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Immune genes play an important role in the development and progression of

acute myeloid leukemia (AML). However, the role of immune genes in the

prognosis and microenvironment of AML remains unclear. In this study, we

analyzed 151 AML patients in the TCGA database for relevant immune cell

infiltration. AML patients were divided into high and low immune cell

infiltration clusters based on ssGSEA results. Immune-related pathways, AML

pathways and glucose metabolism pathways were enriched in the high immune

cell infiltration cluster. Then we screened the differential immune genes between

the two immune cell infiltration clusters. Nine prognostic immune genes were

finally identified in the train set by LASSO-Cox regression. We constructed a

model in the train set based on the nine prognostic immune genes and validated

the predictive capability in the test set. The areas under the ROC curve of the train

set and the test set for ROC at 1, 3, 5 years were 0.807, 0.813, 0.815, and 0.731,

0.745, 0.830, respectively. The areas under ROC curve of external validation set in

1, 3, and 5 years were 0.564, 0.619, and 0.614, respectively. People with high risk
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scores accompanied by high TMB had been detected with the worst prognosis.

Single-cell sequencing analysis revealed the expression of prognostic genes in

AMLcell subsets and pseudo-timeanalysis described the differentiation trajectory

of cell subsets. In conclusion, our results reveal the characteristics of immune

microenvironment and cell subsets of AML, while it still needs to be confirmed in

larger samples studies. The prognosis model constructed with nine key immune

genes can provide a new method to assess the prognosis of AML patients.

KEYWORDS

acute myelogenous leukemia, single-cell RNA-seq, prognostic model, SsGSEA, tumor
immune microenvironment

Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous

hematological malignancy characterized by uncontrolled

proliferation and differentiation of hematopoietic progenitor

cells/stem cells in bone marrow, blood, and other hematopoietic

organs (Medinger and Passweg, 2017; Short et al., 2018). Cancer

statistics 2019 showed that the 5-years relative survival rate for AML

was 66.4% in children and 64.2% in adolescents from 2008 to 2014

(Siegel et al., 2019). Themedian overall survival (OS) after 5 years in

adults (18–60 years) with AML was approximately 40% (Schlenk

and Döhner, 2013). Current studies have shown that prognosis of

AML is closely related to white blood cell count and cytogenetic

abnormalities (Kalaiyarasi et al., 2019; Tallman et al., 2019). The

main treatment strategies for AML are intensive induction

chemotherapy and post-remission therapy. Although most AML

patients initially achieve significant remission with chemotherapy.

Complete elimination of AML cells remains rare, with no

substantial improvement in patient survival (Döhner et al., 2010;

Hosono, 2019). As the process of translating the relevant genomic

landscape knowledge of AML into clinical treatment has only just

begun, the identification of new potential biomarkers will contribute

to the diagnosis and prognosis of AML patients.

AML has long been considered an immunoreactive

malignancy and multiple mechanisms are implicated in

AML’s immune evasion (Passweg et al., 2019). AML immune

escape is caused by both intrinsic and extrinsic

immunosuppressive mechanisms (Teague and Kline, 2013;

Mittal et al., 2014). Intrinsic immunosuppressive effects

include upregulation of anti-apoptotic mechanisms, regulation

of immunomodulatory checkpoints and loss of tumor antigen

expression. Extrinsic mechanisms include the accumulation of

regulatory cells such as regulatory T-cells (Tregs) and secretion of

immunosuppressive cytokines (Austin et al., 2016). The

production of immune escape depends on the tumor

microenvironment (TME). TME is a dynamic system

composed of extracellular matrix, stromal cells and immune

cells (Ayala et al., 2009; Roma-Rodrigues et al., 2019). Similar

to most tumors, functional interactions between leukemic cells

and the bone marrow immune microenvironment constitute a

unique hallmark of AML (Isidori et al., 2021). Although the

prognosis of AML patients currently mainly depends on cellular

and molecular genetic characteristics, the TME also plays an

extremely important role in the progression and treatment of

AML (Yehudai-Resheff et al., 2019). It was reported that the

leukemia TME inhibits the growth of normal hematopoietic cells

while promoting and maintaining the proliferation and long-

term viability of leukemia cells (Basak et al., 2010). Immune

response in the tumor microenvironment is a significant factor in

the invasion and progression of various tumors, among which

immune cell types, cytokines and immune genes have been

widely studied as prognostic markers in many tumors such as

lung cancer, ovarian cancer and colorectal cancer (Frey et al.,

2017; Lee et al., 2017). In addition, the discovery of numerous

immune checkpoints also offers a broader therapeutic prospect

for AML and other malignancies (Zhang et al., 2009). Therefore,

identifying the characteristics of TME in AML is crucial for

designing personalized immune therapy for AML patients.

Single-cell sequencing (scRNA-seq) is a common technique to

explore the heterogeneity and diversity of tumor cells. It can

describe the functional state of a cell by detecting the

transcription level of a single cell (Petti et al., 2019). In AML,

enhanced T-cell-mediated clearance of AML is an attractive

therapeutic strategy, but immunotherapy trials have been less

successful than in other cancers (Lichtenegger et al., 2017).

ScRNA-seq provides a powerful means to characterize malignant

and stromal cell populations in tumors, which may address

questions related to dryness, developmental hierarchies, and

interactions between malignant and immune cells (Giustacchini

et al., 2017). Therefore, scRNA-seq can further explore the

composition and functional status of various immune cell

subsets in the AML bone marrow microenvironment (Miles

et al., 2020). It could lead to exciting breakthroughs in cancer

genomics in the future.

In this study, two immune cell infiltration clusters were

identified based on The Cancer Genome Atlas (TCGA)

database. We compared the characteristics of TME and

pathway enrichment differences between the two clusters. The

prognostic model was constructed using differential immune

genes to accurately predict the prognosis of AML patients.

ScRNA-seq was used to study the expression characteristics

and differentiation trajectory of prognostic immune genes in
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AML cell subsets. Our comprehensive analysis of AML

populations with different immune statuses may provide a

new reference for the characteristics, treatment and prognosis

of AML.

Materials and methods

Acquisition and pre-processing of gene
and clinical data

RNA sequencing data of 151 AML patients’ samples and the

clinical data of 200 AML patients’ samples were downloaded from

TCGA database (https://www.cancer.gov/about-nci/organization/

ccg/research/structural-genomics/tcga), 142 samples with both

clinical information and sequencing data. In addition,

transcriptome and clinical information from 422 HGU-133A

AML patients in the cohort GSE37642 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi) were downloaded from the Gene Expression

Omnibus (GEO) database for external validation. Then, we

downloaded the Genome Reference Consortium Human Build 38

(GRCh38) (https://www.gencodegenes.org/human/) gene annotation

file and performed gene annotation for all gene probes. Single-cell

sequencing data was downloaded from chip GSE126068 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126068) which

included 5 patients. The original file included 26,454 genes and

813 cells, with 400 cells detected at diagnosis and 413 cells detected at

relapse. Normal blood samples were collected from the Genotype-

Tissue Expression (GTEx) database (https://xenabrowser.net/

datapages/?cohort=GTEX&removeHub=https%3A%2F%2Fxena.

treehouse.gi.ucsc.edu%3A443). The RNA sequencing data were

transcribed fragments per kilobase per million mapped reads

(FPKM) normalized. We used the combat function in the “sva”

package of R language to remove the batch effect of high-throughput

data to eliminate the data differences caused by different platforms.

Single sample gene set enrichment
analysis algorithm and clustering of acute
myeloid leukemia patients

Single sample gene set enrichment analysis (ssGSEA), an

extension of Gene Set Enrichment Analysis (GSEA),

calculates separate enrichment scores for each sample and

gene set (Subramanian et al., 2005). In our study, ssGSEA

algorithm calculated a scoring of immune cell types and

immune pathways against innate and adaptive immune for

each sample. Next, we used “hclust” clustering method to

cluster all AML patients according to ssGSEA scores and

divide them into clusters with high immune cell infiltration

and low immune cell infiltration. The t-distributed stochastic

neighbor embedding (t-SNE) algorithm was used to verify

and visualize the clustering results.

Comparison of clinical features and
immune-related characteristics between
the two cluster patients

The ESTIMATE (Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data) (version 2.15.3)

algorithm from the website (https://sourceforge.net/projects/

estimateproject/) was used to calculate the estimated score,

immune score and stromal score (Yoshihara et al., 2013). We

used the Wilcoxon test to assess the difference between the two

groups for the stromal score, immune score, and ESTIMATE

score. The R packages “ggpubr” and “pheatmap” were applied to

visualize our results. Next, the CIBERSORT (Cell type

Identification by Estimating Relative Subpopulations of RNA

Transcription) method was applied to assess the proportion of

22 immune cell subtypes in AML patient samples. Wilcoxon test

was also used to evaluate the differences in the degree of

infiltration of 22 immune cells between the two clusters.

Human leukocyte antigen, genome set
enrichment analysis, and clinical factors
differentials analysis between the two
cluster patients

A total of 24 HLAs (human leukocyte antigen), including HLA-

E, HLA-DPB2, HLA-C, HLA-J, HLA-DQB1, HLA-DQB2, HLA-

DQA2, HLA-DQA1, HLA-A, HLA-DMA, HLA-DOB, HLA-DRB1,

HLA-H, HLA-B, HLA-DRB5, HLA-DOA, HLA-DPB1, HLA-DRA,

HLA-DRB6, HLA-L, HLA-F, HLA-G, HLA-DMB, and HLA-DPA1

were acquired from a previous study (Gonzalez-Galarza et al., 2013;

Mack et al., 2013).Meanwhile, we downloaded themutation data and

tumor mutation burden (TMB) data from TCGA database and

further extracted them using “perl” (http://www.perl.org/) language.

Similarly, we used the Wilcoxon test to assess whether HLAs and

clinically relevant factors differed between the two clusters. GSEAwas

also performed between two clusters to find enriched biological

pathways. Kyoto encyclopedia of genes and genomes (KEGG)

gene sets (c2.cp.kegg.v7.4.symbols.gmt) and phenotype tag

expression files were loaded into the GSEA software and run

1,000 times to demonstrate the function consistently. The

screening criteria were nominal (NOM) p-value < 0.05 and |

normalized enrichment score (NES)| > 1.

Construction and validation of prognostic
modeling by immune-related genes

The “limma” package was used to identify the different genes

between two different immune clusters in the R language.

FDR <0.05 and | logFC (fold change) | > 2 were used as

thresholds. 1793 immune-associated genes were downloaded

from the ImmPort database (https://www.immport.org/home)
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and further intersected with the differential genes to obtain

immune-associated differential genes. We divided the AML

patients into the train set and test set according to the ratio of

7:3. Next, Cox regression analysis and Least absolute shrinkage

and selection operator (LASSO) regression were used to screen

for immune genes associated with AML prognosis in the train set.

Patients in the train, test and validation sets were assigned to the

high-risk and low-risk groups based on their median risk score.

The calculating formula is:

risk score � ∑
n

i�1
coef i*xi

where coⅇf i means the coefficients, xi is the FPKM value of each

gene associated with the prognosis of AML patients. We

constructed a prognostic model by immune-related genes and

tested the survival scores, risk status and predictive power of this

model for survival in AML patients by the Receiver Operating

Characteristic (ROC) curve among the train set, the test set and

external set. Finally, we integrated the GTEx database and TCGA

data of leukemia patients, and then compared the expression

levels of all the prognostic immune genes related to leukemia in

normal people and leukemia patients.

Constructing a predictive nomogram

Nomogram is widely used to predict the prognosis of cancer

(Iasonos et al., 2008). All independent prognostic factors,

including age, race, bone marrow blast cell percent value,

hemoglobin value, monocyte percent value, leukocyte value,

FAB stage and risk score were identified by univariate Cox

regression and multivariate Cox regression analysis to build a

nomogram to investigate the probability of 1 year, 3 years, and

5 years overall survival (OS) of AML. Finally, calibration curves

were performed to determine the predictive power of the

nomogram for patient survival.

Discovery of co-expressed transcription
factors and construction of PPI networks

318 transcription factors were downloaded from the

Cistrome database (http://www.cistrome.org/). Pearson

correlation analysis was used to find transcription factors

associated with prognosis-related immune genes. We next

mapped the PPI (protein-protein interaction) network by

string website (https://www.string-db.org/) on the immune

prognostic genes and transcription factors with co-expression

relationships. The screening criteria were R ≥ 0.4 and p < 0.001.

Differences in immune checkpoint, tumor
mutation characteristics, tumor mutation
burden and immunotherapy response
between different prognostic risk groups

Differences in the 5 common immune checkpoints and

mutation frequency between high and low risk groups were

further compared by the Wilcoxon test. The five common

immune checkpoints are programmed death 1 (PD-1) (Sharpe

and Pauken, 2018) and its ligand 1 (PD-L1) (Daassi et al., 2020),

cytotoxic T lymphocyte antigen 4 (CTLA-4) (Agdashian et al.,

2019), mucin domain-containing molecule-3 (TIM-3) (Wolf

et al., 2020) and lymphocyte-activation gene 3 (LAG3).

Spearman correlation method was further applied to explore

the correlation between risk scores and immune checkpoints.

Since TMB has been identified as a biomarker for several cancer

TABLE 1 Baseline characteristics for 200 patients with AML in the
TCGA database.

Characteristics Cases (%)

Gender

Female 91 (45.5)

Male 109 (54.5)

Age (year)

10~ 1 (0.5)

20~ 16 (8.0)

30~ 21 (10.5)

40~ 26 (13.0)

50~ 44 (22.0)

60~ 54 (27.0)

70~ 32 (16.0)

80~ 6 (3.0)

Race

Asian 2 (1.0)

Black or African American 15 (7.5)

Not reported 2 (1.0)

White 181 (90.5)

FAB Category

M0 Undifferentiated 19 (9.5)

M1 44 (12.5)

M2 44 (12.5)

M3 21 (10.5)

M4 42 (21.0)

M5 22 (11.0)

M6 3 (1.5)

M7 3 (1.5)

Not classified 2 (1.0)

Ethnicity

Hispanic or Latino 3 (1.5)

Not Hispanic or Latino 194 (97.0)

Not reported 3 (1.5)
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types in response to immune checkpoints (Merino et al., 2020),

we further analyzed differences in TMB between high and low

risk groups. Besides, to further explore the relationship between

TMB and survival of AML, AML patients in the TCGA database

were divided into high TMB group and low TMB group

according to the median value of TMB. Kaplan-Meier survival

curve was used to determine whether there was the difference in

survival between high and low TMB groups. AML patients in the

TCGA database were divided into four groups: high risk with

high TMB group, high risk with low TMB group, low-risk with

high-TMB group, and low-risk with low-TMB group based on

the median risk score and median TMB. Similarly, Kaplan-Meier

survival curve was used to determine whether there was

difference in survival among four groups. Tumor Immune

FIGURE 1
Flow chart.
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Dysfunction and Exclusion (TIDE) algorithms were widely used

to predict response to ICI therapy (anti-PD-1 and CTLA-4

therapy). ICI responses and measurements were assessed in

the high-risk and low-risk groups using the TIDE algorithm

(Jiang et al., 2018).

Single-cell sequencing analysis

We first integrated the expression levels of the genes in the

diagnosis and relapse parts into two matrixes, respectively. Then

two matrixes were transformed into “Seurat” objects and carried

out quality control and standardization. The

“PercentageFeatureSet” function was used to calculate the

percentage of mitochondrial genes. Due to the loss of

cytoplasmic RNA and leakage of mitochondria from the

damaged membrane when the cell is destroyed. So, we

removed more than 5% of the cells with mitochondrial genes

and fewer than 50 genes. The “FindVariableFeatures” function

was used to find the first 1,500 or 5,000 highly variable genes. To

preserve the information of the original variables as much as

possible, we used principal component analysis (PCA) to reduce

the dimensionality of the data by the information of 1,500 or

5,000 highly variable genes. We included statistically significant

principal components for the next subsets of cell annotation.

Next, the function “FindAllMarkers” was used to identify

overexpressed genomes and the “SingleR” package was used to

annotate cell subsets.

Pseudotime analysis

To study the developmental trajectory of various cells in

AML during tumor development and progression, monocle

(version 2.14.0, used for pseudo-time analysis) was used to

analyze the gene expression matrix with Seurat annotation

(Trapnell et al., 2014). In the course of a cell’s life, many cell

states are not completely synchronized. Some cells are at the

beginning of a particular process, while others are already in the

state of completion of that process, which is called

“asynchronous”. By ordering cells according to this process to

form a trajectory, the process changes associated with the

trajectory can be tracked as “pseudotime”. We arranged the

cells in the pseudo-time analysis along the track and made

heatmaps based on the prognostic immune genes. Finally, the

expression of prognostic genes in different cells was described to

explore their possible roles.

Statistical analysis

All statistical analyses were conducted using the R software

version 4.1.0 (http://www.R-project.org). Unless otherwise

mentioned, p < 0.05 was regarded as statistically significant.

Results

Characteristics of participants in this study

Table 1 presents the baseline characteristics of AML patients

in the TCGA database. Figure 1 illustrates the flow chart of this

study. Baseline characteristics of the train set and test set

populations are shown in Supplementary Tables S1, S2.

Table 2 presents the baseline characteristics of AML patients

in the GEO database.

Single sample gene set enrichment
analysis algorithm and clustering of acute
myeloid leukemia patients

39740 RNAs from 151 AML patients were extracted and

integrated into a matrix through the perl language. The ssGSEA

method was applied to assess the richness levels of immune cells

and immune pathways in 151 AML patients. AML patients were

TABLE 2 Baseline characteristics for 422 patients with AML in the GEO
database (n = 422).

Characteristics Cases (%)

Age (year)

10~ 2 (0.5%)

20~ 27 (6.4%)

30~ 48 (11.4%)

40~ 69 (16.4%)

50~ 82 (19.4%)

60~ 128 (30.3%)

70~ 61 (14.5%)

80~ 5 (1.2%)

FAB Category

M0 14 (3.3%)

M1 84 (19.9%)

M2 117 (27.7%)

M3 19 (4.5%)

M4 104 (24.6%)

M5 47 (11.1%)

M6 15 (3.6%)

M7 2 (0.5%)

NA 20 (4.7%)

Survival state

alive 109 (25.8%)

dead 308 (73.0%)

NA 5 (1.2%)
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classified into two categories based on the results of immune

infiltration, which include the high immune cell infiltration

cluster (n = 103) and low immune cell infiltration cluster (n =

48) by the “hclust” clustering method. The t-SNE method was

further used to visualize and validate the clustering results

(Figure 2A).

Immune cell infiltration differential
analysis between the two clusters

We calculated and compared the stromal score, immune

score, estimate score and tumor purity of the two clusters

according to the ESTIMATE algorithm. It showed that the

stromal score, immune score and estimate score of high

immune cell infiltration cluster were higher than those of low

immune cell infiltration cluster, while tumor purity was the

opposite (Figure 2B). The violin plot showed that the stromal

score, immune score and estimate score were all higher in the

high immune cell infiltration cluster than in the low (Figure 2C)

(p < 0.05). Among the contents of 22 immune cell, we found only

6 of them, including CD4 resting memory T-cells, activated

CD4 memory T-cells, NK cells activated, Monocytes, Mast

cells resting and Eosinophils, appearing differentially between

the high and low immune cell infiltration clusters. The

CD4 resting memory T-cells, NK cells activated, Mast cells

resting and Eosinophils contents were higher in the low

immune cell infiltration cluster than in the high immune cell

infiltration cluster, while the activated CD4 memory T-cells and

Monocytes contents were opposite (Figure 2D) (p < 0.05).

Human leukocyte antigen, genome set
enrichment analysis and clinical factors
differentials analysis between the two
clusters

We first compared the differences in clinical factors between

high and low immune cell infiltration clusters, including

monocyte percent value, age, hemoglobin value, bone marrow

blast cell percent value and leukocyte value. We found that the

age and monocyte percent value of the high immune cell

infiltration cluster were higher than that of the low immune

cell infiltration cluster, while bone marrow blast cell percent

value and leukocyte value were opposite (Supplementary Figures

S1A–E) (p < 0.05). Next, the results of the boxplot showed that

FIGURE 2
“hclust” cluster method and immune-related functions. (A) t-SNE was used to test the clustering results of the high and low immune groups. (B)
Heatmaps of immune-related pathways in the high and low immune groups. (C) Stromal score, immune score and total score in the high and low
immune groups. (D) Comparison of 22 kinds of immune cells in the high and low immune groups. (E) Comparison of human leukocyte antigen
differences between high and low immune groups.
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the expression level of all 23 HLAs excluding HLA-J was higher

in the high immune cell infiltration cluster than in the low

immune cell infiltration cluster (Figure 2E) (p < 0.05). GSEA

has shown that many immune-related pathways, such as Natural

killer cell-mediated cytotoxicity, T-cell receptor signaling

pathway, B cell receptor signaling pathway and Fc epsilon RI

signaling pathway were enriched in the high immune cell

infiltration cluster. Besides, the Insulin signaling pathway,

Acute myeloid Leukemia Pathway, Regulation of actin

cytoskeleton pathway and other biological pathways were also

enriched in the high immune cell infiltration cluster (Figures

3A–F) (Nom p-value < 0.05).

Construction and validation of prognostic
modeling by immune-related genes

689 genes upregulated in the high immune group and

65 genes downregulated in the high immune cell infiltration

cluster were screened by differential analysis (Figure 5). We next

took intersections of the 754 differential genes with

1793 immune-related genes. 183 intersecting genes were

obtained using Venn analysis (Supplementary Figure S2C).

We integrated 183 gene expression matrixes from 151 AML

patients with clinical information from 200 AML patients.

142 AML patients with complete clinical data were eventually

obtained. 39 genes were significantly associated with overall

survival in AML patients using univariate Cox regression

(Supplementary Figure S2I) (p < 0.05). Nine genes including

CD74, PLXNB1, THBS1, PTK2, UNC93B1, PPBP, CXCL12,

GZMB, and IFI30 were finally identified by LASSO regression

analysis to construct the prognostic model. Risk score = (0.00239

* CD74) + (−0.13147 * PLXNB1) + (0.0166 * THBS1) +

(−0.11492 * PTK2) + (0.01322 * UNC93B1) + (0.00479 *

PPBP) + (−0.01512 * CXCL12) + (0.03528 * GZMB) +

(−0.048 * IFI30). The coefficients result was also shown in

Table 3. Then, we divided all AML patients into the train set

and the test set according to the ratio of 7:3. AML patients in the

train set were divided into high-risk and low-risk groups based

on the median risk score. Kaplan-Meier (KM) curve showed that

the survival rate of patients in the low-risk group was

significantly higher than that in the high-risk group

FIGURE 3
GSEA between the high and low immune groups. (A) T cell receptor signaling pathway. (B) Acute myeloid leukemia pathway. (C) Natural killer
cell mediated cytotoxicity pathway. (D) B cell receptor signaling pathway. (E) FC epsilon ri signaling pathway. (F) FC gamma r mediated phagocytosis
pathway.
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(Figure 4A) (p < 0.01). Scatter plot results of risk score and

survival status of AML patients showed that the mortality and

risk coefficient was lower in the low-risk group than in the high-

risk group (Supplementary Figures S1H,I). The AUC of the risk

score predicted OS at 1-, 3- and 5- year were 0.807, 0.813, and

0.815, respectively, which means our signature has a good

capacity in predicting OS (Figure 4D). The predictive power

of our model was also verified in the test set. The KM curve

showed that patients in the low-risk group had higher survival

rates than those in the high-risk group (Figure 4B) (p = 0.012),

while lower mortality and risk factors than those in the high-risk

group (Supplementary Figures S1J,K). The AUC of the risk score

predicted OS at 1-, 3- and 5- year were 0.731, 0.745, and 0.830,

respectively (Figure 4E). The calibration curves of the train set

and test set were shown in Supplementary Figures S1F,G,

respectively. Then, we verify the predictive ability of our

model in the GEO external validation set. KM curve results

showed that there was a statistical difference in OS between high-

risk and low-risk groups (p = 0.022) (Figure 4C). The areas under

ROC curve in 1, 3 and 5 years were 0.564, 0.619, and 0.614,

respectively (Figure 4F). Finally, we compared the expression of

9 immune genes related to the prognosis of leukemia in normal

blood samples and leukemia patients. The expression levels of

CXCL12, THBS1, PPBP, GZMB, CD74, and UNC93B1 were

higher in the cancer group than in the normal group. The

expression levels of PLXNB1, PTK2, and IFI30 in the cancer

group were lower than those in the normal group

(Supplementary Figures S5A,B).

Constructing a predictive nomogram

Nomogram was designed based on all AML patients to

predict the survival probability of patients at 1 year, 3 years,

and 5 years. Multivariate Cox regression results showed that age

and risk score were prognostic factors for AML patients. Risk

score and age were included as variables. Age and risk scores were

found to be significantly associated with AML prognosis

(Figure 6) (Supplementary Figures S5C,D) (p < 0.01).

Discovery of co-expressed transcription
factors and construction of PPI networks

318 transcription factors and 754 genes were used for co-

expression analysis. 27 mRNAs and 10 transcription factors were

found to be co-expressed (R = 0.4, p < 0.001). Figure 6A showed

the relationship between transcription factors and genes. We

FIGURE 4
Univariate Cox regression analysis and prognosis curve. (A) KM curve of train set. (B) KM curve of test set. (C) KM curve of GEO external validation
set. (D) ROC curves of model for predicting the 1/3/5-years survival in the train set. (E) ROC curves of model for predicting the 1/3/5-years survival in
the test set. (F) ROC curves of model for predicting the 1/3/5-years survival in the GEO external validation set.
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used the STRING online database to map the PPI network using

the 35 hub nodes, including 27 mRNAs and 10 transcription

factors (Figure 6B) (R = 0.4).

Differences in immune checkpoint, tumor
mutation characteristics, tumor mutation
burden and immunotherapy response
between different prognostic risk groups

We further compared differences in immune checkpoints,

tumor mutation characteristics, and TMB between the high-

risk and low-risk groups. The results of the boxplot showed

that the expression levels of CD274, CTLA4, HAVCR2, LAG3,

and PDCD1 in the high immune cell infiltration cluster were

higher than those in the low immune cell infiltration cluster

(Figures 5A−C) (Supplementary Figures S2A,B) (p < 0.05).

The results of the scatter plot showed a positive correlation

between the expression of CD274, CTLA4, HAVCR2, LAG3,

and PDCD1 and the risk score (Figures 5D−F)

(Supplementary Figures S2D,E) (p < 0.05). There was no

difference in tumor mutation load between the high-risk

and low-risk groups (Supplementary Figure S2H) (p =

0.37). Survival analysis showed that there was no difference

in prognosis between the high and low tumor mutation load

group (Supplementary Figure S2G) (p = 0.375). More

importantly, TMB survival curves combined with risk

scores showed that patients in the high-mutation and high-

risk groups had the worst survival outcomes (Figure 6C) (p <
0.01). The frequency of gene mutations was higher in the high-

risk group (78.85%) than in the low-risk group (66.67%). We

found the highest mutation frequency in NPM1 in the high-

risk group and the highest mutation frequency in WT1 in the

low-risk group (Figures 5G,H). The results of immunotherapy

showed that MSI and Exclusion were higher in the low-risk

group, while Dysfunction and TIDE were higher in the high-

risk group (Supplementary Figures S6A−D).

Single-cell sequencing analysis

Figures 7A,B and Figures 8A,B showed the Chip quality

control in diagnosed and relapsed populations, respectively. We

separately performed the “ScaleData” function to scale all the

genes extracted from the scRNA-seq dataset GSE126068.

Expression of immune-related prognostic genes in cell subsets

of the diagnosed and relapsed population was shown in Figures

7D,E and Figures 8D,E. PCA selected the first 15 principal

components to screen out possibly rarer cell subsets (Figures

7C, 8C). The 400 cells at diagnosis were divided into seven cell

subsets. Seven cell subgroups were annotated and divided into

five cell types, including common myeloid progenitor (CMP),

Granulocyte-Monocyte progenitor (GMP), B cell, Pro-

B_CELL_CD34 + and Monocyte (Figure 7F). The 413 cells at

relapse were divided into seven cell subsets. The seven cell subsets

were annotated into four cell types, including CMP, GMP, B cell

and Pro-B_CELL_CD34 + (Figure 8F). In the diagnostic

population, seven of the nine prognostic immune genes were

found to be expressed in cell subsets. CD74 was found to be

highly expressed in CMP, GMP, B cell, and Monocyte. IFI30 was

highly expressed in GMP and Monocyte. However, almost none

of the other five genes are expressed in cells. At the same time,

seven of the nine prognostic immune genes were also found to be

expressed in cell subsets in the relapse population. CD74 was

found to be highly expressed in CMP, GMP, B cell andMonocyte.

IFI30 was highly expressed in pro-B_cell_CD34 + and B cells.

PTK2 was highly expressed in pro-B_cell_CD34 +. Almost none

of the other four genes are expressed in cells.

Pseudo-time analysis of cell subsets

To further explore the differentiation of different cell statuses,

we simulated the movement trajectory of different cells in the

diagnosed and relapsed AML population and observed the

differentiation of cells. The cell track differentiation of the

diagnosed patients is shown in Figure 7G–I; Supplementary

Figure S3A. CMP cells here show two pathways of

differentiation. One was CMP cells differentiated into GMP cells

that subsequently gave rise to monocytes, and the other was

Pro−B_cell_CD34+ and B cells. Cell track differentiation in

patients with relapses is shown in Figures 8G–I; Supplementary

Figure S4A. There were still two differentiation pathways shown

here in CMP cells. One type of CMP was differentiated into GMP

cells, and the other was differentiated into Pro−B_cell_CD34+ and

B cells. The expression levels of the seven genes in different cell lines

during differentiation in patients with diagnosed and relapsed AML

patients were shown in Supplementary Figures S3B,C and

Supplementary Figures S4B,C. We found that the expression

levels of CD74 were high in all cell subsets. The expression level

of PLXNB1 in the diagnosis group increased first and then gradually

stabilized with the time of cell differentiation, but it was almost not

TABLE 3 Coefficient of 9 immune-related prognostic genes.

Gene Coefficient p-value

CD74 0.00239 <0.05
PLXNB1 −0.13147 <0.05
THBS1 0.0166 <0.05
PTK2 −0.11492 <0.05
UNC93B1 0.01322 <0.05
PPBP 0.00479 <0.05
CXCL12 −0.01512 <0.05
GZMB 0.03528 <0.05
IFI30 −0.048 <0.05
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expressed in the relapse group. The other five genes were almost

unexpressed in all cell differentiation processes. Supplementary

Figures S3D, 4D showed the plot of cell density versus

pseudotime in patients with AML at diagnosis and relapse.

5 Discussion

Previous studies have shown that AML is a tumor with

abnormal immune cell differentiation and is morphologically

classified into eight subtypes from M0 to M7 (Bennett et al.,

1976). The abnormal differentiation of hematopoietic stem cells

exhibited by AML is inextricably linked to the expression of

immune genes. The expression of tumor immune-related genes

is the result of the interaction of immune cells, tumor stem cells,

stromal cells and cytokines, which co-evolve and ultimately form the

tumor microenvironment that supports the tumor, thus

contributing to the development and progression of leukemia

(Swartz et al., 2012). Although previous studies have obtained

some biomarkers for the prognosis of AML (Jiang et al., 2022;

Lu et al., 2022), no studies have explored the overall characteristics

of AML-related TME and mutation. Therefore, our study not only

explored the TME and mutation-related characteristics of AML but

also analyzed the cell trajectory of immune-related prognostic genes

FIGURE 5
Characteristics of mutations and immune checkpoints between high and low risk groups. (A) Expression of CD274 between high and low risk
groups. (B) Expression of CTLA4 between high and low risk groups. (C) Expression of PDCD1 between high and low risk groups. (D) Correlation
between CD274 and risk score. (E)Correlation between CTLA4 and risk score. (F)Correlation between PDCD1 and risk score. (G) Tumormutations in
the high-risk group. (H) Tumor mutations in the low-risk group. (I) Volcano map of differential gene screening.
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obtained in single-cell sequencing chips to observe the expression of

immune-related genes in different differentiated cells.

In our study, we divided the population into two groups

based on the ssGSEA results using “hclust” method. Compared

with the low immune cell infiltration cluster, higher stromal

score, higher immune score and higher estimate score were

shown in the high immune cell infiltration cluster. In addition

to a large number of immune pathways, leukocyte

transendothelial migration pathways and leukemia pathways

were also enriched in patients with high immune cell

infiltration clusters (Puig-Kröger et al., 2000). Since the

migration of white blood cells from the blood into tissues

is essential for immune surveillance and inflammation. This

may mean that the high immune cell infiltration cluster

may have more inflammatory responses and metastasis of

AML cells.

High immune cell infiltration cluster associated with higher

expression of HLA in all HLAs except HLA-J. It was reported that

altered expression and function of HLA class I and class II

molecules have long been characterized in solid tumors

FIGURE 6
Predictive nomogram and PPI network. (A) Analysis of co-expressed of transcription factors and immune genes. (B) PPI networks of
transcription factors and immune genes. (C) Comparison of survival rates for different TMB and different risk levels. (D) All clinical indicators were
included in the nomogram.
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(Rovatti et al., 2020), while both HLA class I and class II antigens

on the graft cell surface are strong transplant antigens (Salman

et al., 2018). Besides, some studies have found a recurrence of

transplantation in AML following genomic HLA loss. When we

inject donor-derived T-cells into animals carrying a diagnosis of

HLA II expression or relapse of HLA II deficiency, HLA II

expression is restored and effective anti-leukemic response is

re-established (Toffalori et al., 2019). Based on our results, the

higher HLA expression in the high immune cell infiltration cluster

than in the low immune cell infiltration cluster implies that the

anti-leukemic response was superior in the high immune cell

infiltration cluster.

Nine hub immune genes associated with AML prognosis

were obtained by Cox analysis. All 9 genes were risk factors

for AML prognosis in the forest plot (HR > 1). CD74 is found

to be linked to LGALS3 in a protein network and associated

with poor survival in AML (Ruvolo et al., 2019). Alterations

in PLXNB1 exons are identified as a method of homozygous

alteration in AML-associated isoforms (Risueño et al.,

2014). There are no reports of its correlation with the

prognosis of AML. THBS1 is found to be lowly expressed in

AML patients. Patients with low THBS1 have a shorter survival

time. So, THBS1 is considered as a possible prognostic target for

the treatment of AML patients (Zhu et al., 2019). PTK2 is an

adherent spot gene. Its overexpression contributes to poorer

prognosis in leukemia in a cohort of AML patients. It can

also distinguish subgroups of patients with poor prognosis

among those with IR-AML cytogenetics and unfavorable

FLT3/NPM1 combinations (Pallarès et al., 2018). UNC93B1 is

a key regulator of Toll-like receptors (TLRs), pattern recognition

receptors that sense invading pathogens and manage the

innate immune response and deliver them from the

endoplasmic reticulum to their respective endosomal signaling

regions. Several types of TLRs are known to contribute to the

FIGURE 7
Single-cell sequencing results and pseudotime differentiation in AML patients at diagnosis. (A) RNA count charts of 5 patients. (B) Sequencing
depth, gene count, and mitochondrial content of 5 patients. (C) PCA dimension reduction was performed on characteristic genes. (D–E) Expression
of 7 prognostic genes in cell subsets. (F) Annotation results of cell subsets. (G) Sequence of different cell clusters along pseudo-time. Infer cell
sequence from expression of the most dispersed genes in the cell cluster. Each point corresponds to a cell, and each color represents a state.
(H) The darker the blue, the earlier the differentiation, and the lighter the blue, the later the differentiation. (I) Each color represents a different state.
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inflammatory process after allogeneic hematopoietic stem cell

transplantation (SCT). Thus, UNC93B1 may play an integral role

in this process and influence the prognosis of leukemia (Uchino

et al., 2021). PPBP is a proplatelet basic protein that belongs to

the CXC chemokine family, High expression of PPBP predicts

poor prognosis in adult AML patients (Tang et al., 2020).

CXCL12 is produced by the BM microenvironment, binds to

and activates the cognate receptor CXCR4 on leukemic cells,

promotes transport and homing of leukemic cells in the BM

microenvironment, and brings leukemic cells into close contact

with stromal cells and the extracellular matrix, thereby

constitutively producing growth-promoting and anti-apoptotic

signals that ultimately lead to a poor prognosis (Roma-Rodrigues

et al., 2019). GZMB is also considered to be a predictor of shorter

OS in AML patients (Vadakekolathu et al., 2020). IFI30, a gene

involved in antigen processing and HLA presentation, is

observed to be transcriptionally downregulated in patients at

the time of AML relapse (Sweeney and Vyas, 2019).

The areas under the ROC curve of the train set and the test

set for ROC at 1, 3, 5 years were 0.807, 0.813, 0.815, and 0.731,

0.745, 0.830, respectively. The results showed that the model

has strong predictive power for the prognosis of AML patients.

We investigated the effect of risk score, gender, age, white blood

cell count, FAB stage, hemoglobin, monocyte, race, and

percentage of bone marrow blast on patient prognosis in

AML patients by multivariate Cox regression analysis. Risk

score and prognostic status were independent factors that

influence the prognosis of leukemia (p < 0.001). Then a

nomogram was designed that included risk scores and all

clinical factors. It allowed us to predict the survival rate

of any AML patient at 1, 3, and 5 years by using risk scores

and all clinical factors from them. Interestingly, in some

studies on biomarkers of leukemia prognosis, we found

similar results to our article. Risk score was found to be an

independent prognostic factor in these studies (Jiang et al.,

2021b).

FIGURE 8
Single-cell sequencing results and pseudotime differentiation in AML patients at relapse. (A) RNA count charts of 5 patients. (B) Sequencing
depth, gene count, and mitochondrial content of 5 patients. (C) PCA dimension reduction was performed on characteristic genes. (D–E) Expression
of 7 prognostic genes in cell subsets. (F) Annotation results of cell subsets. (G) Sequence of different cell clusters along pseudo-time. Infer cell
sequence from expression of the most dispersed genes in the cell cluster. Each point corresponds to a cell, and each color represents a state.
(H) The darker the blue, the earlier the differentiation, and the lighter the blue, the later the differentiation. (I) Each color represents a different state.
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We constructed the TF hub gene regulatory network to explore

the molecular mechanism of AML. A total of 10 transcription factors

were found to play a role in the prognosis of AML immune gene

expression. PPARDmaintains leukemic stem cells throughmolecules

involved in or regulating Wnt signaling, and is a valuable prognostic

molecule (Gruszka et al., 2019). VDR functions as a regulator of stem

cell homeostasis and leukemic transmission. The combination of

VDR agonists and hypomethylating agents can promote leukemic

stem cell depletion and reduce tumor burden (Paubelle et al., 2020).

B cell lymphoma 6 (BCL6) is a transcriptional repressor and proto-

oncogene that can maintain the survival and self-renewal of primary

human acute myeloid leukemia cells (Kawabata et al., 2021). High-

frequency eomes + T-bet low CD8 + T-cells predict poor clinical

outcomes in AML, and targeting eomes may provide therapeutic

benefits for AML (Jia et al., 2019). IRF4 expression is associated with

the clinical phenotype and clinical hematological response of

hydroxyurea in primary thrombocytosis, which may lead to the

progression of AML (Huang et al., 2022). HDAC1 and KLF4 interact

with each other to regulate the proliferation of human myeloid

leukemia cells (Huang et al., 2014). IDH2/R140Q reduced 5 hmc

modification and expression of some differentiation-inducing genes

(ebf1 and SPIB). This is critical for the development andmaintenance

of AML stem cell-like cells (Ogawara et al., 2015). The complex

interactions between TFs and hub genes have made great

contributions to the development of AML.

AML patients were classified into high-risk and low-risk groups

based on the median value of the risk score. Besides, we found that

several other studies have also identified prognostic immune genes

(Lu et al., 2022), but these studies have not systematically analyzed

other characteristics of AML patients. In contrast to these studies, we

not only constructed prognostic models of immune-related genes.

We also comprehensively analyzed the characteristics of mutations,

TME,HLA, andPPI inAMLpatients and identified the expression of

these prognostic genes in single-cell sequencing analysis. Since we

used immune-related genes to construct the prediction model, the

GSEA results showed that we enriched a large number of immune-

related pathways in the high-risk group. The expression of immune

checkpoints was all higher in high-risk groups than in low-risk

groups. Since high expression of immune checkpoints induces T-cell

apoptosis or suppresses tumor T-cell responses, this leads to immune

escape promoting the progression of AML (Christopher et al., 2018;

Rovatti et al., 2020). Compared to the low-risk group, the high-risk

group will have a worse prognosis. We found the worst prognosis for

the high TMB and high-risk population and the best prognosis for

the high TMB and low-risk population in the survival curves

integrating TMB with risk profile. Based on the potential

hypothesis that tumor mutations produce antigenic peptides, high

TMB had been proposed as a prime candidate biomarker for the

immunotherapeutic response, thereby enhancing immunogenicity

(Chan et al., 2019). Therefore, high-risk with high TMB groups

people should have the worst prognosis. Since there was no statistical

difference in survival between the high TMB group people and the

lowTMB group people, the high TMBwith the low risk group people

might have the best prognosis. In Jiang’s study, we found similar

results. The expression of ICIwas higher inAMLpatients in the high-

risk group (Jiang et al., 2021a). The results of immunotherapy

response showed that the TIDE score and Dysfunction scores in

the high-risk group were higher than those in the low-risk group,

suggesting that patients in the low-risk group may be more sensitive

to anti-PD-1 and anti-CTLA4 therapy. The immune

microenvironment in high-risk patients is not conducive to ICI

treatment because these patients do not benefit from these inhibitors.

Single-cell transcriptome analysis showed that patients with

diagnosed AML and patients with relapsed AML had different

cell types. Monocytes were the precursors of macrophages and

dendritic cells and can influence the tumor microenvironment by

inducing immune tolerance, angiogenesis and tumor cell

proliferation. It can also induce an immune response that

produces antitumor effectors and activates antigen presenting cells

(Shen et al., 2021; Ugel et al., 2021).Monocyte subsets were present at

the time of AML diagnosis but not at the time of relapse. It suggested

that there may be impaired function of monocytes phagocytosis of

tumor cells in the development of AML, resulting in

immunosuppression and ultimately contributing to the relapse of

AML. In addition, we found that CD74 was highly expressed during

the development of all cells in both diagnosed and relapsed AML

patients. CD74 is a type II transmembrane protein expressed on

antigen-presenting cells and has been considered a viable therapeutic

target forAML in children and adults (Le et al., 2021). Our results will

provide further evidence for CD74 as a target for immunotherapy

in AML.

Compared with previous studies, our study has some

innovations. For example, compared to Lu’s study and Jiang’s

study (Jiang et al., 2021a; Lu et al., 2022). We not only

comprehensively analyzed the TME characteristics, human

leukocyte antigen expression and mutation information of

AML patients in this study but also used the external adult

AML validation dataset to verify the robustness of our prediction

model. More importantly, due to single-cell sequencing analysis,

we analyzed the expression of prognostic immune genes in cell

subpopulations and plotted the change curve of prognostic gene

expression with cell trajectory differentiation. In addition, we

have successfully correlated the expression of prognostic genes

with cell differentiation trajectories and can provide some new

insights for targeted therapy of AML patients.

We should acknowledge that our study still has some

limitations. In further studies, larger-sample clinical cohorts are

needed to validate the accuracy of the prognostic model and the

nomogram. Due to the small number of cells detected by the chip

selected in this study, some cell subsets could not be detected.

Therefore, subsequent studies need to further expand the number of

cell tests to present a more complete bone marrow immune

microenvironment.

In conclusion, we identified different immune subtypes in AML

patients and established a prognostic model with nine prognostic

biomarkers to predict the prognosis of patients with different
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immune cell infiltration clusters. Meanwhile, we revealed the

differentiation trajectory of bone marrow microenvironment cells

and the expression of prognostic immune genes in AML patients.

Our study provided a means to predict prognosis and survival in

AML patients and may provide promising targets for

immunotherapy.
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SUPPLEMENTARY FIGURE S1
Comparison of clinical factors between high and low immune groups. (A)
Age. (B) BM. (C) Hemoglobin. (D) Monocyte. (E) WB. (F) Calibration curve
of train set. (G) Calibration curve of test set. (H) Distributions of risk
scores of AML patients in the train set. (I) Distributions of survival status of
AML patients in the train set. (J) Distributions of risk scores of AML
patients in the test set. (K) Distributions of survival status of AML patients
in the test set.

SUPPLEMENTARY FIGURE S2
Immune checkpoint inhibitor expression and TMB in high and low risk
groups (A) Expression of HAVCR2 between high and low risk groups. (B)
Expression of LAG3 between high and low risk groups. (C) Venn
diagram of intersection of differential genes and immune genes. (D)
Correlation between HAVCR2 and risk score. (E) Correlation between
LAG3 and risk score. (F) Screening of genes by LASSO regression. (G)
Differences in survival rates between high and low TMB populations. (H)
Comparison of TMB between high-risk and low-risk groups. (I) The
prognostic genes were screened by univariate Cox regression analysis.

SUPPLEMENTARY FIGURE S3
Partial pseudotime distribution of AML patients at diagnosis (A) Cell types
on different differentiation trajectories. (B) Pseudotime distribution of
seven genes between different cells. The horizontal axis is pseudo time,
and the vertical axis is gene expression. (C) Pseudotime heatmap of
7 genes between different cells. The horizontal axis is pseudo time, and
the vertical axis is gene expression. (D) Pseudotime distribution of
different cell types. Pseudo time on the horizontal axis, cell density on the
vertical axis.

SUPPLEMENTARY FIGURE S4
Partial pseudotime distribution of AML patients at relapse (A) Cell types on
different differentiation trajectories. (B) Pseudotime distribution of seven
genes between different cells. The horizontal axis is pseudo time, and
the vertical axis is gene expression. (C) Pseudotime heatmap of 7 genes
between different cells. The horizontal axis is pseudo time, and the
vertical axis is gene expression. (D) Pseudotime distribution of different
cell types. Pseudo time on the horizontal axis, cell density on the
vertical axis.

SUPPLEMENTARY FIGURE S5
Univariate and multivariate Cox regression analysis of risk score and
clinical factors (A) The expression levels of 9 AML prognostic genes were
different between GTEx database and TCGA database. (B) Differential
clustering heat map of the expression levels of 9 AML prognostic genes in
GTEx database and TCGA database. (C) Univariate Cox regression
analysis was performed for all clinical factors and risk scores. (D)
Multivariate Cox regression analysis was performed for all clinical factors
and risk scores.

SUPPLEMENTARY FIGURE S6
TIDE scores between high and low risk groups (A) Dysfunction scoring in
high risk group and low risk group. (B) Exclusion scoring in high risk
group and low risk group. (C) MSI scoring in high risk group and low risk
group. (D) TIDE scoring in high risk group and low risk group.
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