visualized by R
3.6.3 software.

2.3. Network Construction

2.3.1. Construction of an Ingredient-Target Network. The
active ingredients of YPF and the asthma-related genes were
taken as an intersection. Then, the ingredient-target network
was established by Cytoscape v3.8.0 software.

2.3.2. Construction of Protein-Protein Interaction (PPI)
Network. Overlaps between YPF-related targets and
asthma-related targets were obtained to clarify the interac-
tion between drugs and disease. These overlaps were put into
the STRING database (https://string-db.org/) to construct
the PPI network. Parameters were set to “Homo sapiens”
in the organism and the minimum required interaction
score cutoff set at 0.400. Disconnected nodes were hidden
in the network. Then, the PPI network was constructed,
and the result was visualized by Cytoscape v3.8.0 software.

2.3.3. Identification of Core Genes. To analyze further into
the PPI network, two approaches were followed to screen
core genes. In the first approach, core genes were screened
with topological properties by CytoNCA plugin in Cytos-
cape. Three parameters, “Betweenness Centrality (BC),”
“Closeness Centrality (CC),” and “Degree Centralities
(DC),” were selected to calculate the gene scores. Genes with
score values higher than the median value were obtained. To
identify crucial core genes, the filter process was performed
twice. A second approach involves using the Cytohubba plu-
gin of the Cytoscape software. We used the plugin to select
the top 10 genes based on a Maximum Neighborhood Com-
ponent (MNC) calculation method. The common targets set
from both ways were regarded as the core genes.
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Figure 2: Identification of active ingredients and targets. (a) Identification of the asthma-related genes from five online databases. (b)
Identification of YPF-asthma common targets.
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Figure 3: Continued.
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2.4. GO and KEGG Enrichment Analysis. To analyze the
molecular biological functions of YPF-asthma common tar-
gets, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were performed. The GO
enrichment analysis involved three main categories: biologi-
cal process (BP), cellular component (CC), and molecular
function (MF). KEGG enrichment analysis was utilized for
revealing complicated biological pathways. R 3.6.3 software
was used to perform both GO and KEGG analysis, with
the screening criterion as the following filters: q value < 0.05.

2.5. Molecular Docking. Molecular docking simulation tech-
nology was used to predict molecular targets of YPF for
treating asthma. The 2D structures of small molecule ligands
were downloaded from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). Conversion of 2D structures
into 3D formats with minimum energy was performed by
ChemBio 3D software. The forms of protein receptors with
the screen criteria of “Homo sapiens,” “X-ray Diffraction,”
and “Protein” were downloaded from the RCSB Protein
Data Bank database (PDB, https://www1.rcsb.org/). The
ligands and the receptors were prepared in PyMOL v2.4.0
and AutoDock v1.5.6 by removing water molecules, adding
hydrogen atoms and charges. Afterward, AutoDock Vina
was used to performing molecular docking. The results were
analyzed by the Protein-Ligand Interaction Profiler (PLIP)
web tool, and finally, the output results were visualized using
LigPlot v2.2.4 and PyMOL software.

3. Results

3.1. Screening of Active Ingredients and Targets. With the
screen criteria of OB ≧ 30% and DL ≧ 0:18, a total of 45
active ingredients were obtained, of which 20 were from
HQ, 7 from BZ, and 18 were from FF. At the same time,
716 YPF-related targets were identified based on the TCMSP
database. After removing redundant ones and standardized
by UniProt, we finally recognized 100 potential targets of
the 35 active ingredients for further analysis. Detailed infor-
mation on these active compounds is listed in Supplementary
Table S1. These ingredients were essential to the treatment of
related disorders through a synergistic action. Besides, we
obtained 141, 1388, 16, 1, and 131 asthma-related genes
from DrugBank, GeneCards, OMIM, PharmGKB, and TTD
databases, respectively (Figure 2(a)). By comparing the
YPF-related genes and asthma-related genes, we found that
asthma shares 60 targets with YPF (Figure 2(b)). These 60
common targets were obtained for analysis in the next step.

3.2. Common Target-Active Ingredient Network. A
compound-target network was constructed by linking the
active ingredients of YPF with their targets. We visualized
the network with 95 nodes and 240 edges by Cytoscape
3.8.0. (Figure 3(a)). Calculated with Analyze Network plugin
and based on degree, the top five significant ingredients of
YPF were quercetin, kaempferol, beta-sitosterol, 7-O-methyli-
somucronulatol, wogonin, and (6aR,11aR)-9,10-dimethoxy-
6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol.
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Figure 3: Network construction. (a) Compound-target network. The blue nodes represent drug-disease common targets. The larger the
node, the more crucial it is. The yellow nodes represent active ingredients of Huang Qi (HQ). The pink nodes represent active
ingredients of Fang Feng (FF). The green nodes represent active ingredients of Bai Zhu (BZ). The orange nodes represent the common
active ingredients of the BZ and HQ. (b) PPI network. The darker the color, as well as the larger the node, the more significant it is.
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Figure 4: Identification of core genes. (a) Identification by CytoNCA. (b) Identification by Cytohubba. (c) Screening of core genes by taking
an intersection.
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3.3. PPI Network. PPI network analysis on the asthma targets
was performed by STRING online database, and the results
were visualized by Cytoscape software. The PPI network of
these related targets was built with 59 nodes and 441 edges,
and the average node degree was 15 (Figure 3(b)). In this
PPI network, nodes represent proteins, and edges represent
protein-protein associations.

3.4. Identification of Core Genes. The CytoNCA plugin in
Cytoscape was used for topological analysis of the targets in
the PPI network. In this study, the topological analysis was

based on three topological parameters: Betweenness, Close-
ness, and Degree. After the first filter process, screening with
BC > 18:69, CC > 0:52, andDC> 13, 22 nodes with 151 edges
were obtained. In the second filter process screening with BC
> 5:00, CC > 0:74, and DC > 13:5, finally, we identified 9
highly connected nodes (Figure 4(a)). Besides, the Cytohubba
plugin of the Cytoscape software was used to analyze the top
10 genes based on the MNC method (Figure 4(b)). The Venn
diagram (Figure 4(c)) showed the intersection of two gene sets,
and seven core genes were obtained: IL6, CASP3, EGFR,
MAPK8, ESR1, CCND1, and PPARG.

CCND1

Lipid and atherosclerosis
Chemical carcinogenesis−receptor activation 
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TNF signaling pathway
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Figure 5: GO and KEGG analysis of asthma-related genes. (a) The bar diagram showed the top ten significantly enriched terms in BP, CC,
and MF, respectively. (b) The top five BP terms and the related genes. (c) The bubble diagram of the top 20 KEGG pathways. Gene ratio
represents the enriched genes to all genes. The count represents the number of enriched genes. (d) The top five KEGG pathways and
related genes.
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3.5. GO and KEGG Enrichment Analysis. To further explore
the effector mechanism of YPF in treating asthma, the drug-
disease common targets were analyzed by the R package
“cluster profiler” to perform GO and KEGG analysis. In
the GO functional enrichment, common targets were anno-
tated in three parts: BP, CC, and MF. We obtained 1312 GO
enrich results with confidence levels of p value < 0.05 and q
value < 0.05. A total of 1158 terms about biological processes
were selected, mainly including response to metal ion
(GO:0010038), response to steroid hormone (GO:0048545),
reactive oxygen species metabolic process (GO:0072593),
cellular response to oxidative stress (GO:0034599), and
response to oxidative stress (GO:0006979) (Figures 5(a)
and 5(b)). A total of 60 terms about cellular components were
obtained, including membrane raft, membrane microdomain,
and membrane region. Meanwhile, 94 molecular function
terms would be related to acetylcholine receptor activity, G
protein-coupled amine receptor activity, and G protein-
coupled serotonin receptor activity. KEGG pathway enrich-
ment analysis was carried out to indicate signaling pathways
in connection with the antiasthma effect of YPF. A total of
125 pathways were meaningfully enriched, and the 20 top-
rank pathways were screened out (Figures 5(c) and 5(d)).
Particularly, based on literature research reports [18–20]
and the KEGG results, the potential mechanism of YPF in
treating asthma was mainly focused on the TNF signaling
pathway, PI3K-Akt signaling pathway, IL-17 signaling path-
way, and Th17 cell differentiation (Table 1). The targets of
YPF active ingredients were enriched in different pathways,
interacting and coordinating with each other.

3.6. Validation by Molecular Docking. The top two active
compounds, quercetin and kaempferol, were selected to
perform molecular docking with six relevant core genes
(IL6, EGFR, CCND1, CASP3, MAPK8, and PPARG). The
stability of the ligand-receptor complex was correlated with
the binding energy. The lower the value of binding energy,
the more stable the docking complex [21]. As shown in
Table 2, IL6, EGFR, and CCND1 demonstrated strong bind-
ing to quercetin; similarly, CASP3, MAPK8, and PPARG
demonstrated strong binding to kaempferol. A visual expla-
nation of docking results analyzed the interaction between
YPF-active ingredients and the potential targets of asthma
(Figure 6). We found that quercetin had the best binding
to EGFR with the binding energy -8.8 kcal/mol, and hydro-

phobic interactions and hydrogen-bonding interactions
were the primary interaction forms.

4. Discussion

Asthma is a complicated respiratory tract disorder charac-
terized by airway hyperresponsiveness and inflammation
[22, 23]. The etiology of asthma is not completely clear,
and it is generally believed that its occurrence is affected by
environmental and genetic factors [24]. As the incidence of
asthma continues to increase, the economic and social bur-
den of the disease was relatively high [25]. YPF, as a tradi-
tional Chinese patent medicine, has been widely used for a
long history. In an animal experiment [26], YPF has been
shown to relieve airway inflammation in asthmatic mice.
Therefore, we identified the potential key pathways based
on network pharmacology to provide a theoretical founda-
tion for subsequent investigations.

In the YPF’s active ingredient-target network, a total of
60 target genes by 35 active components in the YPF were
selected. The top two ingredients, quercetin and kaempferol,
with the degree of 44 and 25, respectively, were chosen to
perform molecular docking with six related core genes.

Quercetin is the principal representative of natural flavo-
noids and widely distributed in diverse food and plants [27].
A variety of biological functions of quercetin have been
reported [28–30], such as anti-inflammation, antivirus, anti-
oxidant activity, and immunoregulation effect. Mlcek et al.
found that quercetin processes antiallergic effects, connected
with inhibiting the histamine release from mast cells [31]. A
pilot study [32] found that quercetin does great benefits
for subjects suffering from asthma. Kaempferol belongs
to the family of flavonoids, present in a lot of fruits and

Table 2: Molecular docking results.

Core genes (PDB ID) Active ingredients
Binding energy
(kcal/mol)

IL6 (1ALU) Quercetin -6.5

EGFR (1XKK) Quercetin -8.8

CCND1 (2W9F) Quercetin -7.1

CASP3 (3HOE) Kaempferol -7.1

MAPK8 (3PZE) Kaempferol -8.0

PPARG (2Q59) Kaempferol -8.4

Table 1: Potential pathways enriched by target genes.

Term Description GeneRatio q value GeneID

hsa04668 TNF signaling pathway 11/58 6:50E − 09 IL6/CASP3/CASP8/IKBKB/MAPK8/ICAM1/SELE/VCAM1/FOS/NFKBIA/
IRF1

hsa04151
PI3K-Akt signaling

pathway
14/58 9:64E − 07 CHRM1/CHRM2/HSP90AA1/CCND1/BCL2/IL6/MCL1/PRKCA/IKBKB/

EGFR/RAF1/ERBB2/NOS3/IGF2

hsa04657
IL-17 signaling

pathway
8/58 1:78E − 06 HSP90AA1/IL6/CASP3/CASP8/IKBKB/MAPK8/FOS/NFKBIA

hsa04659
Th17 cell

differentiation
8/58 7:84E − 07 HSP90AA1/IL6/IKBKB/MAPK8/AHR/FOS/NFKBIA/HIF1A
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vegetables [33]. The properties of fighting free radicals,
anti-inflammatory activity, and the anticancer effect of
kaempferol have been reported [34]. Lin et al. found that
kaempferol can regulate the transcriptional activity of
FOXP3 and enhance Treg cells’ suppressive activity [35]. Pre-
vious studies found that kaempferol ameliorates airway
inflammation as well as antagonizes allergic reactions [36].

In this study, we constructed the PPI network; IL6,
CASP3, EGFR, MAPK8, ESR1, CCND1, and PPARG were
found to be the core genes of YPF in treating asthma. These
genes are connected with host immunity, cell apoptosis, sig-
nal transduction, and cell cycle regulation. IL6 is a multi-
functional cytokine and is generally related to eosinophil
and neutrophil recruitment [37]. High blood levels of IL-6
were reported as a biomarker of asthma exacerbation [38].
In the execution of cell apoptosis, it has been suggested that
CASP3 is a crucial enzyme. The upregulated expression of
CASP3 led to apoptosis of epithelial cells in asthma [39].
EGFR, as well as MAPK8, played essential roles in airway
inflammation, such as mucus production and secretion
[40–42]. ESR1, one of the asthma candidate genes, is
involved in pulmonary inflammation, causing a decline in
lung function [43, 44].

The signal nucleotide polymorphism in CCND1 was
linked with obesity [45]; meanwhile, it might participate in
the process of asthma initiation and development [46].
PPARG is a central regulator in adipogenesis; PPARG-
dependent transcription plays an essential role in regulating
mitochondrial function [47, 48]. As is known to all, PPARG

could promote adipocyte differentiation and adipogenesis
[49]; moreover, obesity is a risk factor for asthma [50]. Con-
sequently, PPARG may be a therapeutic target for obese
asthma.

GO analysis indicated the diverse and complex synergis-
tic effects of YPF and showed a few BP categories crucially
involved with asthma. The top ten BP terms revealed that
YPF could regulate the oxidative stress process and the
immune response. There is an extraordinarily complex net-
work between multiple cytokines and a number of signal-
transduction pathways involved in the pathophysiological
process of asthma [51]. KEGG enrichment results showed
that various targets of YPF served crucial roles in asthma-
related pathways, such as the TNF signaling pathway,
PI3K-Akt signaling pathway, and IL-17 signaling pathway.

Further molecular docking results suggested that the
docked small molecule ligands exhibited the lowest binding
energy with a good affinity toward macromolecular protein
receptors. All the binding energies were less than 6 kcal/
mol. Quercetin was verified as the most potent binding
activity with EGFR, while kaempferol had the most robust
combination with PPARG.

5. Conclusion

In summary, this sufficiently thorough bioinformatic analy-
sis provided plentiful testable hypotheses about the potential
molecular mechanisms of YPF in treating asthma. It is indi-
cated that the detailed action mechanisms of YPF in the
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Figure 6: Molecular docking of active ingredients and core genes: (a) IL6-quercetin, (b) EGFR-quercetin, (c) CCND1-quercetin, (d) CASP3-
kaempferol, (e) MAPK8-kaempferol, and (f) PPARG-kaempferol.
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treatment of asthma involve multiple ingredients, targets,
and signaling pathways. Therefore, traditional Chinese med-
icine such as YPF could be considered as a supplementary
regimen for future asthma therapy.
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