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Recent observations suggest that atypical chemokine receptor (ACKR)3 and

chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth

muscle function through hetero-oligomerization with a1-adrenoceptors. Here,

we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A.

We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced

inositol trisphosphate (IP3) production in human vascular smooth muscle

cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries.

Proximity ligation assays, co-immunoprecipitation and bioluminescence

resonance energy transfer experiments suggested that recombinant and

endogenous ACKR3 and AVPR1A interact on the cell surface. Interference

with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues

of transmembrane domains of ACKR3 abolished aVP-induced IP3 production.

aVP stimulation resulted in b-arrestin 2 recruitment to AVPR1A and ACKR3.

While ACKR3 activation failed to cross-recruit b-arrestin 2 to AVPR1A, the pres-

ence of ACKR3 reduced the efficacy of aVP-induced b-arrestin 2 recruitment to

AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in

hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitu-

tively expressed in hVSMC, provide insights into molecular events at the

heteromeric receptor complex, and offer a mechanistic basis for interactions

between the innate immune and vasoactive neurohormonal systems. Our find-

ings suggest that ACKR3 is a regulator of vascular smooth muscle function and a

possible drug target in diseases associated with impaired vascular reactivity.
1. Background
The 7-transmembrane domain (TM) receptors chemokine (C-X-C motif) receptor

4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are involved in the regu-

lation of vascular function and blood pressure control [1–7]. The underlying

mechanisms, however, are not well understood. While CXCR4 is a typical G

protein-coupled receptor (GPCR) that couples to Gai and recruits b-arrestin,

ACKR3 does not couple to G proteins but recruits b-arrestin, leading to receptor

internalization and G protein-independent signalling events [8,9]. Both receptors

share C-X-C chemokine ligand 12 (CXCL12, stromal cell-derived factor 1) as a

cognate agonist [8]. Furthermore, CXCR4 and ACKR3 are thought to form hetero-

meric complexes, resulting in preferential activation of b-arrestin signalling over
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canonical G protein signalling pathways upon activation with

CXCL12 [10,11]. Besides heteromerization with ACKR3,

CXCR4 may form heteromeric complexes with multiple other

GPCRs, such as chemokine (C-C motif) receptor (CCR)2,

CCR5, CXCR3, chemerin receptor 23, b2-adrenergic receptor

(AR), d-opioid receptor or cannabinoid receptor 2, leading to

altered pharmacological properties of the interacting receptor

partners [11–18].

Recently, we reported cross-talk between CXCR4, ACKR3

and a1-ARs in vascular smooth muscle, through which acti-

vation of the chemokine receptors regulates a1-AR-mediated

vasoconstriction with diametrically opposing effects; while

CXCR4 activation enhanced, ACKR3 activation attenuated

a1-AR-induced vasoconstriction [7]. Subsequently, we pro-

vided evidence that a1A-AR preferentially forms heteromeric

complexes with CXCR4 and ACKR3 protomers/homodimers,

whereas a1B/D-AR hetero-oligomerizes with the CXCR4 :

ACKR3 heteromer, which appears to be essential for

a1B/D-AR signalling and function in human vascular smooth

muscle cells (hVSMCs) [19–21]. Furthermore, we have

shown that simultaneous blockade of CXCR4 and activation

of ACKR3 with the synthetic ligand TC14012 result in vasodi-

latory shock and cardiovascular collapse in normal animals [7].

It appears unlikely, however, that these effects can be attribu-

ted exclusively to ACKR3-mediated inhibition of a1-AR in

vascular smooth muscle, thus suggesting additional inter-

actions between ACKR3 and the vasoactive neurohormonal

system. Because interactions between CXCL12 and arginine

vasopressin (aVP) have previously been observed in the central

nervous system [22,23], we tested whether aVP receptors

(AVPRs) cross-talk with ACKR3 and/or CXCR4 in the regu-

lation of intrinsic vascular smooth muscle function. Here, we

provide evidence that ACKR3 also regulates AVPR1A signal-

ling and function in VSMC via formation of heteromeric

receptor complexes. We show that heteromerization between

AVPR1A and ACKR3 facilitates AVPR1A-mediated Gaq sig-

nalling and limits aVP-induced b-arrestin 2 recruitment to

AVPR1A, and that activation of ACKR3 inhibits aVP-mediated

signalling and vasoconstriction. These findings suggest that

ACKR3 is a regulator of VSMC function, which controls

endogenous and clinically important vasopressor actions.
2. Results and discussion
2.1. Activation of ACKR3 antagonizes aVP-mediated

Gaq signalling and function in vascular smooth
muscle

We used pressure myography to assess whether CXCR4 and/

or ACKR3 activation influence aVP-induced constriction of

isolated mesenteric resistance arteries. a1-AR-induced vasocon-

striction upon phenylephrine (PE) stimulation was used as a

positive control. In agreement with our previous observations

[7], the ACKR3 and CXCR3 agonist CXCL11 antagonized

PE-induced vasoconstriction, whereas the CXCR4 agonist

ubiquitin, which does not bind to ACKR3 [24], enhanced PE-

induced vasoconstriction (figure 1a). While ubiquitin did not

affect aVP-induced vasoconstriction, CXCL11 also antagonized

vasoconstriction upon aVP stimulation (figure 1b). To confirm

these effects of ACKR3 activation on aVP-induced vasoconstric-

tion, we tested the effects of CXCL12, a CXCR4 and ACKR3
agonist, and of CXCL11 (3–73), an N-terminal truncated form

of CXCL11 lacking amino acids 1 and 2, which has been

described to show significantly reduced biological activity,

when compared with wild-type CXCL11 [25,26]. To compare

ACKR3 activity of these ligands, we first measured b-arrestin

2 recruitment to ACKR3 upon ligand stimulation using

the PRESTO-Tango cell system [27,28] (figure 1c). While the

potency of CXCL12 to recruit b-arrestin 2 to ACKR3 was

2.2-fold higher (EC50 (95% confidence interval (CI) 1.3

(0.8–2.1) nM) than that of CXCL11 (EC50 (95% CI) 2.9

(2.1–4.0) nM, p , 0.01), both agonists showed comparable effi-

cacy for b-arrestin 2 recruitment to ACKR3. When compared

with CXCL11 and CXCL12, potency and efficacy of CXCL11

(3–73) for b-arrestin 2 recruitment to ACKR3 were significantly

reduced (EC50 (95% CI) 11 (4–240) nM, top plateau: 65+7%

relative luminescence (RLU), p , 0.01 for both versus

CXCL11 and CXCL12). When tested in pressure myography

experiments, CXCL11 and CXCL12 attenuated PE- and

aVP-induced vasoconstriction to a similar degree ( p , 0.05 for

vehicle versus CXCL11 and CXCL12; p . 0.05 for CXCL11

versus CXCL12), whereas CXCL11 (3–73) did not (figure 1d,e).
The previous findings that CXCL12 binds to ACKR3 with seven-

fold to 20-fold higher affinity than CXCL11 are not contradictive

to our observations, because maximal biological responses of

other GPCRs have been observed at ligand occupancies of

only a small fraction of receptors [29–32]. In addition, our find-

ings are consistent with the recent observation that the potency

of CXCL12 to induce b-arrestin recruitment to ACKR3 when

measured in a bioluminescence resonance energy transfer

(BRET)-based assay was twofold higher than that of CXCL11

[30]. The significantly reduced potency and efficacy of truncated

CXCL11 (3–73) to activate ACKR3 signalling suggest that its

weak agonist activity was insufficient to evoke the functional

biological response in intact arteries that we observed with the

native ACKR3 agonists.

To test whether the antagonizing effects of ACKR3 are

accompanied by corresponding effects on AVPR-mediated

Gaq signalling, we measured inositol trisphosphate (IP3)

production in hVSMC upon aVP stimulation. As shown in

figure 1f, CXCL11, CXCL12 and TC14012, a synthetic ACKR3

agonist and CXCR4 antagonist [33], inhibited aVP-induced

IP3 production. These data suggest that ACKR3 activation

inhibits AVPR signalling and function in hVSMC.

2.2. ACKR3 forms heteromeric complexes with AVPR1A
We have shown previously that a1-ARs form hetero-oligomeric

complexes with ACKR3 and CXCR4 in hVSMC, through which

a1B/D-AR signalling and function are regulated [19–21]. Thus,

we tested whether CXCR4 and ACKR3 may also form hetero-

oligomeric complexes with AVPR1A, the receptor subtype

which is responsible for the vasopressor action of aVP in

VSMC [34]. We first co-expressed recombinant FLAG-tagged

CXCR4 (FLAG-CXCR4) or FLAG-ACKR3 with human influ-

enza haemagglutinin (HA)-tagged AVPR1A (HA-AVPR1A)

in HEK293T cells and performed proximity ligation assays

(PLAs) with anti-HA and anti-FLAG to visualize and quantify

individual receptors and receptor–receptor interactions at

single-molecule resolution [35]. Figure 2a shows representa-

tive PLA images for the detection of HA- and FLAG-tagged

receptors and receptor–receptor interactions, and figure 2b
shows the quantification of the corresponding PLA signals

from three independent experiments. We observed positive
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Figure 1. ACKR3 agonists antagonize aVP-mediated Gaq signalling and function in vascular smooth muscle. (a,b) Pressure myography with rat mesenteric
arteries. Arteries were pressurized to 80 mmHg, preconstricted with 2 mM PE (a) or 0.5 nM aVP (b), followed by the addition of vehicle (n ¼ 4) or 10 mM
of CXCL11 (n ¼ 6) or ubiquitin (n ¼ 7). Outer diameter % change: % change in outer diameter after the addition of the CXCR4/ACKR3 ligands. *p , 0.05
versus vehicle. (c) b-arrestin 2 recruitment assay (PRESTO-Tango) for ACKR3. HTLA cells were treated with CXCL12, CXCL11 or CXCL11 (3 – 73). RLU (%): relative
luminescence units in % RLU after treatment with 1 mM CXCL12 (¼ 100%). n ¼ 3 independent experiments. (d ) Pressure myography experiments as in (a);
PE-induced vasoconstriction. All ACKR3 ligands were tested at a concentration of 10 mM. Vehicle (n ¼ 5), CXCL11 (n ¼ 7), CXCL11 (3 – 73) (n ¼ 9) and
CXCL12 (n ¼ 14). *p , 0.05 versus vehicle. (e) Pressure myography experiments as in (b); aVP-induced vasoconstriction. All ACKR3 ligands were tested at a con-
centration of 10 mM. Vehicle (n ¼ 4), CXCL11 (n ¼ 3), CXCL11 (3 – 73) (n ¼ 3) and CXCL12 (n ¼ 3). *p , 0.05 versus vehicle. ( f ) hVSMCs were pretreated
with either vehicle (ctrl.) or ACKR3 ligands (1 mM, 15 min) and then stimulated with 1 mM aVP for 5 min. IP3 production was measured by ELISA. n ¼ 4.
*p , 0.05 versus vehicle-treated cells.
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signals corresponding to HA-AVPR1A : FLAG-ACKR3

interactions. By contrast, the number of PLA signals for

HA-AVPR1A : FLAG-CXCR4 interactions was not significan-

tly different from that of PLA signals in negative control

experiments. To confirm the observation that HA-AVPR1A

interacts with FLAG-ACKR3 in PLA experiments, we immuno-

precipitated HA-AVPR1A with an anti-HA antibody and then

performed western blot experiments with anti-HA and anti-

FLAG to detect HA-AVPR1A and FLAG-ACKR3, respectively.

As shown in figure 2c (left), when the cell lysate (input) was

probed with anti-HA, we observed a band below 50 kDa and

numerous bands in the high-molecular-mass range, which

probably corresponds to the HA-AVPR1A monomer with the

majority of receptors migrating as aggregates. The latter were

also detectable in the HA-immunoprecipitate, but not in

the IgG-immunoprecipitate. When probed with anti-FLAG

(figure 2c, right), a similar pattern was detectable in the cell

lysate, and both a faint band below 50 kDa and high-molecular

aggregates were detectable in the HA-immunoprecipitate

but not in the IgG-immunoprecipitate, indicating that

FLAG-immunoreactivty could be precipitated with anti-HA.

Next, we used plasmids encoding AVPR1A-hRluc (Renilla
reniformis), enhanced yellow fluorescent protein (EYFP)

and ACKR3-EYFP for intermolecular BRET experiments

(figure 2d,e). In cells expressing EYFP and AVPR1A-hRluc, the

BRET signal was low and increased linearly with increasing
acceptor : donor ratios, which is consistent with a non-specific

bystander BRET signal (figure 2d). The BRET signals in

cells expressing ACKR3-EYFP and AVPR1A-hRluc showed a

hyperbolic progression with increasing acceptor : donor ratios

(figure 2d), and the BRET signal was independent of the concen-

trations of BRET partners when tested at a fixed acceptor : donor

ratio (figure 2e), indicating constitutive heteromerization [36].

As PLA, co-immunoprecipitation and BRET assays collec-

tively suggested that recombinant AVPR1A heteromerizes

with ACKR3 when co-expressed, we tested whether such inter-

actions are also detectable for endogenously expressed

receptors using PLA to detect receptor–receptor interactions

in hVSMC. The anti-GPCR antibodies that were used in PLA

are directed against extracellular domains of the receptors

and have been validated for sufficient selectivity for their

GPCR targets previously [19,21,37]. Figure 3a shows represen-

tative PLA images and figure 3b shows the quantification of

PLA signals for individual receptors and receptor interactions

from four independent experiments. In line with our findings

on recombinant receptors, we observed positive PLA signals

for endogenous ACKR3 : AVPR1A interactions, whereas sig-

nals for CXCR4 : AVPR1A interactions were indistinguishable

from negative control experiments. Furthermore, we observed

that PLA signals for phosphorylated (Ser-19) myosin light

chain (pMLC) 2 (figure 3a, bottom left) were indistinguishable

from negative controls in cells that were not permeabilized,
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whereas positive PLA signals were detectable in cells after

permeabilization (figure 3a, bottom right). In line with our pre-

vious findings [19], this observation is consistent with the

intracellular localization of pMLC2 and demonstrates that anti-

bodies do not reach intracellular compartments when PLA is

performed in non-permeabilized cells. This indicates that the

PLA signals for individual receptors and receptor interactions

that were obtained with anti-GPCR antibodies directed against

extracellular receptor domains in non-permeabilized hVSMCs

are localized on the cell surface under our experimental
conditions. This assumption is supported by three-dimen-

sional reconstruction of the PLA signals from deconvolved

z-stack images, which showed that most PLA signals for

ACKR3 : AVPR1A interactions are localized in a single plane

(figure 3c).

To confirm these observations, we performed immuno-

precipitation experiments with hVSMC. AVPR1A could be

precipitated with anti-AVPR1A (figure 3d). ACKR3 and

CXCR4 were detectable in the AVPR1A immunoprecipitate

(figure 3e,f ). b2-AR, which was used as a negative control,
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could not be detected (figure 3g). The combination of the findings

that positive PLA, co-immunoprecipitation and BRET signals

were detectable for recombinant ACKR3 : AVPR1A interactions,

that positive PLA signals for endogenous ACKR3 : AVPR1A

interactions were detectable and that endogenous ACKR3

could be co-immunoprecipitated with AVPR1A indicates that

both receptors form heteromeric complexes in hVSMC. As

CXCR4 is known to form heteromeric complexes with ACKR3

[10,11,19], the findings that CXCR4 was detectable in AVPR1A

immunoprecipitates, despite the lack of significant PLA signals

for CXCR4 : AVPR1A interactions, could suggest that CXCR4

exists within the same plasma membrane microdomains as

ACKR3 and AVPR1A, but is not in sufficient proximity to

AVPR1A to permit direct interactions. Alternatively, it appears

possible that the abundance of CXCR4 : AVPR1A interactions
is too low to be discriminated with confidence by PLA under

our experimental conditions.
2.3. Depletion of ACKR3 : AVPR1A heteromers by
ACKR3 knockdown increases AVPR1A : CXCR4
heteromerization and inhibits aVP-induced
Gaq signalling

To evaluate functional consequences of ACKR3 : AVPR1A het-

eromerization on AVPR1A signalling in hVSMC, we depleted

ACKR3 : AVPR1A heteromers by ACKR3 knockdown with

siRNA. Figure 4 shows typical PLA images for the detection

of individual receptors (figure 4a), receptor–receptor
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interactions (figure 4b) and the quantification of the number of

corresponding PLA signals from four independent exper-

iments (figure 4c,d). When compared with hVSMC after

incubation with non-targeting (NT) siRNA, PLA signals for

ACKR3 were reduced by more than 60% after incubation

with ACKR3 siRNA (figure 4c). PLA signals for CXCR4

and AVPR1A were indistinguishable in hVSMC incubated

with NT and ACKR3 siRNA (figure 4c). When PLA was per-

formed to detect receptor–receptor interactions (figure 4d ),

we observed that signals corresponding to ACKR3 : AVPR1A

and ACKR3 : CXCR4 heteromers in hVSMC incubated with

ACKR3 siRNA were reduced by 80% and 50%, respectively,

when compared with hVSMC incubated with NT-siRNA.

Surprisingly, in hVSMC incubated with ACKR3 siRNA, PLA

signals corresponding to CXCR4 : AVPR1A interactions

increased to 510% of PLA signals in hVSMC incubated with

NT-siRNA. To confirm these observations, we repeated the

siRNA knockdown experiments in the rat vascular smooth

muscle cell line A7r5. Figure 5 shows typical PLA images for

the detection of individual receptors (figure 5a), receptor–

receptor interactions (figure 5b) and the quantification of the

number of corresponding PLA signals from six independent

experiments (figure 5c,d). As in hVSMC, we also observed

positive PLA signals for ACKR3 : AVPR1A heteromers in

A7r5 cells. While rat and human ACKR3 show 93% sequence

identity, rat and human AVPR1A share only 79% sequence

identity [38]. The positive PLA signals for ACKR3 : AVPR1A

heteromers in A7r5 cells indicate that these differences between

the rat and human AVPR1A sequences do not affect inter-

actions between the receptor partners. Similar to hVSMC, we

observed that ACKR3 depletion in A7r5 cells by siRNA knock-

down reduced PLA signals for ACKR3 : AVPR1A and ACKR3 :

CXCR4 interactions proportional to the degree of ACKR3

knockdown, but increased PLA signals for CXCR4 : AVPR1A

interactions to 276% of PLA signals in A7r5 cells incubated

with NT-siRNA. These findings suggest that ACKR3 hinders

CXCR4 : AVPR1A interactions, which occur after depletion of
ACKR3 from the cell surface. Such a behaviour would be in

agreement with previous observations, indicating that hetero-

oligomeric receptor complexes within the plasma membrane

exist in a dynamic equilibrium, in which interference with het-

eromerization between two receptors shifts the patterns of

receptor hetero-oligomerization within the entire receptor net-

work towards a new equilibrium, leading to newly formed

heteromeric receptor complexes [21,39–41]. Furthermore,

these observations imply that the insignificant number of

PLA signals for CXCR4 : AVPR1A interactions that were detect-

able in hVSMC probably corresponds to a very low abundance

of CXCR4 : AVPR1A heteromers.

To assess the effect of CXCR4 knockdown on the formation

of heteromeric complexes between AVPR1A and ACKR3 or

CXCR4 in hVSMC, we then silenced CXCR4 with siRNA.

Figure 6a shows representative PLA images for the detection

of CXCR4 and of CXCR4 : AVPR1A and ACKR3 : AVPR1A het-

eromers in hVSMC incubated with NT or CXCR4 siRNA, and

figure 6b shows the quantification of corresponding PLA sig-

nals from four independent experiments. When compared

with hVSMC incubated with NT-siRNA, PLA signals for

CXCR4 were reduced by 70% after incubation with CXCR4

siRNA. While PLA signals for CXCR4 : AVPR1A interactions

decreased to the same degree, CXCR4 silencing did not affect

the number of PLA signals for ACKR3 : AVPR1A interactions.

These findings suggest that AVPR1A preferentially forms

heteromeric complexes with ACKR3 and CXCR4 protomers or

homodimers, but not with CXCR4 : ACKR3 heteromers. This

interaction pattern is similar to the interaction pattern that we

previously observed for a1A-AR : CXCR4 and a1A-AR : ACKR3

heteromers, and distinct from the interaction pattern of

a1B/D-AR, which preferentially form hetero-oligomeric

complexes with the CXCR4 : ACKR3 heteromer [21].

Measurements of aVP-induced IP3 production in hVSMC

after ACKR3 and CXCR4 silencing with siRNA are shown in

figure 6c. While there were no significant differences in aVP-

induced IP3 production in hVSMC incubated with NT and
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CXCR4 siRNA, aVP-induced IP3 production in hVSMC was

abolished after incubation with ACKR3 siRNA. These findings

indicate that heteromerization between AVPR1A and ACKR3 is

required for AVPR1A signalling in hVSMC, which is similar to

the requirement of hetero-oligomerization between a1B/D-AR

and the CXCR4 : ACKR3 heteromeric complex fora1B/D-AR sig-

nalling in hVSMC that we described previously [21]. While

ACKR3 within the ACKR3 : AVPR1A complex may serve to

stabilize AVPR1A in a configuration capable of coupling to

Gaq, it appears also possible that the formation of AVPR1A :

CXCR4 heteromers after ACKR3 silencing could be responsible

for the loss of aVP-induced IP3 production. The latter would

imply that CXCR4 within the heteromeric AVPR1A : CXCR4

complex hinders AVPR1A signalling upon agonist stimulation.

2.4. Transmembrane domain-derived peptide analogues
of ACKR3 interfere with AVPR1A : ACKR3
heteromerization and aVP-induced Gaq signalling

TM-derived peptide analogues of GPCRs have previously been

used to disrupt heteromerization and alter receptor function

[19–21,42–44]. Thus, we tested whether TM2, TM4 and TM7

peptide analogues of ACKR3 interfere with AVPR1A : ACKR3

heteromerization. Representative images from PLA for the

detection of individual receptors and receptor–receptor inter-

actions in hVSMC incubated with vehicle or TM peptides are

shown in figure 7, and the quantifications of corresponding

PLA signals from three independent experiments are shown

in figure 8a,b. The TM peptides did not affect PLA signals for

AVPR1A, ACKR3 or CXCR4 (figure 8a). Furthermore, none of

the TM peptides affected PLA signals for AVPR1A : CXCR4

interactions (figure 8b). While the TM2 and TM4 peptides

reduced PLA signals for AVPR1A : ACKR3 interactions, all

TM peptide analogues reduced PLA signals for CXCR4 :
ACKR3 interactions. These findings confirm our previous obser-

vations on the effects of the TM peptides on CXCR4 : ACKR3

heteromerization and mimic their effects on the formation of

heteromeric complexes between a1B-AR and ACKR3 [21]. The

latter suggests that a1B-AR and AVPR1A may form heteromeric

complexes via similar interaction sites on ACKR3.

The effects of the TM peptide analogues on aVP-induced

IP3 production in hVSMC are shown in figure 8c. Consistent

with their effects on ACKR3 : AVPR1A heteromerization, we

observed that the TM2 and TM4 peptide analogues inhibited

aVP-induced IP3 production in hVSMC, whereas the TM7

peptide analogue was ineffective. To address the possibility

that the TM peptides directly affect AVPR1A function, we

performed b-arrestin 2 recruitment assays for AVPR1A. As

shown in figure 8d, none of the peptides affected b-arrestin

2 recruitment to AVPR1A upon aVP stimulation. These find-

ings are in agreement with the loss of aVP-responsiveness of

hVSMC after ACKR3 silencing, and further suggest that het-

eromerization between AVPR1A and ACKR3 is required for

AVPR1A signalling in hVSMC. Because the TM2 and TM4

peptide analogues did not increase AVPR1A : CXCR4 inter-

actions, formation of such interactions cannot account for

the loss of aVP-responsiveness. This supports the concept

that ACKR3 within the ACKR3 : AVPR1A complex serves to

stabilize AVPR1A in a functional configuration.
2.5. The AVPR1A : ACKR3 heteromeric complex
modulates b-arrestin recruitment to each receptor
partner and shows asymmetrical b-arrestin cross-
recruitment upon agonist stimulation

We used the PRESTO-Tango cell system to evaluate

whether heteromerization between AVPR1A and ACKR3 also
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modulates b-arrestin 2 recruitment upon agonist stimulation.

We first co-expressed FLAG-AVPR1A-Tango with pcDNA3 or

HA-ACKR3, confirmed comparable FLAG-AVPR1A-Tango

expression by flow cytometry (figure 9a) and determined

the dose–response for b-arrestin 2 recruitment upon agonist

stimulation (figure 9b). In cells co-expressing AVPR1A-Tango/

pcDNA3, aVP induced b-arrestin 2 recruitment with an EC50

(95% CI) of 2.5 (0.8–8.8) nM and top plateau was 97+7

RLU%. While the potency of aVP to recruit b-arrestin 2 in cells

co-expressing AVPR1A-Tango/ACKR3 was similar to cells

co-expressing AVPR1A-Tango/pcDNA3 (EC50 (95% CI): 6.1

(0.7–58) nM, p . 0.05 versus AVPR1A-Tango/pcDNA3),

the efficacy of aVP was significantly reduced (top plateau:

32+4 RFU%, p , 0.001 versus AVPR1A-Tango/pcDNA3).

CXCL11 and CXCL12 did not induce b-arrestin 2 recruitment

to AVPR1A-Tango in the presence or absence of ACKR3

(figure 9c). When cells co-expressing similar levels of ACKR3-

Tango plus pcDNA3 or AVPR1A (figure 9d) were tested,

we observed that the presence of AVPR1A significantly

reduced the efficacy of CXCL11 (figure 9e) and CXCL12

(figure 9f ) to recruit b-arrestin 2 to ACKR3-Tango, without

affecting the potency of the ACKR3 agonists. While aVP stimu-

lation did not induce b-arrestin 2 recruitment to ACKR3-Tango

when co-expressed with pcDNA3, aVP induced b-arrestin 2
recruitment to ACKR3-Tango when co-expressed with

AVPR1A (figure 9g).

The effects of the TM peptide analogues of ACKR3 on

aVP-induced recruitment of b-arrestin 2 to ACKR3-Tango in

cells co-expressing ACKR3-Tango and AVPR1A are shown

in figure 9h. When compared with vehicle-treated cells, the

TM2 and TM4 peptide analogues significantly reduced the

efficacy of aVP to induce b-arrestin 2 recruitment, whereas

the TM7 peptide did not show significant effects. Recently,

we reported that the TM2 peptide analogue shows the pharma-

cological behaviour of a competitive antagonist for b-arrestin 2

recruitment to ACKR3-Tango upon agonist stimulation,

whereas the TM7 peptide analogue was inactive; the TM4

peptide exhibited a behaviour similar to the TM2 peptide, but

this effect did not reach statistical significance [21]. In the

present study, the TM2 and TM4 peptides showed the pharma-

cological behaviour of non-competitive antagonists, which

inhibited aVP-induced b-arrestin 2 recruitment to ACKR3-

Tango with comparable efficacy. This behaviour is consistent

with the notion that interference of the TM2/4 peptides

with ACKR3 : AVPR1A heteromerization is the main mechan-

ism underlying their inhibitory effects on aVP-induced

b-arrestin 2 recruitment to ACKR3-Tango in cells co-expressing

ACKR3-Tango and AVPR1A.
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Our observation that the presence of ACKR3 reduces

aVP-induced b-arrestin 2 recruitment to AVPR1A-Tango

and that the presence of AVPR1A enables b-arrestin 2 recruit-

ment to ACKR3-Tango upon aVP stimulation indicates that

AVPR1A activation within the heteromeric AVPR1A :

ACKR3 complex leads to b-arrestin 2 recruitment to both

receptor partners. CXCL11 and CXCL12, however, failed to

cross-recruit b-arrestin 2 to AVPR1A-Tango in the presence

of ACKR3. These findings imply that ACKR3 within

the heteromeric receptor complex attenuates b-arrestin 2

recruitment to AVPR1A via allosteric interactions. In combi-

nation with the observed effects of AVPR1A : ACKR3
heteromerization on aVP-induced Gaq-mediated signalling

events, these data suggest that ACKR3 within the AVPR1A :

ACKR3 heteromer controls the balance between AVPR1A-

mediated Gaq and b-arrestin signalling. Furthermore, our

findings demonstrate asymmetrical agonist-induced cross-

regulation of ACKR3 by AVPR1A within the heteromeric

receptor complex. Such pharmacological behaviour of the

AVPR1A : ACKR3 heteromeric complex is similar to the

signalling behaviour of other GPCR heteromers, for

which ligand-induced symmetrical and asymmetrical cross-

activation and cross-inhibition of various signalling read-outs

have previously been described [45–48].
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2.6. AVPR1A and ACKR3 co-internalize upon agonist
binding

Agonist-induced b-arrestin recruitment to AVPR1A and

ACKR3 is known to lead to the reduction of receptor cell

surface expression levels, either via induction of receptor

internalization or inhibition of receptor recycling [9,49,50]. As

activation of recombinant AVPR1A cross-recruited b-arrestin

2 to ACKR3-Tango, we tested whether endogenous AVPR1A

and ACKR3 in hVSMC co-internalize upon agonist stimu-

lation. Thus, we stimulated hVSMC with aVP or CXCL11

and quantified AVPR1A and ACKR3 cell surface expression

via double-immunofluorescence staining by flow cytometry.

Figure 10a shows representative two-dimensional scatter

plots for the detection of both receptors over a 60-minute

time period after stimulation of hVSMC with aVP or

CXCL11, and figure 10b,c shows the quantification of receptor

cell surface expression from three independent experiments.

aVP and CXCL11 stimulation of hVSMC time-dependently

reduced expression levels of both AVPR1A and ACKR3. The

time course and the degree of receptor depletion from the

cell surface were comparable for both agonists, indicating sym-

metrical agonist-induced co-internalization of AVPR1A and
ACKR3. The finding that AVPR1A and ACKR3 co-internalize

upon aVP stimulation matches well with the observed aVP-

induced b-arrestin 2 cross-recruitment to ACKR3 within

the AVPR1A : ACKR3 complex. CXCL11, however, failed to

cross-recruit b-arrestin 2 to recombinant AVPR1A-Tango, yet

induced co-internalization of both endogenous receptors.

Thus, it appears possible that b-arrestin recruitment to only

one of the two receptor partners within the heteromeric

complex is sufficient to induce receptor co-internalization.

Taken together, our observations that endogenous

AVPR1A and ACKR3 are in close proximity in hVSMC, that

the association between endogenous AVPR1A and ACKR3

can be disrupted with selective ACKR3-derived TM peptide

analogues without altering expression levels of the individual

receptors, and that interference with the association between

AVPR1A and ACKR3 in hVSMC alters receptor function

fulfil recently proposed criteria for GPCR heteromers in

native tissues [51]. While we currently cannot provide direct

and unequivocal evidence for the localization of AVPR1A :

ACKR3 heteromers on the plasma membrane, our finding

that antibodies do not reach intracellular compartments in

PLA when cells are not permeabilized, along with the observed

changes in AVPR1A function upon exposure of cells to the
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extracellular agonist after disruption of the AVPR1A : ACKR3

complexes, strongly suggests that these receptor heteromers are

located on the plasma membrane. This notion is supported by
our findings in expression systems, which provide additional

mechanistic insights into molecular events at the AVPR1A :

ACKR3 heteromer and demonstrate that heteromerization
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changes the biochemical fingerprint of each receptor partner

[52]. We currently cannot comment on the physiological

consequences of AVPR1A : ACKR3 heteromerization on

ACKR3-mediated effects on cell function due to the lack of
appropriate read-outs that are characteristic for ACKR3

and independent of CXCR4. Similarly, the possible roles of

AVPR1A : CXCR4 heteromers, which occur after ACKR3

depletion, remain to be determined. Our findings, however,
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indicate that AVPR1A : ACKR3 complexes are essential for

AVPR1A function in vascular smooth muscle and suggest

that ACKR3 activation within the heteromeric complex

attenuates aVP-mediated vasoconstriction.

We have shown previously that hetero-oligomerization

between a1B/D-AR and the ACKR3 : CXCR4 heteromer is

essential for a1B/D-AR function in vascular smooth muscle

and that ACKR3 activation attenuates a1-AR-mediated vaso-

constriction and a1B/D-AR signalling in hVSMC [19–21]. In

combination with the findings of the present study, these

data support the concept that ACKR3 functions as a critical

regulator vascular smooth muscle function: ACKR3 in the

agonist-free conformation facilitates Gaq coupling of a1-AR

and AVPR1A via direct physical interactions within the hetero-

meric complex. In the agonist-bound conformation, ACKR3

inhibits G protein coupling of the receptor partners and

induces internalization of the heteromeric receptor complex.

Our findings provide a molecular mechanism for the pre-

viously described effects of synthetic ACKR3 ligands on blood

pressure regulation in animals [4,7] and for interactions between

the innate immune and vasoactive neurohormonal systems.

This function of ACKR3 offers a mechanistic basis for the clinical

observation that systemic levels of CXCL12, which preferen-

tially acts as an ACKR3 agonist in VSMC [7], are significantly

elevated in patients with sepsis and septic shock; the latter typi-

cally present with hypotension due to vasodilatory shock and

vasopressor refractoriness [53–57]. In addition, significantly

increased systemic CXCL11 concentrations have recently been

described in patients with hypertension [58], which could reflect

an adaptive response to reduce vascular resistance. Our find-

ings provide another example for the functional relevance of

GPCR heteromers and insights into the regulation and biologi-

cal functions of ACKR3 and AVPR1A, which could facilitate

the development of improved pharmacological strategies to

modulate vascular function.
3. Material and methods
3.1. Proteins, peptides and reagents
PE and aVP were purchased from Sigma-Aldrich, ubiquitin

was from R&D Systems, CXCL11 and CXCL12 were from

Protein Foundry, and TC14012 was from Tocris Biosciences.

CXCL113 – 73 was purified as N-terminal His6SUMO fusion

proteins in Escherichia coli as previously described [7,59,60].

Cells were grown in Terrific Broth and induced with 1 mM iso-

propyl b-D-1-thiogalactopyranoside before being harvested

and stored at 2808C. Cell pellets were lysed, and lysates

were clarified by centrifugation (12 000g for 20 min). The

supernatant and solubilized inclusion body pellets were

loaded onto Ni-NTA resin and after 1 h proteins were eluted

with 6 M guanidinium chloride, 50 mM Na2PO4 (pH 7.4),

300 mM NaCl, 500 mM imidazole, 0.2% sodium azide and

0.1% b-mercaptoethanol. The eluate was pooled and refolded

via dilution overnight before cleavage of the His6SUMO

fusion tag by Ulp1 protease for 4 h. The His6SUMO fusion

tag and chemokine were separated using cation-exchange

chromatography (SP Sepharose Fast Flow resin; GE Healthcare

UK Ltd) and the eluate was subjected to reverse-phase high-

performance liquid chromatography as a final purification.

Proteins were frozen, lyophilized and stored at 2208C. Purifi-

cation, folding and homogeneity of recombinant proteins
were verified by SDS–PAGE, MALDI-TOF spectroscopy

and 1H-15N HSQC NMR spectroscopy. The peptide analogues

of transmembrane helix 2 (TM2; YILNLAIADLWVVLTIPV

WVVDDD), TM4 (VVCILWLLAFCVSLPDTYYLDD) and

TM7 (DDDLHVTQCLSLVHCCVNPVLYSFIN) of ACKR3

were as described previously [21].

3.2. Plasmids
The human AVPR1A cDNA sequence was from the AVPR1A-

TANGO plasmid (Addgene, plasmid #66225). The hRLuc

cDNA was PCR-amplified from pIRES-Myc-hCXCR4-Rluc,

which was generously provided by Dr Michel Bouvier, with

primers carrying the AgeI and XbaI sites at either end, respect-

ively, and ligated with the C-terminus of AVPR1A at the

corresponding sites. Human CXCR4 and ACKR3 cDNAs

were from the CXCR4-TANGO (Addgene, plasmid #66262)

and the ACKR3-TANGO (Addgene, plasmid #66265) plasmids.

The EYFP cDNA was PCR-amplified from pEYFP with primers

harbouring AgeI and XbaI sites and ligated with the C-terminus

of ACKR3. All plasmids were confirmed by sequencing.

3.3. Cells
hVSMCs (primary aortic smooth muscle cells, ATCC PCS-

100-012), A7r5 cells (ATCC-CRL-1444) and HEK293T cells

(ATCC-CRL-11268) were purchased from American Type

Culture Collection. hVSMCs were cultured in vascular basal

media (ATCC PCS-100-030) supplemented with the vascular

smooth muscle growth kit (ATCC PCS-100-042), contain-

ing 100 U ml21 penicillin and 100 mg ml21 streptomycin.

hVSMCs were used between passages 2–5. HEK293T and

A7r5 cells were cultured in high-glucose Dulbecco’s Modified

Eagle’s Medium containing 10 mg ml21 sodium pyruvate,

2 mM L-glutamine, 10% (vol/vol) FBS, 1� non-essential

amino acids, 100 U ml21 penicillin and 100 mg ml21 streptomy-

cin. The HTLA cell line, a HEK293 cell line stably expressing a

tTA-dependent luciferase reporter and a b-arrestin 2–TEV

fusion gene [27] were generously provided by the laboratory

of Dr Bryan Roth and maintained in high-glucose Dulbecco’s

Modified Eagle’s Medium supplemented with 10% (vol/vol)

FBS, 1� non-essential amino acids, 100 U ml21 penicillin,

100 mg ml21 streptomycin, 50 mg ml21 hygromycin B and

2 mg ml21 puromycin. All cells were cultured in a humidified

environment at 378C, 5% CO2.

3.4. Proximity ligation assays
PLAs were performed as described in detail previously

[19–21,61]. In brief, cells were grown and fixed on eight-well

chamber slides (Nunc). Cells were fixed with 4% (wt/vol)

paraformaldehyde for 15 min at room temperature and

then blocked overnight at 48C with 3% (wt/vol) BSA in PBS.

To visualize individual proteins, slides were incubated with

rabbit anti-HA (AbCam Ab9110), mouse anti-FLAG (Sigma-

Aldrich F1804), rabbit anti-AVPR1A (Bioss BS-11598R), mouse

anti-ACKR3 (R&D MAB42273), goat anti-CXCR4 (AbCam

Ab1670) or mouse anti-phospho-MLC 2 (Ser19) (pMLC2, Cell

Signaling Technology, 3675) at 378C for 105 min in a humidify-

ing chamber. To assess how permeabilization of the plasma

membrane affects the PLA signals for pMLC2, cells were incu-

bated in 0.5% Triton X-100 in PBS for 20 min at room

temperature following fixation. To visualize receptor–receptor
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interactions, slides were incubated with a combination of

rabbit anti-HA (AbCam Ab9110) and mouse anti-FLAG

(Sigma F1804), rabbit anti-AVPR1A (Bioss BS-11598R) and

mouse anti-ACKR3 (R&D MAB42273) or goat anti-CXCR4

(AbCam Ab1670) at 378C for 105 min in a humidifying

chamber. All antibodies were used in dilutions of 1 : 500.

Slides were then washed with PBS and incubated (60 min at

378C in a humidifying chamber) with secondary species-

specific antibodies conjugated with plus and minus Duolink

II PLA probes (1 : 5), as appropriate. Negative control slides

were incubated with omission of one primary antibody.

Slides were washed again with PLA wash buffer A (Duolink

II) and then incubated with ligation-ligase solution (30 min at

378C in a humidifying chamber), and also washed with PLA

wash buffer A and then incubated with amplification polymer-

ase solution (100 min at 378C in a humidifying chamber). Slides

were then washed twice with PLA wash buffer B (Duolink II),

once with 0.01� PLA wash buffer B and allowed to dry.

Slides were then mounted with a minimal volume of Duolink

II mounting medium with 40,6-diamidino-2-phenylindole dihy-

drochloride (DAPI) overnight, and PLA signals (Duolink In Situ

Detection Reagent Red (lexcitation/emission 598/634 nm) were

identified as fluorescent spots under a fluorescence microscope

(Carl Zeiss Axiovert 200M with EC Plan-Neofluor objective

lenses (40 � /1.30 oil) equipped with AXIO CAMMRC5 (Carl

Zeiss) and AXIOVISION REL. 4.9.1 (Carl Zeiss) acquisition soft-

ware) at room temperature. For each vision field 10 z-stack

images in 1 mm sections were acquired and compressed. PLA

signals were quantified using the Duolink IMAGE TOOL software

(Sigma-Aldrich). Images were imported in merged.tiff formats

containing both signal and nuclei channels. Merged images

were visually verified for analytical quality. Comparisons and

statistical analyses were performed only when PLA assays

were performed on the same day in parallel experiments, and

fluorescence microscopy was performed with the identical set-

tings. For each experiment and condition, 10 randomly selected

non-overlapping vision fields were analysed.

3.5. Deconvolution three-dimensional imaging
Deconvolution three-dimensional imaging was performed as

described previously [19]. In brief, z-stack images were col-

lected (from bottom to top, 20 sections of 0.5 mm) using

identical acquisition parameters with a DeltaVision wide-

field fluorescent microscope (Applied Precision, GE) equipped

with a digital camera (CoolSNAP HQ; Photometrics), using a

1.4-numerical aperture 100� objective lens. Excitation light

was generated using the Insight SSI solid-state illumination

module (Applied Precision, GE), and images were decon-

volved with the SOFTWORX deconvolution software (Applied

Precision, GE). Following deconvolution, images were quanti-

fied by IMARIS (Bitplane) software using the Surfaces feature

function, generating surfaces around red puncta. Three-dimen-

sional views of images were generated using the Surpass mode

of IMARIS software.

3.6. Co-immunoprecipitation analyses of receptor
interactions

Co-immunoprecipitation experiments with hVSMC and

HEK293T cells were performed using the ThermoScientific

Pierce co-immunoprecipitation kit (cat. no. 26149), as described
[21]. A total of 50 mg of rabbit anti-AVPR1A (Bioss BS-11598R),

mouse anti-HA (Bioss bsm-50131M) or anti- rabbit IgG (AbCam

Ab27478) were incubated with 50 ml of Amino Link Plus coup-

ling resin for 180 min at room temperature. A cell lysate

(1000 mg) was precleared with 50 ml of the control agarose

resin slurry (60 min at 48C). Immobilized anti-AVPR1A resin,

anti-HA resin and anti-IgG resin were incubated with a pre-

cleared lysate for 48 h at 48C. After incubation, the resins were

washed three times with 200 ml of IP lysis/wash buffer, once

with conditioning buffer, and protein was eluted using 60 ml

of elution buffer. Samples were analysed by western blotting.

3.7. Western blotting
Western blotting with rabbit anti-AVPR1A (Bioss BS-11598R),

rabbit anti-ACKR3 (AbCam Ab38089), goat anti-CXCR4

(Abcam Ab1670), rabbit anti-b2-AR (Abcam Ab36956), mouse

anti-HA (Bioss bsm-50131M) or mouse anti-FLAG (Sigma-

Aldrich F1804) in combination with anti-rabbit, anti-mouse

(GE Healthcare) or anti-goat (Sigma-Aldrich) IgG horseradish

peroxidase-linked whole antibody was performed as described

previously [21].

3.8. Gene silencing via RNA interference
ACKR3 and CXCR4 siRNA gene silencing was performed as

described previously [19,21,62]. In brief, cells were grown in

2 ml Accell siRNA delivery media per well (Dharmacon) in

six-well plates (Nunc). Commercially available Accell ACKR3

and CXCR4 siRNA were reconstituted with 1� siRNA buffer

to a stock concentration of 100 mM. Cells were then transfected

with 1 mM ACKR3/CXCR4 siRNA and incubated for 72 h at

378C, 5% CO2. Accell NT-siRNA pool was used as a negative

control. After 72 h, cells were assayed for receptor cell surface

expression and used for signalling experiments.

3.9. GPCR gene transfections
HEK293T cells were transiently transfected with 1.5 mg

of DNA encoding either HA-AVPR1A, FLAG-ACKR3 or

FLAG-CXCR4 with a combination of two GPCR encoding

DNAs, as indicated, using Lipofectamine 3000 (ThermoScienti-

fic) as per the manufacturer’s protocol. All cDNAs were from

the Addgene Tango plasmids subcloned in pcDNA3 with

either HA- or FLAG-tag at the N-terminus. Empty vector,

pcDNA3, was used as a control. Twenty-four hours later,

cells were fixed on chamber slides for PLA or lysed for

co-immunoprecipitation experiments.

3.10. Inositol trisphosphate enzyme-linked
immunosorbent assay

IP3 enzyme-linked immunosorbent assays were purchased

from LS Bio and performed as per the manufacturer’s proto-

col (LS BIO F10644). In brief, hVSMCs were grown to

confluency in six-well dishes (Nunc) and then treated as

described in the Results section. Cells were then washed

once with cold PBS, 225 ml of cold PBS was added to each

well and cells were lysed by ultrasonication. The cell lysate

was centrifuged for 10 min at 48C at 1500g to remove cellular

debris. The total protein concentration in the supernatant was

determined with the Bio-Rad DC Protein Assay as per the
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manufacturer’s protocol (Bio-Rad 500-0116). Equivalent

amounts of total protein were added to the ELISA strips

diluted in the provided sample diluent (1 : 5 and 1 : 10). The

assay was then completed as per the manufacturer’s protocol.

Optical densities were read on a Biotek Synergy II microplate

reader (absorbance at 450 nm), and IP3 concentrations were

extrapolated from the standard curve.

3.11. PRESTO-Tango b-arrestin recruitment assay
The PRESTO-Tango (parallel receptorome expression and

screening via transcriptional output, with transcriptional acti-

vation following arrestin translocation) assay was performed

as recently described [27]. The Tango plasmids were a

gift from Dr Bryan Roth (all from Addgene). HTLA cells

(2.5 � 105 per well) were seeded in a six-well plate and trans-

fected with 1.5 mg of the Tango plasmids using

Lipofectamine 3000 (ThermoScientific). The following day,

transfected HTLA cells (1 � 105 cells per well) were plated

onto poly-L-lysine precoated 96-well microplates and allowed

to attach to the plate surface for at least 4 h prior to treatment.

Proteins used for treatment were prepared in twice the final

concentration in culture media, added at a 1 : 1 vol/vol ratio

and incubated overnight at 378C, 5% CO2 in a humidified

environment. The following morning, media were removed

from cell culture plates and replaced with a 100 ml 1 : 5 mixture

of Bright-Glo (Promega) and 1� HBSS, 20 mM HEPES sol-

ution. Plates were then incubated at room temperature before

measuring luminescence on a Biotek Synergy II plate reader.

3.12. Intermolecular bioluminescence resonance energy
transfer assay

HEK293T cells were seeded in 12-well plates and transfected

with AVPR1A-hRluc alone or together with plasmids encoding

EYFP or ACKR3-EYFP using the Lipofectamine 3000 transfec-

tion reagent (ThermoScientific). For BRET titration assays,

AVPR1A-hRluc at the fixed amount of 50 ng was co-trans-

fected with increasing amounts of EYFP or ACKR3-EYFP.

For BRET assays at a constant acceptor : donor ratio, increasing

amounts of AVPR1A-hRluc and ACKR3-EYFP were co-trans-

fected at a ratio of 1 : 10. In all assays, empty vector pcDNA3

was added to maintain the total cDNA amount for each trans-

fection reaction constant. After an overnight incubation, cells

were seeded in poly-L-lysine coated 96-well white plates and

incubated again overnight. Cells were then washed with PBS

and fluorescence was measured in a Biotek Synergy II plate

reader (lexcitation 485 nm, lemission 528 nm). For BRET measure-

ments, coelenterazine H (Nanolight Technology) at 5 mM in

PBS was added to the cells. After 10 min incubation at room

temperature, luminescence was measured at 460+40 and

528+20 nm. The BRET signal is calculated as the ratio of

RLU measured at 528+20 nm over RLU at 460+40 nm.

The net BRET is calculated by subtracting the BRET signal

detected when the AVPR1A-hRLuc was transfected alone.

For titration experiments, net BRET ratios are expressed as a

function of EYFP/total luminescence.

3.13. Receptor internalization assay
Assessment of receptor internalization upon agonist stimula-

tion was achieved via flow cytometry. hVSMCs were treated
with 1 mM of aVP or CXCL11 for various time points. The

cells were washed once with ice cold DPBS, blocked and

stained with rabbit anti-AVPR1A (Bioss BS-11598R) and

mouse anti-ACKR3 (R&D MAB42273) antibodies at 1 : 200

dilution for 1 h on ice. Cells were then washed twice with

FACS wash buffer (1� PBS, 2% FBS and 0.01% NaN3), and

secondary antibodies were added at a 1 : 500 dilution and incu-

bated for 30 min on ice (donkey anti-rabbit Alexa Fluor 647,

Invitrogen A-31573 and donkey anti-mouse Alexa Fluor 488,

Invitrogen A-21202). Cells were washed twice with FACS

wash buffer and then fixed with 4% paraformaldehyde at

room temperature for 15 min. After two additional washes,

the cells were counted on a BD FACS Canto II (BD Biosciences)

flow cytometer. The fluorescence intensities of at least 3 � 104

cells were recorded and analysed using the FlowJo software

(Tree Star).

3.14. Flow cytometry
Flow cytometry was used to assess equivalent recombinant

Tango receptor expression. HTLA cells were labelled with

rabbit anti-FLAG-Alexa Fluor 647 (R&D Systems IC8529R).

The fluorescence intensities of at least 3 � 104 cells were

recorded and analysed using the FlowJo software (Tree Star).

3.15. Pressure myography
Pressure myography was performed as described in detail

previously with slight modifications [7,63]. Male Sprague–

Dawley rats (Harlan) were anaesthetized with 3.5% isoflurane.

The mesentery was immediately removed and placed in

130 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.17 mM

MgSO4, 14.9 mM NaHCO3, 5.5 mM D-glucose, 0.026 mM

EDTA and 1.16 mM CaCl2 aerated with 95% O2, 5% CO2 at

378C. The animal was then euthanized by cardiectomy and

bilateral decompression of the lungs. Third- or fourth-order

mesenteric arteries were dissected free from the mesentery,

mounted onto two glass cannulae with United States Pharma-

copeia (USP) scale 11-0 sutures and pressurized to 80 mmHg

in a DMT 110P pressure myograph system (DMT-USA).

The intraluminal solution and the vessel bath solution were

the same as described before. The vessel bath solution was

continuously aerated with 95% O2, 5% CO2 throughout the

experiment. The outer diameter (o.d.) of the pressurized

vessel was then continuously measured and recorded via digi-

tal video-edge detection upon the addition of increasing doses

of PE or aVP to the vessel bath.

3.16. Data analyses
Data are expressed as mean+ standard error of the mean from n
independent experiments that were performed on different days.

Data were analysed using GRAPHPAD PRISM v. 7 software.

Unpaired Student’s t-test or one-way analyses of variance

(ANOVA) with Dunnett’s multiple comparison post hoc test

for multiple comparisons were used, as appropriate. Dose–

response curves were analysed using nonlinear regression

analyses. A two-tailed p , 0.05 was considered significant.

Ethics. All procedures involving animals were conducted in accordance
with the Guide for the Care and Use of Laboratory Animals, 8th edition
and were approved by the Institutional Animal Care and Use
Committee of Loyola University Chicago (no. 205102, 10 July 2013).
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