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Abstract

Integrating multi-omics datasets is critical for microbiome research, but multiple statistical 

challenges can confound traditional correlation techniques. We solve this problem by using neural 

networks to estimate the conditional probability that each molecule is present given the presence 

of each specific microbe. We show with known environmental (desert biological soil crust wetting) 

and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite 

relationships, and demonstrate how the method can discover relationships between microbially-

produced metabolites and inflammatory bowel disease.

2 Introduction

Knowledge gained by integrating complementary “-omics” data with a multi-omics 

approach will lead to improved diagnostics, automated drug discovery, and optimized 

culturing conditions for uncharacterized microbes [1]. Previous work have been able to 

predict metabolite abundance profiles from microbe abundance profiles [2, 3]. However, 

because conventional correlation techniques have unacceptably high false discovery rates, 

finding meaningful relationships between genes within complex microbiomes and their 

products in the metabolome is challenging.

Although there has been a widespread effort to develop multi-omics approaches, several 

conceptual challenges limit techniques that integrate disparate “omics” data in general, 

including linking the microbial sequencing and untargeted mass spectrometry. Therefore, 

new approaches are needed that can handle disparate data types [4]. Relative abundances of 

thousands of microbes and metabolites can be measured using sequencing and mass 

spectrometry, resulting in the generation of very high dimensional microbiome and 

metabolomics datasets. Quantifying microbe-metabolite interactions from these abundances 

requires estimating a distribution across all possible microbe-metabolite interactions.

Techniques such as Canonical Correspondence Analysis (CCA) and Partial Least Squares 

(PLS) approximate this joint distribution using a low dimensional representations [5, 6, 7]. 

Network models have been shown to improve classification accuracy using multiple datasets 

[8]. Factor models have been proposed to incorporate multiple datasets for biomarker 

analysis [9]. Despite of the wide application of these methods, they are notoriously difficult 

to interpret [10, 11, 12] and it remains unclear whether these models can obtain individual 

microbe-metabolite interactions.

Pearson and Spearman correlations assume independence between interactions, simplifying 

the estimation procedure by reducing it to a combination of independent two dimensional 

problems. However, many studies have shown that these methods are not statistically valid 
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for compositional data, a fact first recognized by Pearson in 1895 and followed up in 

numerous studies [13, 14, 15, 16, 17]. This problem is further complicated because both 

microbiome [17] and mass spectrometry [18, 19, 20, 21] datasets are also compositional, 

meaning that the absolute abundances are not measured, which can confound statistical 

inference. For example, in untargeted mass spectrometry experiments, the set of molecules 

detected and their relative abundance vary depending on the extraction protocol and analytic 

methods used, which leads to only a partial snapshot of the metabolome. Moreover, 

measuring the total mass of molecules extracted is often not performed in large scale 

metabolomics efforts, due to the highly laborious nature of that step.

To understand how issues associated with compositional data impact inference on microbe-

metabolite interactions, consider the example in Figure S1. There are two microbes and two 

metabolites in Figure S1a. All are increasing exponentially at different rates and are highly 

correlated with each other. If proportions are estimated from the absolute abundances via 

sampling, the information about the total microbe population size and the total metabolite 

abundance is lost, and the correlations between the microbes and the metabolites disappear. 

False positives can also appear as shown in Figure S1b, microbe and metabolite interactions 

that have no apparent correlation structure may appear to be correlated when investigating 

the proportions. These issues alone can give rise to overwhelming false positives and false 

negatives, making Pearson and Spearman in some scenarios comparable to random coin 

flips. Experimental validation currently takes large laboratories multiple years to perform 

[22], often requiring time-consuming manual examinations of erroneous correlations.

There are other compositional techniques such as SparCC[13] and proportionality[23] that 

are scale-invariant when analyzing a single dataset, but lose scale-invariance when analyzing 

multiomics datasets. This was shown in the context of identifying microbe-fungal 

interactions [24], which provided motivation to extend SPIEC-EASI [14] to handle 

multiomics datasets. We show that this approach does not work for microbe-metabolite 

interactions because of differences of measurement units between sequencing and mass 

spectrometry measurements (Supplementary materials). An alternative approach is to 

consider co-occurrence probabilities instead of correlations. Here, co-occurrence 

probabilities refer to the conditional probability of observing a metabolite given that a 

microbe was observed, thereby allowing us to identify the most likely microbe-metabolite 

interactions. To do this, we propose “mmvec”, (microbe-metabolite vectors), to learn these 

co-occurrence probabilities between microbes and metabolites (Figure 1). Due to its scale-

robustness properties, the microbial-metabolite relationships learned by mmvec are 

consistent between the absolute and relative abundances. The microbe-metabolite 

interactions can be ranked [25] and visualized through standard dimensionality reduction 

interfaces, enabling interpretable findings. The computations behind mmvec can take 

advantage of modern GPU architectures using Tensorflow [26], enabling scalable inference 

on large multiomics datasets. Furthermore, we provide evidence in two benchmarks and four 

case studies that mmvec outperforms existing statistical methods.
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3 Results and Discussion

We performed benchmarks comparing mmvec to Pearson, Spearman, SPIEC-EASI, SparCC 

and Proportionality [23] using a cystic fibrosis biofilm simulation. We then show that 

mmvec can resolve contradictory cyanobacteria-metabolite relationships in a desert soil 

biocrust wetting study. We also demonstrate recovery of known associations of P. 
aeruginosa-produced metabolites observed in cystic fibrosis [27]. Finally, we explore the 

relationships of microbiota and metabolic changes in mice fed a high fat diet [28] and 

inflammatory bowel disease [29], showing how this approach can be used to determine 

microbial origin of novel molecules even in extremely complex real-life biological systems 

with limited knowledge of existing associations.

3.1 Simulation benchmarks

To compare mmvec performance to Pearson, Spearman, Proportionality, SparCC and 

SPIEC-EASI correlations, we used data from existing studies in which the relationships 

between microbes and metabolites were the central focus of investigation. One such study 

simulated spatial-temporal dynamics in a microbial biofilm [27]. The original study tested 

the hypothesis that the cystic fibrosis (CF) microbiome community within human lungs can 

be manipulated by altering its chemical environment. Changes in pH and oxygen saturation 

suppress the principal pathogen, P. aeruginosa, without using antibiotics, by promoting the 

growth of a community of fermenters that out-compete the pathogen. The simplicity of this 

system allowed the high-level ecological patterns to be modelled. In the original simulations, 

the interactions between two microbes (fermenters denoted by Θf and P. aeruginosa denoted 

by Θp) and multiple molecules were modeled using Monad kinetics and diffusion 

processes[27] (Figure 2a).

We simulated the measurement process for microbial DNA sequencing and untargeted mass 

spectrometry for metabolites as discussed in the Online Methods, providing ground truth 

information on their interactions. The model simulates interactions between P. aeruginosa 
and the fermenters, and their interactions with the environment. It also simulates known 

interactions between microbes and molecules, such as sugar consumption by fermenters and 

ammonia production by the pathogen. For example, the fermenters are positively associated 

with sugars and ammonium concentration, and negatively associated with inhibitor 

concentration; P. aeruginosa is positively associated with amino acids and pH.

Therefore, we can test whether the top K metabolites associated with each microbe by each 

tool includes the correct microbe-metabolite interactions. Figure 2c shows specificity and 

sensitivity for each tools as a function of K. In these simulations, random chance 

outperformed all of the tools except for mmvec and SPIEC-EASI, with mmvec performing 

the best. As shown in Figure 2d and Figure S2, mmvec is the only method robust to scale 

deviations amongst the methods tested. This is critical for maintaining consistency between 

absolute and relative abundances, which can otherwise lead to inflated false positives and 

false negatives [16].
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3.2 Soil biocrust wetting event case study

Many studies produce inconsistent results that can be resolved with improved data analysis, 

especially in environmental and clinical settings. To test whether mmvec can resolve 

unexplained discrepancies in microbe-metabolite interactions across studies, we applied it to 

a study of biocrust wetting [30]. In this study, laboratory-based exometabolite patterns 

observed with bacterial isolates were reproduced in the environment. Specifically, in this 

work authors identified metabolites that were consumed and released by multiple biocrust 

isolates including Microcoleus vaginatus and two Bacillus strains [31], and compared these 

patterns with closely-related environmental taxa and metabolites observed in situ [30].

While almost 70% of the examined microbe-metabolite relationships following the wetting 

event were validated [30], some contradicted the microbe-metabolite relationships observed 

in cultures [31]. These contradictions stemmed from Spearman correlations between M. 
vaginatus abundances and the observed metabolite abundances, but were resolved by mmvec 

(Figure 3a).

All metabolites released from the M. vaginatus isolate have higher conditional probabilities 

than the average metabolite following biocrust wetting, and are among the top 80 co-

occurring metabolites with M. vaginatus (of 485 molecules total). This result supports the 

original finding that M. vaginatus actually releases these molecules after the wetting event. 

In contrast, Spearman labels 7 of 13 of these molecules with a negative correlation, 

indicating that these molecules were consumed by M. vaginatus rather than released, as 

originally stated in [30]. When the annotation detection rates amongst different statistical 

methodologies, mmvec has a substantially higher true positive rate as shown in Figure 3b.

The conflicting results between mmvec and Spearman could be explained by the growing 

microbial biomass and shift in available resources after wetting (Figure 3 c, d). Total 

biomass is expected to increase, because M. vaginatus releases metabolites that enable the 

growth of many other microbes. Because DNA sequencing can only measure proportions, 

the growth in other microbes could cause the proportions of M. vaginatus to decrease, 

leading to a misleading anti-correlation with 4-guanidinobutanoate (Figure 3d). However, it 

is not possible to infer whether M. vaginatus is decreasing in abundance [25] or 4-

guanidinobutanoate is increasing in abundance.

The change in the total biomass and the total available resources could explain the 

contradiction between the Spearman correlations and the isolate results. M. vaginatus likely 

grows at a slower rate relative to other microbes that benefit from the metabolite release. 

Because mmvec does not rely on knowledge of the total biomass or normalize to relative 

abundance, these contradictions are avoided.

3.3 Cystic Fibrosis case study

To further validate if mmvec can detect known microbe-metabolite interactions in a 

biological setting, we re-analyzed a study on lung mucus microbiome of patients with cystic 

fibrosis [27, 32]. Cystic fibrosis has been shown to be dominated by two major groups of 

microbes, anaerobes and pathogens that occupy unique niches, and their interactions are 

defined by the environment. Anaerobes dominate in low oxygen and low pH environments, 
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while pathogens, in particular P. aeruginosa, dominate in the opposite conditions [27]. 

Mmvec clearly separates anaerobes and pathogens (Figure 4a), with known anaerobic 

microbes (Veillonella, Fusobacterium, Prevotella and Streptococcus) on the left, and notable 

pathogens, such as P. aeruginosa, on the right.

P. aeruginosa is known to produce small-molecule virulence factors [33]. In the original 

study, based on annotations from GNPS[34], the bacterium was found to produce six 

molecules: 4-hydroxy-2-heptylquinoline (HHQ), Pyocyanin (PYO), Phenazine-1-carboxylic 

acid (PCA), 2-nonyl-4-hydroxy-quinoline (NHQ), 2-heptyl-3,4-dihydroxyquinoline (PQS, 

Pseudomonas quinolone signal) and Pyochelin [27]. As shown in Figure 4a, mmvec 

identifies these molecules with a high co-occurrence probability with P. aeruginosa. Mmvec 

also identifies a cluster of rhamnolipids likely produced by P. aeruginosa. Rhamnolipids are 

well characterized and are an important virulence factors for P. aeruginosa, contributing to 

biofilm development, motility on surfaces and antagonistic interactions with host 

inflammatory cells [35, 36]. These rhamnolipids were not identified in the original study 

[27]. The annotations for these compounds have been estiblished using GNPS [34].

There is a negative correlation between the first principal component learned from mmvec 

and the metabolites log-fold change across the oxygen gradient (Figure 4b) (Pearson r=

−0.59, p-value 1.8×10−44, n=442 molecules), which is consistent with the findings in the 

original work. No such correlation between the oxygen gradient and the first microbial 

principal component was found by Pearson (r=0.11, p=0.16, n=138 microbes). There exist 

two notable microbes on opposing ends of the first microbial principal component: P. 
aeruginosa, a known pathogen, and Streptococcus, a known anaerobe. The top 100 

metabolites that are specific to P. aeruginosa and Streptococcus are shown to have drastically 

different profiles in samples where P. aeruginosa and Streptococcus were the most abundant 

species (Figure 4d,e) (logratio t-test=6.51, p=4.4×10−8, n=49 samples). This provides 

evidence that in the context of this study, the metabolomic profiles can be largely influenced 

by the most abundant microbes, a notion that has important implications for understanding 

CF etiology. To further support this, the learned metabolite conditional probabilities for P. 
aeruginosa can be used to predict the metabolite proportions in the 41 samples where P. 
aeruginosa is the most abundant taxa. The predicted P. aeruginosa metabolite profiles alone 

can explain 10% of the metabolite variation in these samples (r=0.319, p=1.18×10−11, n=442 

molecules).

Of 14 quinolone molecules known to be produced by P. aeruginosa, Pearson correlation 

detected 9 with p<0.05 without FDR correction, and only 5 with FDR correction. For 

example, Pyocyanin, does not appear related to P. aeruginosa by the raw proportions 

(r=0.158, FDR-corrected pvalue=0.089, rank=96, n=172 samples), but is ranked 34th most 

associated with P. aeruginosa by mmvec (Figure S3c), consistent with culturing experiments 

that demonstrate that P. aeruginosa produces this molecule [37]. 18 rhamnolipids are among 

the top 25 metabolites most associated with P. aeruginosa by mmvec, and have higher ranks 

with mmvec than with Pearson correlation (Figure S3b).
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3.4 Effects of high fat diet in murine model case study

We then tested whether mmvec could determine the microbial origin of specific molecules in 

a complex biological system. We recently discovered a new kind of bile acid, where cholate 

is conjugated to amino acids other than glycine and taurine [38]. These molecules increased 

in abundance with high-fat diet in humans. We determined that these molecules are 

microbially-made since they were present in specific pathogen free, but not in germ free 

mice. We therefore set out to identify candidate producers. We were able to confirm that one 

of these bile acids, cholate phenylalanine amidate, was associated with high-fat diet in well-

controlled study that investigated the development of non-alcoholic fatty liver disease 

(NAFLD), cirrhosis, and hepatocarcinoma (HCC) in a mouse model [28]. When re-

analyzing these datasets for differential abundances via multinomial regression, the strong 

association of the novel bile acid with HFD became immediately apparent. The use of 

mmvec showed distinct associated groups of microbes and HFD (Figure 5a) and a clear 

stratification of the mass spectrometry data according to diet (Figure 5b). Several 

Clostridium spp. correlated with the cholate phenylalanine conjugate. Indeed, we showed 

that Clostridium spp. were found to produce this bile acid [38]. This result demonstrates 

mmvec’s ability to streamline the discovery of microbes that produce specific molecules of 

interest in vivo.

3.5 Microbe-metabolite interactions in Inflammatory Bowel Disease

Finally, microbe-metabolite interactions were investigated for samples of IBD patients 

generated under the integrative Human Microbiome Project [29]. The role of the 

microbiome in IBD is acknowledged, but still poorly understood. The original study 

uncovered shifts in metabolomic and microbial profiles associated with the IBD. In 

particular, levels of carnitines and bile acids were shown to be affected [29]. Using mmvec 

we confirmed the core findings in the previous study, such as the co-occurrence between R. 
hominis and multiple carnitines, including previously noted C20, which have anti-

inflammatory properties (Figure 6a) [29]. We also found high correlation of Klebsiella spp. 
with IBD status and that it co-occurs with high probability with several bile acids (Figure 

6b). Although Klebsiella itself does not produce these compounds, some pathogens 

(including Klebsiella) are known to be resistant to bile acids [39]. Excessive production of 

some bile acids and bile acid malabsorption can lead to overabundance of bile acids, which 

is a hallmark of IBD [40], although the exact mechanisms remain unknown. The ability of 

Klebsiella to thrive in concentrated bile acid environments is consistent with the high co-

occurrence probabilities shown in Figure 6b. We also noted that three Klebsiella species are 

the top drivers of the IBD-associated molecules (Figure 6c). It is important to delineate 

different reasons for co-occurrence. Unlike Klebsiella, Clostridium species are known for 

bile acid manipulation, including production of bile that can germinate Clostridium difficile 
spores or that have anti-microbial properties [41, 42].

Therefore, it is possible that in case of Clostridia, the existing co-occurrences (Figure 6b) are 

due to actual biosynthesis of the metabolites by the microbial species indicated rather than 

ability to withstand them.
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In addition to recapitulating reported findings, mmvec also yielded previously undetected 

relationships. The major microbe that was found to be associated with healthy patients is 

Propionibacteriaceae, which was not detected in Price et al 2019 (Figure 6cd). This 

relationship is corroborated by other published studies. In one study, it has been shown that 

some members of the Propionibacterium genus produce 1.4-Dihydroxy-2-naphthoic acid 

(DHNA), a growth stimulator for bacteria such as Bifidobacterium that are thought to reduce 

the symptoms of IBD [43]. Also, in a survey of in vivo vs. in vitro bacterial activity, 

Probionibacterium freudenreichii was shown to play an immunomodulatory role in the 

context of an ulcerative colitis mice model [44]. In another study it was shown that 

Propionibacterium freudenreichii is a viable core component in an anti-inflammatory 

probiotic fermented dairy product [45]. The members of this family have been considered 

beneficial for intestinal immunoregulation; Propionibacteriaceae have been observed to be 

enriched in human breast milk and have been shown to restore Th17 differentiation [46]. 

Thus, it appears that the existing knowledge supports the statistically-inferred interaction 

uncovered by mmvec, but not identified in the published analysis of the dataset.

4 Conclusion

In both simulation benchmarks and annotated dataset, mmvec shows promise for inferring 

microbe-metabolite interactions from multiomics datasets. Our benchmarks suggest that 

mmvec outperforms all existing tools that aim to infer interactions between paired microbe-

metabolite abundance datasets, both in simulations and in experimental data. In the biocrust 

wetting experiment, mmvec resolved conflicting findings between the in vitro validated M. 
vaginatus released metabolites and the sequencing/mass spectrometry analysis of 

environmental samples. In the cystic fibrosis study, mmvec can reliably identify all of the 

experimentally determined P. aeroginosa-produced molecules of interest. We show in the 

example of bile acid production that mmvec enables exploratory analysis in complex 

biological systems and streamlined discovery of the microbial origin of specific metabolites. 

Finally, mmvec was able to identify the strongest microbial contributions to the metabolite 

abundances in the IBD study, where one of those microbes was missed in the original study.

In light of these findings, the current methodology still has limitations. It remains unclear 

how to access statistical significance of an interaction using co-occurrence probabilities. 

Similarly, confidence intervals for the strength of each microbe-metabolite interaction can 

not yet be calculated. Furthermore, more theoretical work will be required to handle 

continuous-valued inputs.

The concepts outlined here should generalize beyond microbe-metabolite interactions to 

handle other paired multi-omic data types, provided that the input dataset is made up of 

counts (as in metagenomics, transcriptomics, etc.). With the exponential growth of 

multiomics datasets, there is much potential to use these methods to reveal microbial 

metabolism, including for microbes that are not cultivable in the laboratory. Approaches 

utilizing co-occurrence probabilities have the potential to enable more targeted experimental 

assays, accelerating the discovery of microbe-metabolite interactions, paving the way 

towards new ecosystems engineering approaches in clinical, environmental and industrial 

applications.
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10 Methods

10.1 Mmvec neural network architecture

The development of our proposed neural network was inspired by applications in natural 

language processing. The underlying model can also be referred to as a bi-loglinear 

multinomial regression. Our mmvec model posits an assumed generative process for the 

data, which leads to an inference algorithm to recover the model’s parameters from multi-

omics data. The model’s assumed generative model for metabolite ν, microbe μ and sample 

k given as follows.

First generate microbe vector uμ for microbe μ∈{1,...N} and metabolite vectors vν for 

metabolite ν∈{1,...M},

uμ ∼ 𝒩(0, σuI) vν ∼ 𝒩(0, σvI),

These vectors are length p, corresponding to the number of latent vectors dimensions. Each 

of these vectors are drawn from a normal prior centered around zero and a diagonal 

covariance matrix with variances σu and σv, namely to serve regularization purposes and 

avoid overfitting. For a given microbial sample xk, the models generative process draws a 

single microbe from a single draw from the categorical distribution

μ ∼ Categorical(xk) .

That microbe μ can be used to index U in order to generate conditional probabilities qμ

p(ν |μ) =
exp vν ⋅ uμ + νν0 + uμ0

∑ jexp vj ⋅ uμ + ν j0 + uμ0
,

qμ = [p(ν1 |μ), …p(νM | μ)]

Here, vj0 + uμ0 are row and column biases, which are required to accurately estimate the 

conditional probabilities. The above transformation is the softmax transform [47] to compute 

probabilities from real-valued quantities. This transformation is also known as the inverse clr 

transform [48], which enforces scale invariance as shown in the simulations. In the mmvec 

model’s generative process, these conditional probabilities generate the metabolite 

abundances yk for a given sample k through a multinomial distribution.

yk ∼ Multinomial(n, qμ),

where n is the total metabolite abundances across sample k. It is important to note that 

metabolite abundances themselves are not counts, but rather a continuous representation of 
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molecule counts. We make the simplifying assumption that these continuous valued 

abundances can be approximated by Multinomial count models.

This model bears resemblance to how word2vec estimates word probabilities conditioned on 

a single particular word [49]. There are a couple of majors differences to be considered. 

First, in the original application of word2vec, a skipgram was proposed. Skipgrams [49] 

have been designed to account for the sequential nature of text. There is no such sequential 

nature with microbiome or metabolite samples, the only ordering information that is known 

is the sample membership. As a result, the skipgrams can be replaced using multinomial 

sampling, where a single microbe is randomly sampled from a microbiome sample at each 

gradient descent step.

Second, in the original word2vec application a single input/output word pair were evaluated 

at each gradient descent step, which is required to incorporate the contextual information of 

words within sentences. In the application of multiomics, this is unnecessasrily complicated, 

since there is no such contextual with regards to microbes and metabolites. Instead, all of the 

metabolite abundances can be simultaneously evaluated for each gradient descent step, 

ultimately speeding up computations. Specifically, these metabolite abundances are 

simultaneously considered in order to estimate the conditional probabilities qk for the given 

microbial count ujk. From these conditional probabilities, the metabolite abundances yk are 

generated from a Multinomial distribution. This process is repeated across all of the 

microbial reads. To show that p(ν|μ) truly approximates the probability of observing a 

metabolite given a microbe, we first need to make the simplifying assumption that the 

conditional distribution of a metabolite given the presence of a single microbe also follows a 

multinomial distribution as follows

p(Y = y | Xμ = 1) = Multinomial(y |qμ)

Where y is the vector of observed metabolites, Y is the random variable modeling metabolite 

abundances, X is a random variable modeling microbe abundances, x is a vector of observed 

microbes and μ is a single microbe. Given these modeling assumptions, we can parameterize 

the conditional Multinomial distributions with embedding vectors as described above. This 

estimation procedure can be reformulated as a matrix factorization, where the conditional 

probability matrix is decomposed into two weight matrices U and V, which are comprised of 

microbe-metabolite vectors as follows

U = [0, u0, u1, ..., uN]T V = [v0, 0, v1, ..., vM] .

Here U∈RN×p and V∈R(M−1)×p represents the corresponding embeddings for N microbes 

and M metabolites. The number dimensions p for both U and V as well as the priors are 

specified by the user, but can also be evaluated during cross-validation. The biases u0 and v0 

are critical for estimating accurate co-occurrence probabilities, as suggested by similar 

methodologies used in recommender systems [50]. The U and V matrices are estimated 

through maximum a posteriori (MAP) estimation using ADAM [51] with the following log-

posterior
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ℒ = ℒY + ℒU + ℒV

ℒU = ∑
μ

∑
ϱ = 1

p
𝒩(Uμ, ϱ |0, σu)

ℒV = ∑
ν

∑
ϱ = 1

p
𝒩 Vν, ϱ |0, σν

ℒY = ∑
k

∑
r ∈ xk

Multinomial(yk |qμ) .

Within a single iteration of stochastic gradient descent a single microbial sequence i is 

randomly drawn and compared to a complete set of metabolite abundances yi for that given 

sample. If there are a total of R microbial reads across all of the microbial samples, there 

will be R iterations for a complete epoch over the microbial dataset. This means that the 

running time of this training process is O(RM) for a single epoch. Cross validation can be 

performed by holding out samples measuring the predictive power by looking at the sum of 

squares errors. Predictions can be made as follows

SSE = ∑
k, i

yk − mk ⋅ so f tmax VUuik, ⋅
2

.

Where the predictive metabolite abundances are compared to the holdout abundances yk 

across all microbial reads i in the holdout samples k. mk denotes the total metabolite 

abundances in sample k

10.2 Microbe-metabolite vectors in simplicial coordinates

Here, we will provide some insights behind the underlying geometry behind this neural 

network. Doing so will provide intuition behind the algebraic operations commonly applied 

in the context of word2vec, suggesting the possibility of performing similar tasks in the 

context of microbe-metabolite interactions. Furthermore, this will motivate the use of the 

Aitchison distance to quantify microbe-microbe and metabolite-metabolite interactions. 

Finally we will make a connection to topic modeling, providing another means to potentially 

interpret the latent dimensions in the model. The connection between the softmax and the 

inverse clr transform suggests that the inputs to this transform can be represented in clr 

coordinates. The softmax function and its corresponding inverse, the clr transform, is given 

as follows
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so f tmax(x) = [ e
x1

∑i e
xi

, …, e
x1

∑i e
xi

]

clr(z) = [log
z1

g(z) , …, log
zD
g(z) ]

Since biases are incorporated into the mmvec model, by construction Q=UVT is both row 

centered and column centered, meaning that the sum of rows are zero and the sum of the 

columns are zero. Given this the following holds

Theorem: If Q=UV and 1NQ=0 and Q1M=0 then U1p=0 and V1p=0

Suppose that there exists another solution Q = UV*T
 where V = V − 1Mλv

T and λv∈Rp. Then

Q = U V − 1Mλv
T .

Given that the rows of Q sum to 0, then

U V − 1Mλv
T T1M = 0

UλvM = 0.

This means that only the trivial solution λv=0 exists, therefore the rows of V do sum to 0.

Using the same reasoning above, suppose that there exists another solution Q=U*VT where 

U* = U − 1Nλu
T and λu∈Rp. Then

Q = U − 1Nλu
T VT .

Given that the columns of Q sum to 0, then

1N
T U − 1Nλu

T VT = 0

Nλu
TV = 0.

This means that only the trivial solution λu=0 exists, therefore the rows of U do sum to 0.
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Therefore the rows of both U and V must sum to zero if U and V are non-trivial.

As noted in previous compositional data analysis work, the sum of the components within a 

vector in clr coordinates is zero. Given that the row vectors within U and V both sum to 

zero, that suggests that each of these vectors are also in clr coordinates. This means the 

following properties are satisfied

Topic proportions—Since the U and V row vectors are in clr coordinates, that implies 

that these row vectors can be directly converted to p-dimensional proportions, yielding a 

similar interpretation to topics used in models such as LDA [52, 53].

Linearity—Vectors in clr coordinates are known to satisfy linearity, namely

clr(αx + y) = αclr(x) + clr(y)

for α∈R, x∈Sp and y∈Sp. This linearity property was leveraged in word2vec models to 

perform analogy reasoning. Since both microbes and metabolites are in clr coordinates, it 

should be possible to categorize microbe-microbe and metabolite-metabolite interactions.

Isometry—The clr transform is distance preserving, meaning that the Aitchison distance on 

proportions is equivalent to the Euclidean distance on clr vectors. This provides motivation 

for using Euclidean distances to compute microbe-microbe and metabolite-metabolite 

similarities.

10.3 Visualization through biplots

Visualization techniques from compositional data analysis can aid with interpretation [54, 

55]. U and V can be visualized as factors within a biplot to visualize the microbe-metabolite 

embeddings on a single plot. The first two latent dimensions of U represent microbial 

coordinates on a 2D scatter plot and the first two latent dimensions of V represent metabolite 

coordinates on a 2D scatter plot. Typically the coordinate from the V matrix are plotted as 

arrows from the origin in order to identify features that explain the variance in U. However, 

in our case studies, there are typically many more metabolites than microbes - so we opt to 

visualize the metabolites as points and microbes as arrows for a simpler visualization As 

suggested by the above theorem, the distance between points approximates the Aitchison 

distance between metabolites, and the distance between arrow tips approximates the 

Aitchison distance between microbes. As suggested in [56], the Aitchison distance is also 

equivalent to the variance of the log ratios, suggesting that microbe-microbe and metabolite-

metabolite distances could also be interpreted as a measure of proportionality [23].

10.4 Benchmarks

The simulated data was based on a cystic fibrosis biofilm model derived in Quinn et al [27] 

shown in Figure S12 in the paper. The biofilm model was built to explain how fermenters 

and P. aeruginosa responded to different concentrations of sugars, amino acids, pH, oxgygen 

and antibiotics across the Winogradsky column. These models solved for differential 
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equations integrating Monad kinetics and diffusion processes and was run in Matlab using 

the code provided at https://github.com/zhangzhongxun/WinCF_model_Code

From this simulation, we only focus 2 microbes and 5 compounds. The two microbes are P. 

aeroginosa (Θp) and fermenters (Θf). The five compounds (SG), acids (F), ammonium (P), 

amino acids (SA) and inhibition molecules (I). In order to simulate a high dimensional 

dataset, each microbial taxon was split into 50 different subtaxa and each compound was 

split into 50 molecular subclasses. The partitioning procedure is given as follows

pi ∼ 𝒩 0, σoI qi ∼ 𝒩 0, σcI

oij = κi jilr
−1 pi cik = ηikilr−1 qi ,

where pi is a vector proportions representing how the subtaxa corresponding to j will be 

distributed in sample i. κij represents the absolute abundance of taxon j in sample i. oij 

represents a vector of the absolute abundances for all of the subtaxa corresponding to taxon 

j. These are the absolute abundances that are used for comparison in Figure 2.

Here we use the ilr−1 transform to generate proportions from a multivariate normal 

distribution. Here the multivariate normal distribution is centered around zero, and the 

covariance matrix σoI has only a constant diagonal structure with a tunable parameter σo 

specifying the variability of the partitioning procedure. Larger values of σo will cause the 

allocations of the microbes to be increasingly uneven.

The partitioning procedure is identical for the metabolites. qi is a vector proportions 

representing how the subcompounds corresponding to k will be distributed in sample i. ηik 

represents the absolute abundance of compound k in sample i. cik represents a vector of the 

absolute abundances for all of the subtaxa corresponding to compound k. The multivariate 

normal distribution used to generate the proportions is centered around zero. The covariance 

matrix σcI has only a constant diagonal structure with a tunable parameter σc specifying the 

variability of the partitioning procedure. Larger values of σc will cause the allocations of the 

metabolites to be increasingly uneven.

Once the subtaxa and subcompounds absolute abundances have been simulated, the 

microbial relative counts and metabolite abundances are simulated. The sampling procedure 

is performed as follows

ζi ∼ ℒ𝒩 n, τo ωi ∼ ℒ𝒩(m, τc)

xi ∼ 𝒫ℒ𝒩 ζi C oi , εo yi ∼ ℒ𝒩 ωi C ci , εc .
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The total sequencing depths and total intensities for sample i are draw from Lognormal 

distributions with means parameterized by n and m and overdispersion parameters τo and τc. 

We chose to use the lognormal distribution for three reasons. First, the lognormal 

distribution models overdispersion. Second, the lognormal distribution has a simpler 

interpretation than other overdispersed distributions such as the negative binomial, since the 

parameters can be directly interpreted as a normal distribution and consequentially has a 

compositional interpretation due to its connection to the ilr transform. Finally, the lognormal 

distribution commonly used for modeling in the the ecological literature in the context of 

studying species populations in Niche theory and Neutral theory, leading to a natural 

biological interpretation.

Once the total sequencing depth and the total intensities are sampled, the microbial 

sequencing counts and metabolite abundances are then sampled. A Poisson lognormal 

distribution is used to generate the microbial counts from the microbial proportions C(oi) 

scaled by the sequencing depth ζi. The counts are sampled with error εo. A Lognormal 

distribution is used to generate the metabolite abundances from metabolite proportions C(ci) 

scaled by the total intensity ωi. The abundances are sampled with error εc. All of the code 

used to generate the benchmarks can be found at https://github.com/knightlab-analyses/

multiomic-cooccurrences.

10.5 Software workflows

To facilitate utilization of the mmvec tool, we have developed two different user facing 

interfaces. First, we have developed a qiime2 plugin [57], where mmvec can be run using a 

simple command line interface. This interface is complemented using [26], where users can 

monitor convergence rates for their models in real-time and evaluate how different 

parameters will affect their model fit (Figure S4). Second, we have integrated mmvec into 

the Global Natural Product Social Molecular Networking (GNPS) platform that can be 

accessed by the public. The online interface through GNPS resolves several usability issues. 

First, GNPS facilitates import of metabolomics data into qiime2 by pre-processing, 

importing, and sample renaming, This is performed as part of the standard metabolomics 

analysis at GNPS (e.g. molecular networking and feature-based molecular networking). 

Second, since it is possible to both download and re-use outputs of workflows run at GNPS 

directly, it is straightforward to select the GNPS qza and molecule annotations needed for 

mmvec. The user will need to upload the accompanying feature and taxonomy data for 

qiime2 and the analysis will be begin. Once the workflow completes, the biplots can be 

viewed directly in the browser and other outputs (e.g. ranks) are available for download 

(Figure S5).

The mmvec implementation is written using Tensorflow and can leverage GPUs for 

computation. The number of gradient descent iterations is specified by the user and model fit 

diagnostics can be monitored in real time using Tensorboard. The runtime of mmvec across 

16 cores can take multiple days until a model convergence reaches convergence. With GPUs, 

the running time is reduced to a few hours. Using a Telsa GPU, the model can reach 

convergence within 4 hours on the IBD dataset comprised of 562 microbial taxa, 26,966 
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metabolite features and 400 samples. However, there is a trade-off of accuracy and running 

time. More accurate models require smaller learning rates and may take longer to run.

10.6 Data Analysis

Due to the overwhelming sparsity in microbiome datasets, some filtering is required in order 

to infer microbe-metabolite interactions. We chose to filter out microbes that appear in less 

than 10 samples, since these microbes don’t have enough information to infer which 

metabolites are co-occurring with them. In other words the mmvec model has too many 

degrees of freedom to perform inference on these microbes. For the cystic fibrosis study, 

there were 172 samples and after filtering there were 138 unique microbial taxa and 462 

metabolite features. For the biocrust soils study, there were 19 samples and after filtering 

there were 466 unique microbial taxa and 85 metabolite features. For the murine high fat 

diet study, there were 434 samples and after filtering there were 902 microbes and 11978 

metabolites. For the IBD dataset, there were 13920 features in the c18 LCMS dataset, 26966 

features in the c8 LCMS dataset and 562 taxa. Cross validation was performed across all 

studies to evaluate overfitting. In the desert biocrust soils experiment, 1 sample out of 19 

samples was randomly chosen to be left out for cross-validation. In all of the other studies, 

10 samples were randomly chosen to be left out for cross-validation. All of the analyses can 

be found under https://github.com/knightlab-analyses/multiomic-cooccurences.

10.7 Data availability

The cystic fibrosis sequencing and metadata data can be found under http://

qiita.microbio.me; study id: 10863. The corresponding GNPS analysis can be accessed at 

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=34d825dbf4e9466e81d809faf814995b.

The biocrust soils data was retrieved from the supplemental section in Swenson et al [30]. 

The High fat diet murine model case study 16S rRNA data can be found under http://

qiita.microbio.me; study id: 10856. The High fat diet murine model case study are publicly 

available at https://massive.ucsd.edu/ at MassIVE ID MSV000080918. The GNPS analysis 

for this study can be accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=977d85bba47b4e96bf69872b961b8edd

The IBD data used can be found under https://ibdmdb.org.

See Life Sciences Reporting Summary for more details on the experimental design.

10.7 Software availability

The software implementing the mmvec algorithm can be found under https://github.com/

biocore/mmvec.

Differential abundance analyses in the high fat diet study was performed using L2-

regularized multinomial regression using software available at https://github.com/biocore/

songbird

The software used to build the multiomics network can be found at https://github.com/

mortonjt/multiomics_network.
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Biplots were generated using Emperor [58].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Input data types and mmvec neural network architecture. (a) The neural network architecture 

where the input layer represents one-hot encodings of N microbes and the output layer 

represents the proportions of M metabolites. U corresponds to microbial vectors and V 

corresponds to metabolite vectors. (b) The pipeline for training mmvec. The objective 

behind mmvec is to predict metabolite abundances (y) given a single input microbe sequence 

(x), also known as a one-hot encoding. This training procedure will estimate conditional 

probabilities of observing a metabolite given the input microbe sequence. Cross-validation 

can be performed on hold-out samples to access overfitting.
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Figure 2: 
Simulation benchmarks. (a) Absolute abundances of microbes and metabolites simulated 

from differential equations derived in [27] for a specific spatial point. (b) Proportions of the 

abundances shown in (a). (c) F1 score, precision and recall curves comparing mmvec to 

Pearson, Spearman, SparCC, SPIEC-EASI, and proportionality metrics phi and rho across 

the top 100 metabolites for each microbe. (d) comparisons of coefficients learned from 

absolute abundances and relative abundances all of the benchmarked methods.
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Figure 3: 
M. vaginatus released metabolites after the biocrust wetting event. (a) Comparison of M. 
vaginatus metabolite interactions estimated from Spearman and mmvec from (n=19 

samples). All of the experimentally validated M. vaginatus released metabolites are labeled. 

All metabolites with contradicting findings between the wetting experiment and the in vitro 
experimental results are highlighted in red. Points are resized according to the −10 log(p-

value) obtained from Spearman correlation. Dashlines mark the cutoff for a Spearman 

correlation of zero, and the conditional log probabilities of zero. Here a zero log conditional 

probability represents the conditional probability of the average metabolite because all 

probabilities here are mean centered. (b) Benchmarks comparing the detection rate of the 
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experimentally validated molecules across different statistical methodologies. (c) M. 
vaginatus proportions and (d) 4-guanidinobutanoate proportions following a wetting event.
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Figure 4: 
Investigation of P.aeruginosa-associated molecules. (a) Biplot drawn from the mmvec 

conditional probabilities estimated for the cystic fibrosis dataset [27]. Arrows represent 

microbes and dots represent metabolites. The x and y axes represent principal components 

from the SVD of the microbe-metabolite conditional probabilities estimated from mmvec 

(n=138 samples). Distances between points quantify co-occurrence strength between 

metabolites, with small distances indicating metabolites that have a high probability of co-

occurring with high probability. Distances between arrow tips quantify co-occurrence 

strength between microbes. The directionality of the arrows can be used to pinpoint which 
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microbes can explain the metabolite co-occurrence patterns. Arrows highlighted in green 

correspond to putative cystic fibrosis pathogens and yellow arrows highlight known 

anaerobes. Only known molecules produced by P. aeruginosa are labeled. (b) Scatter plot of 

molecules with respect to the oxygen gradient differential and the first principal component 

learned from mmvec (n=442 molecules) with linear regression model and 95% confidence 

interval for regression estimate. (c) The first principal component vs the number of samples 

where the taxa was the most abundant taxa in that sample. (d) Heatmap of P. aeruginosa and 

Streptococcus abundances in samples where they are the most abundant species. (e) 

Heatmap of the top 100 molecules that co-occur with P. aeruginosa and Streptococcus.
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Figure 5: 
Microbe/metabolite co-occurrences across study of HCC progression in the context of innate 

immunity in a mouse model [28]. (a) Visualization of microbial co-occurrence patterns, 

where distances between points approximates the Aitchison distance between microbes, 

which quantities microbial occurrences. Small distances are indicative of microbes with high 

probability of co-occurring together. Microbes are colored according to their association 

with HFD, which was estimated using differential abundance analysis via multinomial 

regression. (b) Emperor [59] biplot of microbe-metabolite interactions, with metabolites 

colored according to their association with HFD. HFD association was estimated through 

differential abundance analysis via multinomial regression. Distances between points 

approximate Aitchison distances between metabolites and distances between arrow tips 

approximate Aitchison distances between microbes. Several Clostridium spp. appear to co-

occur with the new bile acid molecule cholate phenylalanine amidate, also referred to as Phe 

conjugated cholic acid.
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Figure 6: 
Microbe-metabolite interactions of the human microbiome in association with IBD samples 

[29]. (a) Heatmap visualization of the inferred conditional probabilities for various bile acids 

given the presence of Klebsiella, Roseburia and Clostridium bolteae. (b) Heatmap 

visualization of the inferred conditional probabilities for the carnitines given the presence of 

Klebsiella, Roseburia, and Clostridium bolteae. (c) Multiomics biplot of the microbe-

metabolite interactions learned from metagenomics profiles and C18 negative ion mode LC-

MS. Microbes (arrows) and metabolites (spheres) are colored according to their differentials 

estimated from multinomial regression. Klebsiella spp. appears to be strongly associated 

with IBD, while Propionibacterium spp. has strong negative association. (d) Network of the 

top 300 edges where only the edges that contain Klebsiella and Propionibacteriaceae are 

visualized.
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