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Salmonella enterica is a major causative pathogen of human and animal gastroenteritis.
Antibiotic resistant strains have emerged due to the production of extended-spectrum
β-lactamases (ESBLs) posing a major health concern. With the increasing reports
on ESBL-producing Enterobacterales that colonize companion animals, we aimed to
investigate ESBL dissemination among ESBL-producing Salmonella enterica (ESBL-S)
in hospitalized horses. We prospectively collected ESBL-S isolates from hospitalized
horses in a Veterinary-Teaching Hospital during Dec 2015–Dec 2017. Selection
criteria for ESBL-S were white colonies on CHROMagarESBL plates and an ESBL
phenotypic confirmation. Salmonella enterica serovars were determined using the
Kaufmann-White-Le-Minor serological scheme. ESBL-encoding plasmids were purified,
transformed and compared using restriction fragment length polymorphism (RFLP).
Whole genome sequencing (Illumina and MinION platforms) were performed for detailed
phylogenetic and plasmid analyses. Twelve ESBL-S were included in this study.
Molecular investigation and Sequence Read Archive (SRA) meta-analysis revealed the
presence of three unique Salmonella enterica serovars, Cerro, Havana and Liverpool,
all reported for the first time in horses. PFGE revealed the clonal spread of S. Cerro
between seven horses. All twelve isolates carried blaCTX−M−3 and showed an identical
multidrug resistance profile with co-resistance to trimethoprim/sulfamethoxazole and
to aminoglycosides. Plasmid RFLP proved the inter-serovar horizontal spread of a
single blaCTX−M−3-encoding plasmid. Complete sequence of a representative plasmid
(S. Havana strain 373.3.1), designated pSEIL-3 was a -86.4 Kb IncM2 plasmid, that
encoded nine antibiotic resistance genes. pSEIL-3 was virtually identical to pCTX-M3
from Citrobacter freundii, and showed high identity (>95%) to six other blaCTX−M−3 or
blaNDM−1 IncM2 broad host range plasmids from various Enterobacterales of human
origin. Using a specific six gene-based multiplex PCR, we detected pSEIL-3 in various
Enterobacterales species that co-colonized the horses’ gut. Together, our findings show
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the alarming emergence of ESBL-S in hospitalized horses associated with gut shedding
and foal morbidity and mortality. We demonstrated the dissemination of CTX-M-3 ESBL
among different Salmonella enterica serovars due to transmission of a broad host range
plasmid. This report highlights horses as a zoonotic reservoir for ESBL-S, including
highly transmissible plasmids that may represent a ‘One-Health’ hazard. This risk calls
for the implementation of infection control measures to monitor and control the spread
of ESBL-S in hospitalized horses.

Keywords: Salmonella enterica, WGS, ESBL, serovars, IncM2, blaCTX−M−3, MDR plasmid, horizontal transfer

INTRODUCTION

Salmonella enterica is the major causative pathogen of human
and animal Salmonellosis (Scallan et al., 2011; Omer et al.,
2018). Human Salmonellosis recently poses a major health
concern due to the dissemination of multidrug resistant (MDR)
strains that produce extended-spectrum β-lactamases (ESBLs)
that limit the appropriate treatment options (Antonelli et al.,
2019; Jajere, 2019). ESBL-producing Salmonella enterica (ESBL-
S) are increasingly reported from livestock animals (European
Centre for Disease Prevention and Control., 2019). Shared ESBL-
S serovars among livestock and humans suggest that food
animals are possible zoonotic reservoir for this human-associated
pathogen (Sjölund-Karlsson et al., 2013).

In the last decade, along with food animals, ESBL-producing
Enterobacterales colonization in companion animals is steadily
increasing (Doi et al., 2017). Although the zoonotic potential of
these bacteria is still enigmatic, there is a consensus regarding
their role as being a reservoir for antibiotic resistance, and as a
possible hazard to human health due to the close physical contact
between companion animals and humans (Madec et al., 2017).

Horses in specific are in close interaction with humans
and children in various interfaces including private use, sport
events and as therapeutic animals. As such, they may serve
as a zoonotic source for antibiotic resistant pathogens. Horses
have been shown previously to be colonized and infected with
various clinically important pathogens including methicillin-
resistant Staphylococcus aureus (MRSA) (Tirosh-Levy et al.,
2015), Acinetobacter baumannii, and various ESBL-producing
enteric pathogens (Walther et al., 2018; Shnaiderman-Torban
et al., 2019). As for the genus Salmonella, horses may be
sub-clinically infected with the bacterium or suffer from
clinical signs which may vary from mild disease as fever and
dehydration, to diarrhea, colic and manifestations of septicemia
(Hernandez et al., 2014; Cummings et al., 2016). However,
reports on ESBL-S strains in horses are still rare. A report
from Germany described an SHV-12-producing S. Newport
causing an outbreak in an equine hospital, which led to a three-
month facility closure (Rankin et al., 2005). Another report from
the United States described 11 ESBL-S clinical isolates from
an equine referral hospital that belonged to various serovars
including Braenderup, Anatum, Agona, Rubislaw, and Newport
(Leon et al., 2018).

In a previous study, we investigated the shedding rate
of ESBL-producing Enterobacterales in farm horses versus

hospitalized horses and observed a significant increase in ESBL
shedding rate among hospitalized horses together with first
isolation of three colonizing isolates that we identified as ESBL-
S isolates (Shnaiderman-Torban et al., 2020). The present study
investigated and characterized the molecular epidemiology of
ESBL-S isolates that were isolated during our surveys, together
with ESBL-S isolates recovered from clinical infections from
hospitalized horses during the study period. We aimed to
describe the emergence of ESBL-S in hospitalized horses and to
explore the dissemination of ESBL in this important pathogen.

MATERIALS AND METHODS

Isolation of ESBL-Producing
Enterobacterales From
Hospitalized Horses
During a prospective surveillance study of ESBL-producing
Enterobacterales (ESBL-E) gut colonization in hospitalized
horses that we performed in the Koret School of Veterinary
Medicine-Veterinary Teaching Hospital (KSVM-VTH) in
Israel (Dec 2015–Dec 2017), rectal swabs were collected
from horses on admission and after 72 h of hospitalization.
The study protocol was approved by the Internal Research
Review Institution Committee (Protocol number: KSVM-
VTH/15_2015). Isolation of ESBL-E from swabs was
performed after swab enrichment in Tryptic Soy Broth
supplemented with Ampicillin (100 mg/L), and an overnight
incubation at 37◦C to increase sensitivity of detection (Jazmati
et al., 2016). After incubation, samples were plated onto
CHROMagarESBL plates (HyLabs, Rehovot, Israel). In addition,
Salmonella enterica clinical isolates recovered from horses
during the study period that were processed at the Clinical
Microbiology Lab at the Meir Medical Center, Kfar Saba,
Israel, were collected and stored for retrospective molecular
characterization.

Isolation of ESBL-Producing Salmonella
enterica and the Identification of
ESBL Genes
Following the former described procedure, all the white
colonies that were obtained on the CHROMagarESBL plates,
suspected as ESBL-producing Salmonella enterica (ESBL-S)
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were further isolated onto selective Salmonella/Shigella-
agar plates (HyLabs) following verification using the slide
agglutination polyvalent serum assay (Remel Inc., United States).
All ESBL-S isolates (both fecal and clinical isolates) were
identified by the VITEK 2 automated system (Biomerieux,
United States) together with antibiotic susceptibility testing
using AST-N270 and AST-GN65 cards. Susceptibility results
were interpreted according to the Clinical and Laboratory
Standards Institute (CLSI) guidelines. All isolates were
confirmed for a positive ESBL production phenotype using
the cephalosporin/clavulanic-acid combination disk assay
(Oxoid, United Kingdom). The blaCTX−M genes were identified
by multiplex-PCR (Woodford et al., 2006) and Sanger sequencing
(Macrogen, Netherlands). Sequences were analyzed (Snap-Gene)
and compared with NCBI database to identify the specific
ESBL gene allele.

Salmonella enterica Serovar
Identification and Pulsed Field Gel
Electrophoresis (PFGE)
Salmonella enterica serotyping was performed using the
Kauffmann-White-Le Minor scheme (Le Minor et al.,
1982). XbaI-restricted (New England BioLabs) PFGE was
performed according to the PulseNet International Standard
Protocol (Ribot et al., 2006) with S. Braenderup H9812 as
a reference strain. The PFGE fingerprinting patterns were
analyzed with BioNumerics software (version 7.6.3, Applied
Maths, Sint-Martens-Latem, Belgium). The unweighted-
pair group method using average linkages (UPGMA)
clustering method and Dice similarity coefficients were
used (1% optimization and 1% tolerance). Isolates were
defined as genetically related if they presented ≥ 98%
PFGE similarity.

Meta Data of the NCBI Sequence Read
Archive (SRA) for Statistical Analysis
We explored the global occurrences and the isolation sources
of the Salmonella enterica serovars using the NCBI SRA
data. In order to perform the mata-analysis, we retrieved
the SRA accession numbers and meta-data for all the
publically available isolates using the NCBI E-Utilities.
Statistical correlations between the serovar type and the
isolation source were calculated using Phi coefficients
with p-values < 0.01. P-values were corrected for multiple
tests in step-down method using Bonferroni adjustments
(alpha = 0.01). All statistical analyses were performed using
Python statistics modules.

Salmonella enterica Whole Genome
Sequencing (WGS) and Data Analysis
Total DNA was isolated using Blood and Tissue kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol.
WGS was performed by Illumina MiSeq platform using 2 × 250
paired-end libraries prepared with the NEBNext Ultra II
FS DNA Library Prep Kit. Assembly was performed using
SPAdes-3.11.1. Plasmid replicon types and antibiotic resistance

genes (ARGs) were identified using the Center for Genomic
Epidemiology (CGE) pipeline.

Whole Genome Multi Locus Sequence
Typing (wgMLST) Phylogenetic Analysis
The EnteroBase database was searched for sequences predicted
as S. Cerro, S. Havana, or S. Liverpool, according to the SISTR1
and SeqSero2 algorithms. Strains with source country metadata
were selected for a phylogenetic analysis and for comparison with
the Israeli sequences. A GrapeTree depiction of a NINJA NJ tree
based on the wgMLST allelic distances was generated for each
serovar population.

Purification and Characterization of
Salmonella enterica
ESBL-Encoding Plasmids
ESBL-encoding plasmid DNA was extracted using the Plasmid
Midi Kit (Qiagen) following the manufacturer’s instructions.
Plasmids were transformed into electro-competent Escherichia
coli DH10B and transformants were selected on ampicillin
containing LB plates (100 mg/L), followed by blaCTX−M PCR
screening (Woodford et al., 2006). A second transformation
and plasmid purification was performed to ensure plasmid
purity. ESBL-encoding plasmids purified from all the 12 ESBL-S
isolates were compared using RFLP analysis following restriction
with SacI, EcoRI and HindIII (New England BioLabs) and
electrophoresis.

Complete Sequencing and Annotation of
blaCTX−M−3-Encoding Plasmid pSEIL-3
Since ten of 12 isolates harbored CTX-M-3-encoding plasmids
with identical RFLP patterns, one representative plasmid
(pSEIL-3 from S. Havana strain 373.3.1) was sequenced using
MinION device (Oxford Nanopore Technologies, ONT, Oxford,
United Kingdom) following hybrid assembly, resulting in
a complete plasmid sequence (Wick et al., 2017). Plasmid
DNA (200 ng) fragment library was prepared (SQK-RBK004
ONT Rapid barcoding sequencing kit) according to the
manufacturer’s instructions, and loaded onto the MinION flow
cell FLO-MIN106. The hybrid read set (WGS Illumina and
Nanopore reads) was assembled using Unicycler (v0.4.0) to
yield a single circular plasmid designated pSEIL-3, annotated
by RAST (Aziz et al., 2008). Replicon type assignment,
ARG content, virulence genes and IS elements identification
were performed using the CGE pipeline, and by ISfinder
(Siguier et al., 2012). Homologous plasmids were identified
from the NCBI Nucleotide (nt/nr) database using BLASTn
search. Linear plasmid maps were generated using Easyfig-
2.2.3.

GenBank Submission
WGS Illumina reads of the three S. serovars were deposited in
the NCBI Sequence Read Archive database under project number
PRJNA559324 (Table 2). The complete pSEIL-3 sequence isolated
from S. Havana strain 373.3.1 (BioSample SAMN12532154) was

Frontiers in Microbiology | www.frontiersin.org 3 December 2020 | Volume 11 | Article 616032

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-616032 December 13, 2020 Time: 10:58 # 4

Dor et al. ESBL Spread in Salmonella enterica

submitted to the NCBI Nucleotide database under the accession
number MN380440.

Conjugation Experiments of pSEIL-3
Conjugation experiments were performed with S. Cerro strain
339.3.3 and S. Havana strain 373.3.1 as the donor strains
and Klebsiella pneumoniae B199 (resistant to nalidixic-acid)
and E. coli J53 (rifampicin resistant) as the recipient strains.
Filter-mating was performed (donor and recipient, 1:1 ratio)
on LB plates followed by selection of transconjugant colonies
on LB agar plates containing ceftriaxone (2 mg/L) and
either nalidixic acid (64 mg/L) or rifampicin (300 mg/L).
Transconjugants were verified by the colony color obtained on
CHROMagarESBL plates and by PCR detection of blaCTX−M−3,
and then were subjected to the VITEK 2 for antibiotic
susceptibility testing.

Molecular Screening for the Presence of
pSEIL-3
A novel six-gene multiplex PCR scheme for the molecular
screening of pSEIL-3 was developed. The primers were designed
(Table 3) based on the sequences of six genes whose combination
was unique according to the NCBI Nucleotide database search.
The multiplex PCR was performed with PCRBIO HS Taq
Mix Red (PCRBIO-systems, United Kingdom) at the following
conditions: denaturation at 95◦C for one minute, 29 cycles

of denaturation (95◦C, 15 s), annealing (61.1◦C, 15 s) and
elongation (72◦C, 90 s).

RESULTS

ESBL-Producing Salmonella enterica
Isolates Recovered From Hospitalized
Horses
Overall, 12 ESBL-S isolates were recovered from 12 hospitalized
horses during the study period. All these strains were
isolated > 72 h after admission and therefore were defined
as nosocomial (Table 1). Ten out of the 12 horses were
also sampled on admission, as part of an ESBL surveillance
study, and two of them were found to be colonized with
an ESBL-producing Enterobacterales (ESBL-E) strain. Nine
out of the 12 horses (75%) that were colonized with an
ESBL-S were also found to be colonized with different
ESBL-E species. Diverse ESBL-E colonizing species were
found: E. coli (n = 7), K. pneumoniae (n = 4), Klebsiella
oxytoca (n = 2), and Citrobacter freundii (n = 1) (Table 1).
Ten of the ESBL-S isolates originated from rectal swabs, of
which, four were sampled from asymptomatic horses, and
six from horses with clinical signs of gastroenteritis. Two
additional ESBL-S isolates were clinical isolates that caused
joint and umbilicus infections. The majority of the horses
from which ESBL-S was recovered were neonates (8/12,

TABLE 1 | Molecular and epidemiological characteristics of the 12 ESBL-producing Salmonella enterica (ESBL-S) isolates included in this study and their equine host.

Isolate ESBL-producing
Enterobacterales
carriage status on
admission

ESBL-S Isolation
date

Equine
host

Colonization or
infection
(outcome)a

Salmonella
serovar

blaCTX−M−3-
plasmidc

Co-colonizing
ESBL-Ed

72.2.3 Negative 20 Dec 2015 Mare Gut colonization (S) Havana (group G) pSEIL-3-like IncM2 Citrobacter freundii

124.2.3 Negative 28 Jan 2016 Gelding Gut colonization (S) Havana (group G) pSEIL-3-like IncM2 E. coli

229.2.2 Negative 12 Mar 2016 Foal Gastroenteritisb (S) Cerro (group K) pSEIL-3-variante E. colie

302.2.1 Negative 18 Apr 2016 Mare Gut colonization (S) Cerro (group K) pSEIL-3-like IncM2 E. coli K. oxytocaf

320.2.3 Positive (ESBL-K.
pneumoniae)

30 Apr 2016 Foal Gastroenteritisb (D) Cerro (group K) pSEIL-3-like IncM2 E. colif K. pneumoniae

322.2.2 Negative 5 May 2016 Foal Gastroenteritisb (D) Cerro (group K) pSEIL-3-like IncM2 E. colif K. pneumoniaef

303.4.3 Negative 9 May 2016 Foal Gastroenteritis (D) Cerro (group K) pSEIL-3-like IncM2 E. colif K. oxytocaf

339.3.3* Negative May 2016 Foal Umbilical infection (D) Cerro (group K) pSEIL-3 E. colif K. pneumoniaef

347.2.2 Positive
(ESBL-E. coli)

30 May 2018 Mare Gut colonization (S) Cerro (group K) pSEIL-3-varientd K. pneumoniaef

373.3.1* Negative Nov 2016 Foal Infected joint (S) Havana (group G) pSEIL-3 Unknown

667220 Unknown 21 Dec 2017 Foal Gastroenteritisb (S) Liverpool (group E4) pSEIL-3-like IncM2 Unknown

667275* Unknown 31 Dec 2017 Foal Gastroenteritisb (D) Liverpool (group E4) pSEIL-3 Unknown

aOutcome status ‘S’ - survival; ‘D’ - death.
bESBL-S was recovered from diarrhea specimen.
cThe non-sequenced blaCTX−M−3-encoding plasmids that possessed the same RFLP pattern were designated pSEIL-3-like IncM2 plasmids.
dESBL-producing Enterobacterales isolates that co-colonized the same horse and were recovered at the same sampling time together with the ESBL-S. All were PCR-
positive for blaCTX−M−1 –group (Figure 1).
epSIEL-3-like plasmids are blaCTX−M−3-encoding plasmids that showed a different RFLP pattern compared to pSEIL-3 but were positive in the pSIEL-3-
specific multiplex PCR.
f Non-Salmonella ESBL-producing Enterobacterales isolates that co-colonized the horses gut together with ESBL-S and were found to carry pSEIL-3 by the pSEIL-3-
specific multiplex PCR.
*Salmonella enterica isolates sent to WGS; Unknown – The horse was not screened for ESBL-E carriage during hospitalization due to a positive ESBL-S clinical culture.
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67%, Table 1), which were all diagnosed with sepsis (Wong
et al., 2018), presenting various clinical signs. These foals
were all treated with ampicillin and amikacin, and if they
suffered from diarrhea, metronidazole therapy was added.
Five out of eight (62.5%) died or were euthanized during
hospitalization.

Serovars, Genotyping and Antibiotic
Susceptibility Profiles
ESBL-S isolates belonged to three different serovars – Cerro
(n = 7), Havana (n = 3), and Liverpool (n = 2), with Cerro
being the major serovar, representing more than 50% of the
isolates (Table 1). All the seven ESBL-producing S. Cerro isolates
clustered in time (a two-month period) and PFGE genotyping
suggested the clonal expansion of this serovar (87.8–100% isolate
identity, Supplementary Figure 1).

All the 12 ESBL-S isolates carried blaCTX−M−3 and
showed an identical MDR profile independent with their
serovar antibiotic susceptibility testing showed resistance
to ceftriaxone, aminoglycosides, amikacin, tobramycin,
gentamicin, and trimethoprim-sulfamethoxazole. Isolates
were susceptible to carbapenems, quinolones and fosfomycin
(Supplementary Table 1).

WGS of ESBL-S Serovars and
Identification of Plasmid Replicons and
Resistome
To further explore the three ESBL-S serovars identified in the
equine population, we performed WGS of three representative
isolates, one of each serovar (data was deposited under project
number PRJNA559324 in the GenBank). The WGS data
is summarized in Table 2. Sequence types were identified
in silico, and plasmid replicon analysis revealed that all three
serovars harbored common IncM2 and ColRNAI plasmids,
accompanied by other plasmids, that were unique for each
isolate. Alongside with blaCTX−M−3, they all encoded a wide
resistome encompassing nine to 12 ARGs that correlated with
their susceptibility profiles (Table 2).

Local and Global Occurrences and
Comparative Genomics of S. enterica
Serovars Cerro, Havana, and Liverpool
In order to assess the origin of the Salmonella enterica serovars
identified in this study, we analyzed the Salmonella national
database that consists data on all human and non-human
Salmonella isolates recovered in Israel (the reference Salmonella
laboratory, the Ministry of Health, Israel). The data indicated

TABLE 2 | Description of WGS data of three equine ESBL-producing Salmonella enterica serovars.

Salmonella
enterica
strain (Bio
Sample No).

Serovar/STa Genome
size/GC%

N50 bp/L50 No. of
ORFs/RNA
/ARGs

Plasmid
repliconb

Plasmids
resistomec

Resistance
patternd

339.3.3
(SAMN12532153)

Cerro ST1593 4.76 Mb/52.22 17575/8 4820/ 88/12 IncM2 aac(3)-Iid-like, aadA2,
armA, blaCTX-M-3,
blaTEM-1B, dfrA12,
mph(E)-like, msr(E), sul1,
sul2

CTX, AMC(I), AMK;
GEN; TOB, TMS

IncI1 aadA1, dfrA1

ColRNAI None

373.3.1
(SAMN12532154)

Havana ST5248 4.77 Mb/52.16 407943/4 4836/ 96/9 IncM2 aac(3)-Iid-like, aadA2,
armA, blaCTX-M-3,
blaTEM-1B, dfrA12,
mph(E)-like, msr(E), sul1,
sul2

CTX, AMC(I), AMK;
GEN; TOB, TMS

Col156 None

ColRNAI None

667275
(SAMN12532152)

Liverpool ST1959 4.9 Mb/52.15 762498/3 5007/ 100/12 IncM2 aac(3)-Iid-like, aadA2,
armA, blaCTX-M-3,
blaTEM-1B, dfrA12,
mph(E)-like, msr(E), sul1,
sul2

CTX, AMC(I), AMK;
GEN; TOB, TMS;
CIP(I)

IncX2 qnrS1, tet(A)-like

ColRNAI None

aPubMLST (https://pubmlst.org/salmonella).
bPlasmidFinder 2.1 (https://cge.cbs.dtu.dk/services/PlasmidFinder/).
cResFinder 3.2 (https://cge.cbs.dtu.dk/services/ResFinder/).
b and cARGs and a replicon type that were identified on the same scaffold were defined as a plasmid that carried these ARGs. This was verified using BLAST-match of
the ARGs-carrying scaffold with IncM2 pSEIL-3.
d [I] represents intermediate resistance phenotype. Antibiotics abbreviations: CTX-cefotaxime; AMC-amoxicillin/clavulanate; AMK-amikacin; GEN-gentamicin; TOB-
tobramycin; TMS-trimethoprim-sulfamethoxazole; CIP- ciprofloxacin.
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that during the study period (2015–2017), the annual prevalence
of Cerro, Havana and Liverpool serovars was relatively low; In
human infections it ranged from 0.1–0.2% (out of an average
of 3,952 Salmonella isolates/year). In non-human sources, the
prevalence increased throughout these years but was also low (0,
0.2% and 1% for Cerro, Havana and Liverpool in 2015, to - 0.6%,
0.4%, and 3.3%, in 2017, respectively).

In order to evaluate the global abundance of these Salmonella
serovars and to hypothesize about their main reservoirs
we performed a meta-analysis on a global dataset of SRA
Salmonella enterica isolates belonging to the respected serovars
(Supplementary Table 2, n = 1394). The meta-analysis indicated
that these serovars were recovered previously from various
human, animal and food sources, with Cerro being the most
prevalent serovar. This meta-analysis confirmed that these three
serovars are reported herein for the first time in horses.

In order to study the relations with globally reported lineages
and clusters, we compared our Israeli genomic sequences with
all global genomes of S. Cerro, S. Havana, and S. Liverpool
with geographical source, available in Enterobase database.
A minimum spanning tree representing all wgMLST profiles for
each serovar is shown in Figure 2. The analysis of the global

population highlights closely clustered genotypes that originate
from specific geographical locations. The Israeli genotypes did
not significantly cluster with strains from other countries, and
the minimum allelic distances from the nearest neighbors were 40
for S. Cerro, 779 for S. Havana, and 39 for S. Liverpool (Figure 2).
The analysis indicated that the antibiotic resistance phenotypes of
the Israeli strains are linked to genomic profiles unique to Israel.

Characterization of the ESBL-Encoding
Salmonella Plasmids
The WGS data revealed similar plasmid content between the
serovars with a common IncM blaCTX−M−3-encoding plasmid
(Table 2). The blaCTX−M−3-encoding plasmids of all twelve
isolates were successfully transformed into E. coli DH10B
The blaCTX−M−3−positive transformants possessed exactly
the same antibiotic susceptibility profile showing resistance
to all cephalosporins except for ceftazidime and co-resistance
to trimethoprim/sulfamethoxazole and aminoglycosides
(Supplementary Table 1).

To examine and support the possible inter-serovar plasmid
transmission we compared all 12 blaCTX−M−3-encoding plasmids

FIGURE 1 | Multiplex PCR for screening of pSEIL-3 in non-Salmonella CTX-M-1-producing Enterobacteriales species co-colonizing eight horses. Six-gene-multiplex
PCR amplification for the detection of pSIEL-3 was performed on 16 CTX-M-1 positive ESBL-E isolates co-colonizing (together with ESBL-S) eight horses. foal 229,
lane 2; foal 303, lanes 3–6; foal 320, lanes 7–8; foal 322, lanes 9–10; foal 339, lanes 11–12; gelding 124, lane 13; mare 302, lanes 14–15; mare 347, lane 16; mare
72, lane 17; pSIEL-3, lane 18; DNA 100 bp ladder, lane 1. EC - E. coli; KP - K. pneumoniae; KO - K. oxytoca; CF - Citrobacter freundii.

FIGURE 2 | Phylogenetic analysis by wgMLST of global populations of S. Cerro (A), S. Havana (B), and S. Liverpool (C). GrapeTree visualization of a NINJA NJ tree
based on wgMLST allelic distances. Strains with allelic distances of ≤10 alleles were clustered into a single node. The three Israeli strains of each serovar are shown
in pink and are indicated by an arrow.
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FIGURE 3 | Plasmid RFLP mapping of the CTX-M-3-encoding plasmid DNA
from Salmonella serovars. RFLP analysis of plasmid DNA (1 µg) isolated from
three Salmonella isolates representing each of the serovars (S. Liverpool
667220; S. Havana 373.3.1; and S. Cerro 303.4.3) was restricted with three
restriction enzymes, SacI (Lanes 2–4), EcoRI (Lanes 5–7), and HindIII (Lanes
8–10). 1 kb DNA size ladder (Lane 1). Plasmid RFLP analysis revealed
identical restriction patterns demonstrating the presence of an identical
plasmid common to all the three serovars.

by plasmid-RFLP. Ten out of 12 plasmids (83%) showed an
identical RFLP pattern, suggesting an inter-serovar horizontal
plasmid transfer. We designated this plasmid as pSEIL-3 (plasmid
of S. enterica from Israel encoding blaCTX−M−3). In silico analysis
of the WGS data confirmed the presence of pSEIL-3 in all three
serovars. A representative RFLP analysis of pSEIL-3 is presented
in Figure 3. Two out of the 12 blaCTX−M−3-carrying ESBL-S
isolates (229.2.2 and 347.2.2, Table 1) were IncM2 plasmids with
a different RFLP pattern (Results are not presented) suggesting
the presence of a variant of this plasmid (Table 1).

Complete Sequence of pSEIL-3
To deepen our understanding on the transferability of pSEIL-3 we
sequenced the purified plasmid (Havana 373.3.1) and performed
long-read MinION sequencing. Using a hybrid assembly, we
generated the complete sequence of the circular 86207-bp
plasmid. pSEIL-3 was an IncM2 plasmid (Carattoli et al., 2015)
and encoded 118 ORFs, 24 conjugation genes and a single toxin-
antitoxin pair pemIK. The pSEIL-3 resistome encompassed nine
ARGs conferring broad resistance to cephalosporins (blaTEM−1B
and blaCTX−M−3), aminoglycosides (the modifying enzymes,
aac2 and aadA2 and the 16S rRNA methyl transferase, armA),
trimethoprim (dfrA12), sulfonamide (sul1) and to macrolides
(msrE and mphE) (Figure 4).

Blast-based search of plasmids related to pSEIL-3 revealed
that our sequenced plasmid was virtually identical to pCTX-
M-3 from Citrobacter freundii except for a 3902 bp region

that encodes mucAB of the umuDC-like gene family that is
involved in UV-resistance, and four additional ORFs that encode
hypothetical proteins in pCTX-M-3. The conjugation genes in
both plasmids were identical except for a truncation in orf36 that
was shown previously to be involved in plasmid mobilization
efficiency (Dmowski et al., 2018). In addition, pSEIL-3 resembled
six other blaCTX−M−3 and blaNDM-encoding plasmids aligning
to >90% of its sequence (Figure 4). These plasmids were
isolated from various human Enterobacterales strains (E. coli -
4; C. freundii - 1; K. pneumoniae - 1; S. enterica - 1) isolated
from different countries and years, demonstrating the broad-
host-range and high stability nature of these plasmids. Plasmid
alignment revealed several DNA rearrangements that seemed to
be host-dependent and presumably were linked to the presence
of IS26 (Figure 4).

Transferability of pSEIL-3
Plasmid pSEIL-3 proved to be self-conjugable and was
transferrable into both E. coli and K. pneumoniae. Acquisition of
pSEIL-3 resulted in the same antibiogram as the donor ESBL-S
strains (Supplementary Table 1).

In order to examine the in situ transferability of pSEIL-
3 and pSEIL-3-like IncM2 plasmids in the horses’ gut, we
screened 16 non-Salmonella isolates that co-colonized the horses,
and that were PCR positive for blaCTX−M−1 –group, for the
presence of pSEIL-3 using a specific six-gene multiplex PCR
we have developed (Table 3). We identified pSEIL-3 and
pSEIL-3-like plasmids in 12/16 (75%) of the ESBL-E isolates
tested. These isolates belonged to various Enterobacterales
species, including E. coli, K. pneumoniae, K. oxytoca, and
C. freundii. Therefore, we defined it as a broad host range
plasmid (Figure 1).

DISCUSSION

In this study, we report for the first time the emergence of three
MDR CTX-M-3-producing S. enterica serovars - Cerro, Havana
and Liverpool, which colonize and cause severe infections
in hospitalized horses. Based on WGS and molecular studies
we elucidated the route of ESBL spread in S. enterica and
discovered an inter-serovar horizontal transfer of an IncM2
broad host range plasmid, pSEIL-3. Furthermore, we identified
the clonal expansion of blaCTX−M−3-producing S. Cerro that was
responsible for more than half of the cases.

Global phylogenetic serovar analysis indicated the genetic
uniqueness of our strains, and the metadata analysis revealed
that these three serovars have not been described before in
horses. Previously, S. Cerro was mainly reported in cattle in the
United States (Tewari et al., 2012; Webb et al., 2017), and as
the main causative Salmonellosis pathogen in dairy farms (Van
Kessel et al., 2007; Kovac et al., 2017). In the United States and
the Far East, S. Cerro has also been reported in poultry (Roy
et al., 2002; Murase et al., 2004). The second serovar we found, S.
Havana was reported both in humans (Backer, 2000; Bekal et al.,
2013) and in poultry (Clemente et al., 2013), and less frequently
in wild birds (Reche et al., 2003) and in environmental setting
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FIGURE 4 | Linear plasmid maps of pSEIL-3 and seven highly related IncM2 related plasmids. Linear schematic maps of pSEIL-3 and IncM2-related plasmids
retrieved from the GenBank (aligning for >90%). Plasmids’ GenBank accession numbers: pCTX-M3 - AF550415; RCS40_p - LT985241; RCS55_pI - LT985387;
LM6771 - KX009507; pNDM-OM - JX988621; pNDM-HK - HQ451074; AR_0127 - CP032193. Arrows (colored by function) represent the major annotated gene
groups and IS elements. The alignment between related plasmids is shown (purple, same direction alignment; orange, and opposite direction). The year of plasmid
isolation is indicated when available. Truncated genes are labeled with ‘1’ and mutated genes (identity > 99%) are labeled with #.

TABLE 3 | Description of the genes and primers used for the screening of pSEIL-3 multiplex PCR.

Gene Primer ID Sequence Product size Primers coordinates on pSEIL-3 (5′-3′)

replicon IncM2_FW GGATGAAAACTATCAGCATCTGAAG 786 86138 86162

IncM2_RV CTGCAGGGGCGATTCTTTAGG 716 696

aminoglycoside resistance armA_F GGGGTCTTACTATTCTGCCTAT 521 18264 18285

armA_R GCTGGTAATTCTCTTCCATTCC 18784 18763

blaCTX-M-1 ESBL CTX-M1-F AAAAATCACTGCGCCAGTTC 415 39216 39235

CTX-M1-R AGCTTATTCATCGCCACGTT 39630 39611

pSEIL-3 backbone region pSEIL3_orf_korC_F CTGGGACCGGATGCGTGAT 1315 53404 53422

pSEIL3_orf_korC_R TCGTTTTGATGTTGCGCCGG 54718 54699

Tra traJ_F CGGACTGATATGCGGCGAGA 267 67834 67853

traJ_R AGGCGGTTAAGGAGCTCACC 68100 68081

Tra pSEIL3_traUX_F TGCGATCCTGGACATGCAAAAC 997 80710 80731

pSEIL3_traUX_R TGTTAATCAGCGTGGCCTGGAT 81706 81685

The multiplex PCR was performed with PCRBIO HS Taq Mix Red (PCRBIO-systems, United Kingdom) at the following conditions: denaturation at 95◦C for one minute,
29 cycles of denaturation (95◦C, 15 s), annealing (61.1◦C, 15 s), and elongation (72◦C, 90 s).
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(Magwedere et al., 2015). It was also identified previously as an
ESBL-producer, carrying various blaCTX−M alleles (Bekal et al.,
2013; Clemente et al., 2013). S. Liverpool is a more rarely reported
serovar, with a single report that describes its origin from cattle
feces in an EU registered slaughterhouse (Madden et al., 2007).

The source of the S. enterica serovars that we identified
is unknown. In spite a large nation-wide survey of poultry-
associated Salmonella enterica was recently reported from Israel
(Cohen et al., 2020), data on the serovars that are circulating
in the community or in hospital equine populations is still
lacking. The large animal department in the KSVM-VTH serves
equine patients from diverse farms that occasionally may be
housed together with different farm animals. In addition, various
animals, often rescued from rural areas, are sporadically admitted
for intensive care to the same department. These farm animals
may be the source for these Salmonella serovars however, a solid
support for this is lacking.

Interestingly, the majority of the horses included in our study
were not detected as positive ESBL carriers on admission to
the hospital, suggesting the nosocomial acquisition of the ESBL-
producing strains or the ESBL genetic elements (the blaCTX−M−3
gene or its encoding plasmid). In the United States, studies
that describe asymptomatic community carriage of Salmonella in
horses report the prevalence of 0.8% without information on the
existing serovars (Traub-Dargatz et al., 2000). Other studies in
horses that describe the prevalence of clinical Salmonella isolates
indicate that the main serovars are Typhimurium, Newport,
Agona, Javiana, Anatum, Infantis, and Braenderup (Hernandez
et al., 2014; Martelli et al., 2019). Nevertheless, the serovars that
we describe herein are unique and are mentioned for the first time
in the context of equine population.

Dissemination of ESBL among the hospitalized horses
showed a complex epidemiology that included the clonal
expansion of S. Cerro between seven horses alongside with
an in-hospital spread of pSEIL-3 that horizontally transferred
to all three Salmonella serovars. Acquisition of this single
plasmid with its wide resistome was responsible for the
dissemination of multidrug resistance. Complete plasmid
sequencing of pSEIL-3 indicated that it is merely identical to
the previously reported wide-host-range pCTX-M-3 plasmid
from Citrobacter freundii (Golebiewski et al., 2007) and to
other MDR plasmids, that encode various carbapenemases,
all from human origin. The findings of pSEIL-3-like IncM2
plasmids in other non-Salmonella ESBL-E species that colonized
the horses’ gut is alarming, and proves their high inter-
species transmissibility. The presence of pSEIL-3 in horses,
and previously in humans, highlights the risk of horizontal
transmission of MDR plasmids between human, animals and
environmental pools.

The potential transmission of pSEIL-3-like plasmids is
disturbing not only due to their broad host range, but
also due to their wide resistome, which confers resistance
to all aminoglycosides and to trimethoprim/sulfamethoxazole.
Considering the massive use of aminoglycosides antibiotics,
often combined with β-lactamase inhibitors, for treating ESBL-
producing pathogens in humans, food and companion animals,
emphasizes the risk of this plasmid as it may lead to limited

treatment options. Additional reports regarding this clinically
important ARGs combination in S. enterica are infrequent,
with one recent study that described a similar MDR pattern of
S. Virchow from food animals in South Korea (Na et al., 2020),
and another study describing shedding of quinolone resistant and
ESBL-producing S. enterica serovars in swine population in the
United States (Elnekave et al., 2019).

The clinical impact of ESBL-S and specifically pSEIL-
3-like plasmids in a ’One-Health’ perspective is vast. The
clonal expansion of the S. Cerro underlines the lack of
current infection-control measures for detecting and controlling
Salmonella infections in the veterinary hospital, and calls for the
implementation of control measures to prevent further spread.
The existence of highly transmissible plasmids such as pSEIL-
3 and its spread into three uncommon S. enterica serovars
highlights the importance of detailed molecular analyses for
elucidation of these transmission paths. The developed multiplex
PCR in this study enables the tracking of pSEIL-3 in future studies
and in active surveillance actions.

This study describes horse-to-horse spread of a zoonotic
pathogen harboring a wide-host-range MDR plasmid, which
was reported previously in human pathogens, representing
a major public health concern. Although the source of this
highly transferable plasmid in the veterinary hospital and its
circulating routes remains unclear, its disseminative nature
is alarming.
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