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Steric Effects Dictate the Formation of Terminal Arylborylene
Complexes of Ruthenium from Dihydroboranes

Carsten Lenczyk,[a] Dipak Kumar Roy,[a, c] Jçrn Nitsch,[a] Krzysztof Radacki,[a] Florian Rauch,[a]

Rian D. Dewhurst,[a] F. Matthias Bickelhaupt,[b] Todd B. Marder,[a] and Holger Braunschweig*[a]

Abstract: The steric and electronic properties of aryl sub-

stituents in monoaryl borohydrides (Li[ArBH3]) and dihydro-

boranes were systematically varied and their reactions with
[Ru(PCy3)2HCl(H2)] (Cy: cyclohexyl) were studied, resulting in

bis(s)-borane or terminal borylene complexes of ruthenium.
These variations allowed for the investigation of the factors

involved in the activation of dihydroboranes in the synthesis

of terminal borylene complexes. The complexes were stud-

ied by multinuclear NMR spectroscopy, mass spectrometry,

X-ray diffraction analysis, and density functional theory (DFT)
calculations. The experimental and computational results

suggest that the ortho-substitution of the aryl groups is nec-
essary for the formation of terminal borylene complexes.

Introduction

The dehydrogenative coupling of element hydrides for the for-

mation of element–element bonds has attracted significant at-
tention in recent years, and is becoming increasingly valuable

in the synthesis of main-group molecules and polymers.[1] Al-
though a large majority of work on dehydrocoupling is fo-

cused on the homonuclear dehydrocoupling of Si@H[2] and P@
H bonds,[3] research interest in the heteronuclear dehydrocou-
pling of amine–boranes has soared over the last decade due

to their growing importance as potential low-weight hydro-
gen-storage materials.[4] In contrast, homodehydrocoupling re-

actions of B@H bonds were discovered in 1984 by Sneddon in
the reactions of boranes and carboranes with PtBr2.[5] This work
later inspired us to develop a more atom-efficient route to the

synthesis of diboron(4) reagents of relevance to organic
chemistry,[6] leading to the establishment of the first synthet-

ically viable dehydrogenative coupling of pinacolborane

(HBPin, Pin = 1,2-O2C2Me4) and catecholborane (HBCat, Cat =

1,2-O2C6H4) to the corresponding diboranes(4) using either

homo- or heterogeneous catalysts in 2011.[7] Prior to this,
Marder and co-workers had observed the formation of small

amounts of B2Pin2 from HBPin as a byproduct during the cata-
lytic borylation of C@H bonds with HBPin.[8] These results

added another entry to the handful of methods for the selec-

tive construction of electron-precise B@B bonds.[6, 9]

Although dihydrosilanes undergo dehydrocoupling to yield

oligomeric or polymeric species,[2] only one example of the de-
hydrogenation of dihydroboranes is known, whereby combina-

tion of a zerovalent platinum complex with the bulky duryldi-
hydroborane (DurBH2, Dur = 2,3,5,6-Me4C6H) produced complex
reactions leading to B@B single and double-bond formation.[10]

Even though oxidative addition of the B@H bond of (RO)2BH to
metal centers is facile,[11] there are few examples of oxidative

addition of the B@H bonds of dihydroboranes[12] which in most
cases result in relatively stable k2-bis(s)-borane complexes, pre-

venting the oxidative addition of the B@H bonds.[13] Neverthe-
less, the oxidative addition of both B@H bonds of a dihydro-

borane ([MesBH2]2) was achieved by Alcaraz, Sabo-Etienne, and
co-workers in the synthesis of a borylene complex using the
ruthenium–dihydrogen complex [Ru(PCy3)2HCl(H2)] .[14]

The extensive work on both transition-metal-bound and
metal-free borylenes has suggested that addition of further

(usually aliphatic) groups to boron-bound aryl units is a pre-
requisite for borylene formation.[13b, 15, 16] Thus, when equimolar

quantities of Na[BmFxyl4] (mFxyl = 3,5-(CF3)2C6H3) were added to

platinum boryl complexes of the form trans-[PtBr(BBrAr)(PR3)2] ,
with varying aryl substituents bound to boron, we encoun-

tered different outcomes of the reaction.[17] The 4-tert-butyl-
phenyl-substituted complex formed a T-shaped cationic boryl

complex, whereas the duryl-substituted complex underwent a
formal boron-to-metal halide shift and formation of the corre-
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sponding cationic borylene complexes. In further work we
showed that the use of boron substituents other than mesityl

did not lead to analogous platinum borylene complexes but
resulted instead in the abstraction of the bromo ligand at plati-

num.
Given the possibility of constructing boron–boron bonds

through dehydrocoupling, we were interested in investigating
whether the dehydrogenation process during the borylene for-

mation from bis(s-B@H) ruthenium complexes[14a,b] suffers from

limitations related to the substitution pattern of the boron-
bound aryl group of dihydroboranes, and if a chloride ligand
at the metal center is necessary or not. Therefore, we synthe-
sized a series of dihydroboranes and metal-organic borohy-
drides, allowing us to embark on a systematic investigation of
the steric and electronic factors required for borylene complex

formation on ruthenium(II).

Results and Discussion

Dihydrido bis(s)-borane complexes: synthesis and character-
ization

Preliminary tests with a range of transition-metal complexes in-

dicated that [Ru(PCy3)2HCl(H2)] was the most promising for de-
hydrogenation reactions (discussed in greater detail below). To

investigate the electronic and steric influence on the dehydro-

genation of transition metal bis(s-B@H) complexes, we synthe-
sized a range of dihydroboranes and aryl hydroborates with

both electron-rich and -poor aryl substituents. Li[DurBH3] ,[13d]

(Dur = 2,3,5,6-Me4C6H) and Li[mFxylBH3][18] were synthesized ac-
cording to the literature methods, whereas Li[oFxylBH3] (oFxyl =
2,6-(CF3)2C6H3) was synthesized by modification of the synthe-

sis of Li[mFxylBH3] developed by Wagner and co-workers[18]

Based on protocols established by Pelter et al.[19] Li[AnilBH3]
(Anil = 2,6-Me2-4-(NMe2)C6H2) and Li[mXylBH3] (mXyl = 3,5-

Me2C6H3) were synthesized from their corresponding boronic
esters. The dihydroboranes were generated from their aryl hy-

droborates Li[ArBH3] by treatment with trimethylsilyl chloride
(TMSCl) and used in situ, except for DurBH2, which was isolated

and used as a pure solid.
The reactions of the lithium trihydroborates with [Ru(P-

Cy3)2HCl(H2)] yielded the corresponding dihydrido bis(s)-
borane complexes 1–5 in high yields (Scheme 1). The constitu-

tion of complexes 1–5 was verified by NMR spectroscopy,
single-crystal X-ray diffraction analysis, and high-resolution
mass spectrometry. The high-field region of the 1H NMR spec-

tra of the bis(s)-borane complexes is diagnostic. A broad sin-
glet and a triplet in a 1:1 ratio are assigned to the B@H and
the Ru@H hydrogen nuclei, respectively. For all complexes, the
broad singlet sharpened upon 11B decoupling, whereas the

triplet collapsed to a sharp singlet upon 31P decoupling. The
11B NMR data for 1–5 show broad signals between d= 59 and

66 ppm (Table 1) that are in good agreement with previously

described bis(s)-borane complexes (d= 54–70 ppm).[20] Al-
though complex 3 provided NMR data similar to those of 1, 2,

4, and 5, its NMR spectra revealed a further set of signals for
each nucleus at room temperature. For example, the
31P{1H} NMR spectrum at room temperature exhibits a persis-
tent set of two singlets at d= 79.8 and 81.2 ppm in approxi-

mately a 2:1 ratio indicating the presence of two phosphorus-

containing species. The hydride region of its 1H NMR spectrum
displays three signals at d=@17.13, @11.90, and @5.65 ppm.

Despite the detection of two different sets of NMR signals for
3 in solution, mass spectrometry data supports its molecular

Scheme 1. Synthesis of bis(s)-borane and borylene complexes.

Table 1. 11B NMR data and selected bond lengths and angles of 1–5.

Complex 11B
[ppm]

Ru@B
[a]

B@C1
[a]

Ru-B-C1
[8]

P1-Ru-P2
[8]

1 59.9 1.964(3) 1.564(3) 177.7(2) 153.44(2)
2 57.7 1.953(4) 1.558(5) 177.6(2) 149.28(3)
3 48.2 1.950(3) 1.547(4) 176.8(2) 151.83(3)
4 63.1 1.953(2) 1.581(2) 176.8(2) 151.83(3)
5 66.4 1.944(3) 1.564(3) 170.3(2) 147.73(3)
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formula. This suggested the presence of two isomers in solu-
tion; however, only one isomer was detected in the solid state.

To confirm the presence of two isomers of 3 in solution we
performed variable-temperature (VT) NMR experiments, which

showed that the 1H NMR signal at d=@17.1 ppm split into
two broad signals at @90 8C, whereas that at @5.7 split into a

complex set of broad signals. All attempts to improve the reso-
lution of these signals through measurement of 2D (1H@1H,
1H@31P) experiments and decoupling (11B, 31P) were unfortu-
nately unsuccessful. The NMR results together with a literature
precedent[13c] confirm the existence of two isomers in solution,

such as dihydrido bis(s)-borane or s-borate species (see the
Supporting Information).

Single crystals suitable for X-ray structure analysis of 1–5
were obtained either by slow evaporation of pentane solu-

tions, or by layering toluene solutions of the complexes with

pentane. The solid-state structures of 1–5 confirmed their for-
mulation as being analogous to previously reported bis(s)-

borane complexes.[13c] Only minor differences are observed in
the solid-state structures of 1–5. In each structure, the Ru

atom possesses a pseudo-octahedral environment with the
phosphine ligands in axial positions and four coplanar terminal

and bridging hydrogen atoms occupying the equatorial coordi-

nation sites of the ruthenium (Figure 1).

The interaction between the ruthenium and the boron atom
is delineated by Ru@B distances (1.944(3)–1.964(3) a) that are

shorter than the sum of the respective covalent radii (2.09 a,
Table 1) and comparable to the ruthenium–boron distances of

RuH2(h2 :h2-H2BR)(PCy3)2 (R = Mes, 1.938(4) ; R = tBu 1.934(2) ; R =

Ph, 1.923(8) a). The significant bending of the P1-Ru-P2 angle

(1: dRu@B = 1.964(3), ]P1-Ru-P2 = 153.48 ; 5 : dRu@B = 1.944(3),
]P1-Ru-P2 = 147.78 ; Table 1; Figure 2) is presumably a conse-
quence of attractive dispersive interactions between C@H units

of the PCy3 groups. The sum of the angles at boron in all of
the complexes is 3608, which establishes the planar environ-
ment and sp2-hybridization of the boron atom.

Figure 1. Crystallographically derived structures of 1–5. Ellipsoids are shown at the 50 % probability level. Hydrogen atoms not bound to a metal center have
been removed for clarity. Selected bond lengths [a] and angles [8] for 1: Ru1@B1 1.964(3), B1@C1 1.564(3) ; Ru1-B1-C1 177.7(2), P1-Ru1-P2 153.44(2), H1-Ru1-
B1-C1 6.63. For 2 : Ru1@B1 1.953(4), B1@C1 1.5585(5); Ru1-B1-C1 177.6(2), P1-Ru1-P2 149.28(3), H1-Ru1-B1-C1 58.47. For 3 : Ru1@B1 1.953(2), B1@C1 1.581(2);
Ru1-B1-C1 176.8(2), P1-Ru1-P2 151.83(3), H1-Ru1-B1-C1 26.71. For 4 : Ru1@B1 1.950(3), B1@C1 1.547(4); Ru1-B1-C1 178.7(1), P1-Ru1-P2 147.24(2), H1-Ru1-B1-C1
10.79. For 5 : Ru1@B1 1.944(3), B1@C1 1.564(3) ; Ru1-B1-C1 170.3(2), P1-Ru1-P2 147.73(3), H1-Ru1-B1-C1 71.86.

Figure 2. Space-filling model of 1 and 5 showing the interactions between
the aryl boron substituent and the phosphine ligands.
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Terminal borylene complexes: synthesis and char-
acterization

In agreement with previous results,[13c] the rutheni-

um dihydrido bis(s)-borane complexes of this type
could not be further dehydrogenated to afford bory-

lene complexes, suggesting the vital importance of
a non-hydrogen ligand at the metal center. Given
this reluctance, we performed the reaction of [Ru-

(PCy3)2(H2)HCl] with in situ-generated dihydrobo-
ranes in order to prevent chloride/hydride exchange
at Ru. To investigate the effect of the electronic and
steric properties of dihydroboranes with respect to

the formation of borylene complexes from their cor-
responding bis(s)-borane complexes, we prepared a

range of dihydroboranes either in pure form or in

situ from the reaction of monoaryl borohydrides
(Li[ArBH3]) and TMSCl and treated them with a solu-

tion of [Ru(PCy3)2(H2)HCl] . In the case of dihydrobo-
ranes bearing ortho-substituted aryl groups, namely

DurBH2, oFxylBH2, and AnilBH2, the 11B NMR spectra
of the reaction mixture showed signals in the range

d= 60–75 ppm, suggesting the formation of corre-

sponding bis(s)-borane complexes. Subsequent
evacuation of the reaction mixture and extraction

with pentane allowed for the isolation of borylene
complexes 6–8. Complexes 6–8 revealed 11B NMR

signals at d = 110.9, 110.1, and 98.8 ppm, respective-
ly, comparable to those of reported ruthenium ter-

minal borylene complexes.[13b]

In reactions using dihydroboranes with meta-sub-
stitution only at the aryl moieties, namely mFxylBH2

and mXylBH2, we observed the formation of bis(s)-borane com-
plexes, as indicated by 11B NMR spectroscopy. However, appli-

cation of high vacuum or storage of the reaction mixture at
room temperature led only to decomposition, the most promi-
nent decomposition product being monoboranes of the form

R2BH. In the case of the borane mFXylBH2, the isolation of a
borate complex [Ru(PCy3)2H(k2-H2B(mFXyl)2)] (10) was verified

by means of NMR spectroscopy, single-crystal X-ray structure
determination, and high-resolution mass spectrometry. As in

the case of bis(s)-borane complexes 1–5, the comparison of
the metric parameters of the borylene complexes 6–8 in the

solid-state structures as shown in Figure 3 reveals only minor
differences, with complex 6 having a slightly longer Ru@B dis-
tance (1.807(3) a) along with the smallest P1-Ru-P2 angle

(169.01(3)8) distortion (Table 2). Complex 8 displays the largest
distortion of the P-Ru-P angle.

Given the isolation of different bis(s)-borane and borylene
complexes, we were eager to shed some light on the

factors involved in the conversion of bis(s)-borane complexes
to borylene complexes with the help of DFT calculations at the
ZORA-BLYP-D3-BJ/TZ2P level of theory. We calculated Gibbs

free energies (DG) for the transformation of bis(s)-borane com-
plexes to the borylene complexes along with liberation of hy-

drogen (TM@H2!TM++H2 ; Figure 4) and found that the steric
properties of the boranes play a crucial role, with the electron-

ic properties having only a minor impact on the overall pro-
cess.

Boranes containing ortho-substituted aryl groups tend to de-

stabilize the bis(s)-borane complexes and favor the formation
of borylene complexes by dissociation of dihydrogen, resulting

in an exergonic reaction (DG between @6.03 and @8.42 kcal
mol@1). For boranes with aryl groups with unsubstituted 2,6

positions we observed positive DG values suggesting an en-
dergonic reaction (DG between ++0.98 and ++2.40 kcal mol@1).

Even though we obtained negative DG values for all of the

ortho-substituted boranes, [oFxylBH2] has the most negative
one. Conversion of the bis(s)-borane complex involving meta-

substituted boranes is endergonic and electronic effects of the
boranes are subtle, accounting only for a 1.42 kcal mol@1 differ-

ence in the calculated DG for the formation of the borylene
complex. Our previous work on platinum borylene complexes

Figure 3. Crystallographically-derived structures of 6–8 and 10. Ellipsoids are shown at
the 50 % probability level. Hydrogen atoms not bound to a metal center have been re-
moved for clarity. Selected bond lengths [a] and angles [8] for 6 : Ru1@B 1.807(3), B1@C1
1.532(4), Ru1@Cl1 2.4615(8) ; Cl1-Ru1-B1 136.00(9), Ru1-B1-C1 173.9(2), P1-Ru-P2 169.01(2).
For 7: Ru1@B 1.795(2), B1@C1 1.545(2), Ru1@Cl1 2.4521(7) ; Cl1-Ru1-B1 130.46(6), Ru1-B1-
C1 177.0(1), P1-Ru-P2 168.44(2). For 8 : Ru1@B1 1.793(2), B1@C1 1.571(2), Ru1@Cl
2.4930(8); Cl1-Ru1-B1 128.28(7), Ru1-B1-C1 175.5(2), P1-Ru1-P2 161.74(2). For 10 : Ru1@B1
2.194(5), B1@C1 1.605(4), Ru1@H1 1.74(11), Ru1@H2 1.35(7) ; B1-Ru1-P1 126.62(3), P1-Ru1-
P’ 106.77(5), C1-B1-C1’ 115.4(3).

Table 2. 11B NMR data and selected bond lengths and angles of 6–8.

Complex 11B
[ppm]

Ru@B
[a]

B@C1
[a]

Ru-B-C1
[8]

P1-Ru-P2
[8]

6 110.9 1.807(3) 1.532(4) 173.9(2) 169.01(3)
7 110.1 1.795(2) 1.545(2) 177.0(1) 168.44(2)
8 98.8 1.793(2) 1.571(2) 175.5(2) 161.74(2)
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also suggested that ortho-substitution of the boron-bound aryl

group is a prerequisite for a halide shift and borylene forma-
tion.[17d]

In order to evaluate the suitability of [Ru(PCy3)2HCl(H2)] for

dihydroborane dehydrogenation and borylene formation rela-
tive to other promising late-transition-metal complexes, we

tested three different rhodium and iridium complexes with
duryl-substituted borane precursors. The treatment of either

[Rh(PCy3)2Cl(H2)] or [Rh(PCy3)2Cl]2 with either [DurBH2]2 or Li-
[DurBH3] led only to decomposition of the starting materials.

With [Ir(PCy3)2H5] and DurBH2 we isolated the iridium borate

complex 11 (Scheme 2) in 64 % yield; however, application of
high vacuum to either the reaction mixture or pure 11 provid-

ed no sign of conversion to bis(s)-borane or borylene com-
plexes. Treatment of [Ir(PCy3)2(H)Cl2] with either Na[BmFxyl4]/

DurBH2 or Li[DurBH3] also gave 11 in moderate yields. The
11B NMR spectrum of 11 showed a broad signal at d=

21.1 ppm and the 1H NMR spectrum revealed signals at d =

@19.83 and @6.37 ppm for terminal (Ir-bound) and bridging
hydrides, respectively, along with a broad peak at d=

8.47 ppm for the terminal B@H. The solid-state structure of 11,
as shown in Scheme 2, exhibits a tetrahedral arrangement of

the boron center, and the Ir@B distance (2.237(3) a) is similar
to other related iridium dihydroborate systems, such as

[(tBuPCP)IrH(k2-H2BHDur)] ,[13d] (2.283(2) ; tBuPCP: k3-C6H3-1,3-
[CH2PtBu2]2) [(Cy3P)2Ir(H)2(k2-H2BH·NMe3)][BmFxyl4] ,[20] (2.207(7)),

and [(SIMes)2Ir(H)2(k2-H2BH·NMe2H)][BmFxyl4][21] (2.21(4) a;
SIMes: 1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene).

Conclusions

A series of monoaryl borohydrides and dihydroboranes were

prepared and treated with [Ru(PCy3)2HCl(H2)] , leading to either
bis(s)-borane or borylene complexes. By systematic variation

of steric and electronic factors, trends are observed in the co-

ordination behavior of the boron-containing precursors, the
most striking being: (a) the chloride/hydride exchange process

at Ru (through the use of Li[ArBH3]) prevents further hydrogen
loss and borylene generation; and (b) boranes bearing ortho-

substituted aryl groups are seemingly required to form bory-
lenes. Results of DFT calculations were in accordance with the
fact that the formation of borylenes from bis(s)-borane com-

plexes is only observed experimentally when boranes with
ortho-substituted aryl groups were used. Experimental findings
further demonstrated the necessity of the chloro ligand (or at
least a ligand that is not a hydride) in the bis(s)-borane com-
plex as a second criterion for the formation of borylene com-
plexes.[22]
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