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Abstract: Different works have reported earlier permanent teething in obese/overweight children
compared to control ones. In contrast, others have reported a delayed permanent teething in un-
dernutrition/underweight children compared to control one. It has been reported that becoming
overweight or suffering from obesity can increase gingival pro-inflammatory drive and can affect
orthodontic treatment (among other complications). In this sense, little is known about the molecular
mechanisms affecting dental eruption timing. Leptin and adiponectin are adipocytokines signaling
molecules released in overweight and underweight conditions, respectively. These adipocytokines
can modulate osteocyte, odontoblast, and cementoblast activity, even regulating dental lamina initia-
tion. The present review focuses on the molecular approach wherein leptin and adiponectin act as
modulators of Runt-related transcription factor 2 (Runx 2) gene regulating dental eruption timing.
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1. Introduction

According to the World Health Organization (WHO) about 39 million children under
the age of five suffer from being obese/overweight. On the other side, undernutrition
or malnourishment is present in about 149 million children under the age of five. This
paradox represents a significant burden affecting several individual health problems and
psychosocial aspects among others.

Focusing on oral related hygiene, one’s nutritional state can affect different dental
aspects from caries to malocclusion [1]. Some research works conclude that one’s nutritional
state can also modify dental eruption timing. It has been shown that children who are
obese and overweight can experience early permanent tooth eruption [2–5]. In contrast,
malnourishment is associated with delayed teething [6–9]. Apart from genetic and ethnic
differences, a lack of essential nutrients and vitamins seems to be directly related to the
delayed teething observed in underweight kids. On the other side, the role of leptins as
potential causes of early teething in obese kids is part of a weak rationale for these observed
phenomena. In spite of the amount of data confirming these two dental alterations, little
biological arguments have been singled out as potentially involved mechanisms. Herein,
our proposal strongly suggests the involvement of leptin/adiponectin as pivotal elements
of this phenomenon.

2. Dental Development and Permanent Dentition

Teeth development results from a complicated interaction of the odontogenic epithe-
lium and the ectomesenchyme coming from the neural crest in the jaw/maxilla [10,11].
Initially, primary dentition includes incisors, canines, and molars. These are accompanied
by a successional lamina that leads the permanent teeth development. However, the sec-
ondary molar dentition is developed by serial addition produced by the extension of the
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dental lamina in the first molar [12]. Even the dental laminae of permanent teeth can be
already found at embryonic stages and can last up to 12 years [13]. During these years
the dental successional lamina is normally in a resting state and is activated according to
deciduous teeth lost [14]. During this process, some genes and molecules are orchestrated.
Among them, Wnt, fibroblast growth factor (FGF) and Hedgehog signaling pathways have
been demonstrated to regulate, beyond the bud stage, permanent tooth initiation [15–17].
More recently it has been demonstrated that permanent tooth initiation is promoted by
mechanical stress release. This mechanical stress inhibits permanent tooth initiation due to
the Runt-related transcription factor Wnt (RUNX-Wnt) pathway [18]. Briefly, the pressure
exerted by primary teeth activates Runx2, inhibiting successional dental lamina. This
blocks permanent tooth initiation. In contrast, the progressive relief of mechanical pressure
during deciduous teeth loss decreases Runx2 and increases Wnt expression, leading to
permanent tooth initiation.

More recently it has been demonstrated that permanent tooth initiation is promoted
by mechanical stress release. This mechanical stress inhibits permanent tooth initiation
due to the RUNX-Wnt pathway [18]. Briefly, the biomechanical stress of the primary
teeth activates Runx2 inhibiting successional dental lamina. This blocks permanent tooth
initiation. In contrast, the progressive relief of mechanical pressure during deciduous teeth
loss decreases Runx2 and increases Wnt expression leading to permanent tooth initiation. In
line with this, Li et al. [19] pointed out that Runx must be inhibited to promote odontoblast
maturation and dentin formation.

3. Runx and Energy State

Runt-related transcription factor (RUNX) is a family with three related transcription fac-
tors, runt-related transcription factor 1 (RUNX1), RUNX2, and runt-related transcription factor
3 (RUNX3). It has a high conserved sequence of 128 amino acid DNA binding/protein-protein
domains, known as the Runt-homology domain [20,21]. RUNX2 determines osteoblast-
osteocyte differentiation and regulates chondrocyte division-differentiation during endo-
chondral bone development [22]. The Runx2 pathway is connected to integrin β1 on the
cell membrane. Once integrins are stimulated, it promotes extracellular signal-regulated
kinase1 (ERK1) activation [23], resulting in Runx 2 transcription and phosphorylation [24].
Fosfatidilinositol 3 kinasa/Akt signalling pathway activation promotes Runt-related tran-
scription factor 2 deoxyribonucleic acid (Runx2-DNA) binding and Runx2 transcription in
murine osteoblasts [25].

Although falling outside of the scope of this review, Runx has been widely demon-
strated to be related to tumor development, cancer progression, and metastasis in different
organs [26,27].

AMP-activated kinase (AMPK) is considered a cellular energy sensor that guides sig-
nalling mechanisms leading to homeostatic balance via anabolic or catabolic pathways [28].
RUNX2 is a substrate of AMPK, which directly phosphorylates at serine 118 residue in the
DNA-binding domain of RUNX2 [29]. It has been proven that high glucose levels reduced
AMPK activity and this fact promotes adipogenesis vs. osteogenesis [30]. Fitting with
this, high fat levels also decrease Runx2 expression [31] and even adiponectin increases
Runx-2 activity [32]. Adiponectin and leptin are adipocytokines secreted by adipose tissue
modulating several functions from cardiovascular modulation to bone metabolism [33,34].
It is generally accepted that obesity is associated to high leptin and low adiponectin levels
and inversely for undernutrition [35].

Leptin secretion is increased with feeding and overnutrition when adipocyte number
and size is increased [35]. Leptins can affect different pathways, the most relevant of which
is the β-oxidation of fatty acids by activating AMP-dependent kinase [36]. It seems that
adipose tissue overgrowth results in hypoxia by low vascularization increasing hypoxia
inducible factor 1 alpha (HIF1α) and then raising leptin production [37]. However, under-
nutrition and physical activity both increased adiponectin secretion decreasing adipose
tissue volume due to lipolytic activity [38] (Figure 1).
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Figure 1. Under obesity/overweight conditions, early permanent teeth eruption would be explained
by increased leptin levels that decrease runt-related transcription factor 2 (Runx 2) expression increas-
ing Wnt gene expression, receptor activator of NF kappa-b (RANK-L), and TNF-α. In underweight
conditions, delayed permanent tooth eruption would be explained by increased adiponectin levels or
decreased adiponectin. This promotes Runx 2 expression resulting in Wnt reduced expression and
decreased pro-inflammatory RANK-L and TNF-α.

Kapur et al. [39] indicated that leptin receptors (LEPR) negatively modulate bone
mechanosensitivity and that genetic variation in LEPR signaling causes a low osteogenic
response to loading force. According to Um et al. [40] leptins can promote cemento-
blast/odontoblast differentiation in dental mesenchymal cells. Periodontal ligament fibrob-
lasts over expressed pro-inflammatory factors such as the receptor activator of Nf-Kappa
b (RANKL) in the presence of leptin under mechanical strain [41]. Leptin levels can be
found and detected in gingival crevicular grooves in healthy subjects compared to those
with periodontal disease [42]. Even more, during orthodontic treatment, leptin levels are
increased one day after intervention and decreased one week after [43]. Despite the fact
that most clinicians suggest a relationship between obesity and tooth movement, after
reviewing several studies, it cannot be confirmed that obesity affects tooth movement [44].
Saloom et al. [45] published a prospective clinical cohort study with 55 teenagers (obese vs.
normal-weight) and observed significant higher tooth movement in the obese group. Even
more, they also found significantly higher levels of leptin and RANKL in this group. These
findings support again the potential role of leptins on periodontal and dental evolution
and revive the discussion of obesity and its role in orthodontic movement.

Secreted by fat cells and salivary gland epithelial cells [46]. Adiponectin can be bound
to adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) receptor types
activating the adenosine monophosphate-activated protein kinase pathway (among oth-
ers) [47,48]. Adiponectin increases fatty acid oxidation, glucose uptake, insulin sensitivity,
and can also present anti-inflammatory effects [34,49,50]. Both adiponectin receptors are
found in periodontal ligament fibroblasts and osteoblasts [51,52]. According to Marjan
Nokhbehsaim et al. [53] adiponectin promotes beneficial effects on periodontal ligament
cells by increasing growth factor production and self-promoting adiponectin production. It
has been shown that high adiponectin levels increase Runx-2 in cementoblasts, as well as
promoting osteoblast differentiation and migration [32,54–56]. In this work, Yong et al. [32]
also reported that high adiponectin level exposure increases alkaline phosphatase, osteocal-
cin, bone sialoprotein, osteocalcin and osteoprotegerin nucleic messenger (mRNA) levels. In
contrast, the use of physiological adiponectin concentrations did not result in as significant
a response. This means that adiponectin potentially modulates many periodontal-related
factors (albeit without playing an exclusive role).
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On the other hand, adiponectin decreases pro-inflammatory factors (e.g., tumor necrosis
factor alpha). In this sense, Kraus et al. [57] pointed out that low levels of adiponectin in
obese/overweight individuals could be related to periodontal inflammation and destruction.

Adiponectin is also involved in cell homeostasis by regulating the mitogen activated
protein kinase pathway (MAPK) [58]. Luo et al. [59] suggest that adiponectin receptor-JNK
pathway regulates osteoblast proliferation and that adiponectin receptor-P38 modulates
differentiation. Previously, Kadowaki et al. [60] indicated that adiponectin stimulated
osteogenesis involving adiponectin receptor 2 (P38-AdipoR1) and by increasing Runx-2.

In the literature we also find several environmental factors that affect the tooth erup-
tion. As is well known, tooth eruption is a long lasting process (it often lasts years) and there
are many factors that can modify this process (Figure 2). One can see how an overweight
child or an obese child may have an advanced tooth eruption process [3–5,8,61–65].

Figure 2. Relationship between obesity and non-molecular factors [3–5,8,61–68].

4. Conclusions

In spite of the amount of data indicating that being obese/overweight can promote
early permanent tooth eruption, on the contrary undernutrition leads to delayed permanent
teething. There is a considerable lack of knowledge and rationale about the molecular
signals giving response to these phenomena.

This review investigates the potential relation of leptin and adiponectin as molecular
modulators of dental development. It has been demonstrated that leptins are present in the
crevicular fluid of healthy subjects and that leptin levels can be altered during orthodontic
mechanical strain. Adiponectin and leptin can also promote osteoblast and odontoblast
differentiation.
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We consider Runx 2 as a potential regulator on this phenomenon since it is a substrate
of AMPK. AMPK works as energy sensor and regulates Runx 2. Runx 2 acts as a bone and
dental development regulator [18,19]. Both adiponectin and leptin can also affect Runx
2 activity, and this has been proposed as an approach to explain early or delayed dental
eruption for both overweight and underweight children.
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