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ABSTRACT
In a quest for previously unknown geroprotective natural chemicals, we used 

a robust cell viability assay to search for commercially available plant extracts that 
can substantially prolong the chronological lifespan of budding yeast. Many of these 
plant extracts have been used in traditional Chinese and other herbal medicines 
or the Mediterranean and other customary diets. Our search led to a discovery of 
fifteen plant extracts that significantly extend the longevity of chronologically aging 
yeast not limited in calorie supply. We show that each of these longevity-extending 
plant extracts is a geroprotector that decreases the rate of yeast chronological aging 
and promotes a hormetic stress response. We also show that each of the fifteen 
geroprotective plant extracts mimics the longevity-extending, stress-protecting, 
metabolic and physiological effects of a caloric restriction diet but if added to yeast 
cultured under non-caloric restriction conditions. We provide evidence that the 
fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct 
set of longevity-defining cellular processes. These effects include a rise in coupled 
mitochondrial respiration, an altered age-related chronology of changes in reactive 
oxygen species abundance, protection of cellular macromolecules from oxidative 
damage, and an age-related increase in the resistance to long-term oxidative and 
thermal stresses.

INTRODUCTION

The budding yeast Saccharomyces cerevisiae 
is a widely used model organism in aging research 
because it offers three significant advantages in studying 
mechanisms of aging and longevity [1–5]. First, S. 
cerevisiae has relatively short and easily measurable 
replicative and chronological lifespans. Second, the S. 
cerevisiae genome has been completely sequenced and 
many strain collections for yeast genome interrogation are 
commercially available. Third, S. cerevisiae is amenable to 
comprehensive molecular analyses that have been used to 
uncover mechanisms of various cell biological processes 

[4, 6–10]. Because of these advantages, studies in S. 
cerevisiae discovered many genes, signaling pathways 
and chemical compounds that, following their discovery 
in budding yeast, were implicated in aging and longevity 
in organisms across an evolutionary tree [4, 5, 8, 11–15]. 
It is therefore commonly believed that the major aspects 
and underlying mechanisms of aging and aging-associated 
pathology have been conserved throughout evolution [8, 
14–32].

Our research aims to understand mechanisms 
through which certain chemical compounds of plant origin 
act as geroprotectors capable of delaying chronological 
aging and postponing aging-associated pathology in 
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budding yeast. Our recent screen of a collection of 
thirty-five plant extracts (PEs) had identified six PEs 
that can prolong chronological lifespan (CLS) and delay 
chronological aging in S. cerevisiae [33]. We found that 
in S. cerevisiae, the six PEs exhibit different effects on 
cellular processes known to define longevity in eukaryotes 
across species [33]. These effects of the six aging-delaying 
PEs included an increase in mitochondrial respiration 
and membrane potential, a moderate but significant rise 
or decline in cellular reactive oxygen species (ROS), 
a weakening of oxidative damage to cellular proteins, 
lipids and DNA, an augmentation of cell resistance 
to long-term oxidative and thermal stresses, and an 
enhancement of neutral lipid lipolysis in lipid droplets 
[33]. We also revealed that the six PEs extend yeast 
CLS through different signaling pathways and protein 
kinases converged into a network; this network is known 
to define the rate of chronological aging in S. cerevisiae 
and to regulate longevity in other eukaryotic organisms 
[34]. The network integrates the pro-aging TORC1 
(target of rapamycin complex 1) pathway, the pro-aging 
PKA (protein kinase A) pathway, the pro-aging PKH1/2 
(Pkb-activating kinase homolog) pathway, the anti-
aging SNF1 (sucrose non-fermenting) pathway, the anti-
aging ATG (autophagy) pathway, the pro-aging serine/
threonine-protein kinase Sch9 and the anti-aging serine/
threonine-protein kinase Rim15 (regulator of IME2) [34]. 
We provided evidence that pairwise combinations of the 
six PEs display synergistic effects on the delay of yeast 
chronological aging only if each of the PEs comprising 
a combination targets a different signaling pathway or 
protein kinase of longevity regulation [35]. Moreover, 
we described three different mechanisms through which 
one of the six PEs, which is called PE21, can delay yeast 
chronological aging and extend yeast longevity [36].

The objective of the present study was to search 
for previously unknown aging-delaying (geroprotective) 
PEs. To attain this objective, we conducted a new screen 
of many extracts from plants used in traditional Chinese 
and other herbal medicines or the Mediterranean and other 
diets. Our screen discovered fifteen new geroprotective 
PEs that extend yeast CLS. We show that each of these 
new aging-delaying PEs decreases the rate of yeast 
chronological aging, stimulates a hormetic stress response 
and regulates a distinct set of longevity-defining cellular 
processes.

RESULTS

Identification of new PEs that prolong the 
longevity of chronologically aging budding yeast

In search of new geroprotective PEs, we performed 
a screen of fifty-three commercially available PEs. 
The origin and properties of these PEs are shown in 
Supplementary Table 1. These PEs are believed to have 

positive effects on human health, and many of them have 
been used in traditional Chinese and other herbal medicines 
or the Mediterranean and other long-established diets.

To conduct the screen, we exploited a robust 
clonogenic cell viability assay for measuring yeast CLS 
[33]. In this assay, the wild-type (WT) strain BY4742 was 
cultured in the synthetic minimal YNB medium initially 
containing 2% (w/v) glucose, as described in Materials 
and Methods. Cells of budding yeast cultured under such 
non-caloric restriction (non-CR) conditions are known to 
age chronologically faster than the ones cultured under CR 
conditions on 0.2% (w/v) or 0.5% (w/v) glucose [1, 3, 4, 33].

At the time of cell inoculation into the culturing 
medium, we added each of the assessed PEs at a final 
concentration ranging from 0.02% (w/v) to 1.0% (w/v). We 
found that PE40, PE41, PE44, PE50, PE53, PE66, PE73, 
PE84, PE86 and PE87 do not affect the mean and maximum 
CLS of WT yeast if exogenously supplemented within 
this wide range of initial concentrations (Supplementary 
Figures 1–7). In contrast, PE38, PE43, PE45, PE46, PE48, 
PE49, PE51, PE52, PE54-PE58, PE60-PE63, PE65, PE67, 
PE70, PE71, PE74, PE76, PE80, PE82, PE85, PE88 
and PE89 were cytotoxic at certain concentrations; they 
decreased the mean and/or maximum CLS of WT yeast 
if used at the final concentrations in the 0.1 (w/v) to 1.0% 
(w/v) range (Supplementary Figures 1–7).

Our screen revealed that fifteen of fifty-three 
tested PEs statistically significantly increase the mean 
and maximum CLS of WT yeast cultured under non-
CR conditions on 2% (w/v) glucose (Figures 1 and 2; 
Supplementary Figures 1–6). Each of these fifteen PEs 
extended the longevity of chronologically aging WT 
yeast if used within a specific concentration range and 
exhibited the highest longevity-extending effect at a 
certain concentration within this range (Supplementary 
Figures 1–6). The following PEs exhibited the highest 
longevity-extending effect under non-CR conditions of 
cell culturing: 0.5% (w/v) PE26 from berries of Serenoa 
repens (Figure 1A, Supplementary Figure 1), 0.5% (w/v) 
PE39 from aerial parts of Hypericum perforatum (Figure 
1B, Supplementary Figure 1), 0.5% (w/v) PE42 from 
leaves of Ilex paraguariensis (Figure 1C, Supplementary 
Figure 1), 0.3% (w/v) PE47 from leaves of Ocimum 
tenuiflorum (Figure 1D, Supplementary Figure 2), 0.3% 
(w/v) PE59 from the whole plant of Solidago virgaurea 
(Figure 1E, Supplementary Figure 3), 0.1% (w/v) PE64 
from fruits of Citrus sinensis (Figure 1F, Supplementary 
Figure 4), 0.5% (w/v) PE68 from the whole plant of 
Humulus lupulus (Figure 1G, Supplementary Figure 4), 
1.0% (w/v) PE69 from grape skins of Vitis vinifera 
(Figure 1H, Supplementary Figure 5), 0.1% (w/v) PE72 
from the whole plant of Andrographis paniculata (Figure 
2A, Supplementary Figure 5), 0.3% (w/v) PE75 from 
roots of Hydrastis canadensis (Figure 2B, Supplementary 
Figure 5), 0.5% (w/v) PE77 from seeds of Trigonella 
foenum-graecum (Figure 2C, Supplementary Figure 6), 
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0.3% (w/v) PE78 from root barks of Berberis vulgaris 
(Figure 2D, Supplementary Figure 6), 0.5% (w/v) PE79 
from leaves, flowers and stems of Crataegus monogyna 
(Figure 2E, Supplementary Figure 6), 0.3% (w/v) PE81 
from leaves of Taraxacum erythrospermum (Figure 2F, 
Supplementary Figure 6), and 0.5% (w/v) PE83 from 
the whole plant of of Ilex paraguariensis (Figure 2G, 
Supplementary Figure 6).

We found that none of the fifteen longevity-
extending PEs displays a statistically significant effect on 

glucose consumption during culturing of WT cells under 
non-CR conditions on 2% (w/v) glucose (Supplementary 
Figure 8). This finding shows that each of these PEs 
prolongs the longevity of chronologically aging yeast 
not because it alters the concentration of exogenous 
glucose and, thus, not because it affects the metabolic 
rate of this major source of carbon and energy. We also 
found that none of the fifteen longevity-extending PEs 
exhibits a statistically significant effect on the growth 
rate and maximum cell yield of WT yeast cultures under 

Figure 1: 0.5% (w/v) PE26, 0.5% (w/v) PE39, 0.5% (w/v) PE42, 0.3% (w/v) PE47, 0.3% (w/v) PE59, 0.1% (w/v) PE64, 
0.5% (w/v) PE68 and 1.0% (w/v) PE69 exhibit the highest extending effects on the chronological lifespan (CLS) of 
wild-type (WT) yeast cultured under non-CR conditions on 2% (w/v) glucose. WT cells were cultured in the synthetic 
minimal YNB medium initially containing 2% (w/v) glucose, in the presence of a PE or its absence. In the cultures supplemented with a PE, 
ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In the same experiment, WT cells were also subjected to ethanol-mock 
treatment by being cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. Survival 
curves (the upper panels in A–H) and the mean and maximum lifespans (the lower two panels in A–H) of chronologically aging WT cells 
cultured without a PE (cells were subjected to ethanol-mock treatment) or with a PE (which was added at the concentration optimal for CLS 
extension) are shown. Data are presented as means ± SEM (n = 6). In the upper panels in A–H, CLS extension was significant for each of the 
PEs tested (p < 0.05; the p values for comparing each pair of survival curves were calculated using the logrank test as described in Materials 
and Methods). In the lower two panels in A–H, *p < 0.05, **p < 0.01, ***p < 0.001; the p values for comparing the means of two in groups 
were calculated using an unpaired two-tailed t test as described in Materials and Methods). Data for mock-treated WT cells are replicated 
in graphs A–H of this Figure, graphs A–G of Figure 2 and Supplementary Figures 1–7. Data for WT cells cultured with a PE added at the 
concentration optimal for CLS extension are replicated in Supplementary Figure 1 (for 0.5% (w/v) PE26, 0.5% (w/v) PE39 and 0.5% (w/v) 
PE42), Supplementary Figure 2 (for 0.3% (w/v) PE47), Supplementary Figure 3 (for 0.3% (w/v) PE59), Supplementary Figure 4 (for 0.1% 
(w/v) PE64 and 0.5% (w/v) PE68) and Supplementary Figure 5 (for 1.0% (w/v) PE69).
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non-CR conditions (Supplementary Figure 9). Based 
on this observation, we concluded that each of them 
extends the longevity of chronologically aging yeast not 
because it slows cell proliferation and, thus, not because 
it desensitizes yeast to harmful chemical compounds 
produced when cells proliferate.

Each of the fifteen longevity-prolonging PEs 
mimics longevity extension by CR

CR without malnutrition is a low-calorie dietary 
regimen that extends lifespan in many evolutionarily 

distant organisms and improves healthspan in laboratory 
rodents and rhesus monkeys [4, 8, 37–39]. Certain natural 
chemicals and synthetic drugs have been shown to elicit 
the CR-like lifespan-extending and healthspan-improving 
effects even under non-CR conditions (i. e., when calorie 
supply is not limited) [40–45]. These natural and synthetic 
chemical compounds are called CR mimetics (CRMs) if 
they not only extend longevity under non-CR conditions 
but also if they exhibit three other effects. First, CRMs 
do not impair food intake. Second, CRMs have CR-like 
effects on metabolism and physiology. Third, akin to 
CR, CRMs decrease the susceptibility to diverse stresses 

Figure 2: 0.1% (w/v) PE72, 0.3% (w/v) PE75, 0.5% (w/v) PE77, 0.3% (w/v) PE78, 0.5% (w/v) PE79, 0.3% (w/v) PE81 
and 0.5% (w/v) PE83 exhibit the highest extending effects on the CLS of WT yeast cultured under non-CR conditions 
on 2% (w/v) glucose. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose, in the 
presence of a PE or its absence. In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). 
In the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. Survival curves (the upper panels in A–G) and the mean and maximum 
lifespans (the lower two panels in A–G) of chronologically aging WT cells cultured without a PE (cells were subjected to ethanol-mock 
treatment) or with a PE (which was added at the concentration optimal for CLS extension) are shown. Data are presented as means ± SEM 
(n = 6). In the upper panels in A–G, CLS extension was significant for each of the PEs tested (p < 0.05; the p values for comparing each 
pair of survival curves were calculated using the logrank test as described in Materials and Methods). In the lower two panels in A–G, *p < 
0.05, **p < 0.01, ***p < 0.001; the p values for comparing the means of two in groups were calculated using an unpaired two-tailed t test as 
described in Materials and Methods). Data for mock-treated WT cells are replicated in graphs A–G of this Figure, graphs A–H of Figure 1 
and Supplementary Figures 1–7. Data for WT cells cultured with a PE added at the concentration optimal for CLS extension are replicated 
in Supplementary Figure 4 (for 0.1% (w/v) PE72 and 0.3% (w/v) PE75) and Supplementary Figure 6 (for 0.5% (w/v) PE77, 0.3% (w/v) 
PE78, 0.5% (w/v) PE79, 0.3% (w/v) PE81 and 0.5% (w/v) PE83).
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[41, 44]. In the present study we found that each of the 
fifteen longevity-extending PEs increases yeast CLS 
under non-CR conditions on 2% (w/v) glucose (Figures 
1 and 2; Supplementary Figures 1–6) and none of them 
compromises glucose intake during culturing under these 
conditions (Supplementary Figure 8). Thus, it seems 
that all these PEs are CRMs. This conclusion is further 
supported by our observations that each of the fifteen 
longevity-extending PEs exhibits CR-like effects on 
several aspects of cell metabolism and stress resistance 
(see below).

Of note, we previously reported that if the CR 
diet is administered by culturing yeast in the YNB 
medium initially containing 0.5% (w/v) glucose, it 
significantly increases both the mean and maximum 
CLS of S. cerevisiae [33]. In the present study, we 
investigated how each of the fifteen PEs that extends 
longevity under non-CR conditions influences the 
longevity of yeast cultured under CR conditions on 
0.5% (w/v) glucose. We found that eight of the fifteen 
PEs that prolong the longevity of chronologically aging 
yeast under non-CR conditions do not increase either 
the mean or the maximum CLS of S. cerevisiae under 
CR conditions (Supplementary Figures 10 and 11). 
These PEs included 0.3% (w/v) PE47 (Supplementary 
Figure 10D), 0.1% (w/v) PE64 (Supplementary Figure 
10F), 1.0% (w/v) PE69 (Supplementary Figure 10H), 
0.1% (w/v) PE72 (Supplementary Figure 11A), 0.3% 
(w/v) PE75 (Supplementary Figure 11B), 0.5% (w/v) 
PE77 (Supplementary Figure 11C), 0.5% (w/v) PE79 
(Supplementary Figure 11E) and 0.3% (w/v) PE81 
(Supplementary Figure 11F). It seems conceivable, 
therefore, that each of these eight PEs increases yeast 
CLS because it modulates the same or highly overlapping 
sets of longevity-defining cellular processes under both 
CR and non-CR conditions. Some of these processes can 
be suppressed under non-CR conditions, whereas others 
can operate as cellular housekeeping processes that are 
not regulated in a CR-dependent manner. The relative 
contributions of the CR-regulated and housekeeping (i. 
e., not regulated by CR) cellular processes to the process 
of yeast chronological aging need to be addressed in the 
future.

We also revealed that seven of the fifteen PEs 
that extend yeast longevity under non-CR conditions 
also increase both the mean and maximum CLS of S. 
cerevisiae under CR conditions (Supplementary Figures 
10 and 11). 0.5% (w/v) PE26 (Supplementary Figure 
10A), 0.5% (w/v) PE39 (Supplementary Figure 10B), 
0.5% (w/v) PE42 (Supplementary Figure 10C), 0.3% 
(w/v) PE59 (Supplementary Figure 10E), 0.5% (w/v) 
PE68 (Supplementary Figure 10G), 0.3% (w/v) PE78 
(Supplementary Figure 11D) and 0.5% (w/v) PE83 
(Supplementary Figure 11G) were among these PEs. 
Therefore, we hypothesize that each of these seven PEs 
increases yeast CLS under both CR and non-CR conditions 

because it targets both CR-regulated and housekeeping 
(i.e., not regulated by CR) cellular processes.

We then compared the efficiency with which each 
of the fifteen PEs increases yeast CLS under non-CR 
conditions to that under CR conditions. Our comparison 
revealed that each of these PEs extends the longevity of 
chronologically aging yeast under non-CR conditions 
significantly more efficiently than it does under CR 
conditions (Figure 3). This finding shows that each of 
the fifteen PEs is a more effective longevity-prolonging 
intervention in chronologically aging yeast not-limited in 
calorie supply than it is in yeast placed on a CR diet.

Each of the fifteen longevity-prolonging PEs 
is a geroprotector that extends the longevity of 
chronologically aging yeast because it decreases 
the rate of aging and stimulates a hormetic stress 
response

The rate of biological aging at the demographic 
level depends on the health of a population and can be 
determined by measuring an age-specific mortality 
rate of this population [46–50]. The mortality rates 
of evolutionarily distant organisms rise with age [46, 
48–51]. The Gompertz mortality function equation can 
describe this age-related rise in the mortality rate; this 
equation can be graphically presented as mortality rate 
data plotted on a semi-log scale against biological age 
[46, 48, 50–52]. Geroprotective interventions (also known 
as geroprotectors) can extend the longevity of organisms 
across phyla by causing three different effects on the 
Gompertz mortality function. Some geroprotectors can 
lower a so-called “baseline” mortality rate by eliciting 
an equal decline in the mortality rate at any biological 
age, without affecting a slope of the Gompertz mortality 
rate [47, 48, 50, 53, 54]. This slope is known as the 
coefficient G of the age-specific mortality rate; it is 
inversely proportional to the rate of biological aging [47, 
48, 50, 53, 54]. Other geroprotectors can decrease the 
rate of biological aging because they lower the value of 
G, thus raising the value of the mortality rate doubling 
time (MRDT; MRDT = 0.693/G) [47, 48, 50, 55, 56]. The 
longevity-extending effects of some other geroprotective 
interventions can represent a combination of both the drop 
in the baseline mortality rate and the decline in the value 
of G (which raises the value of MRDT) [46–48, 50, 54].

We sought to investigate whether each of the fifteen 
PEs extends yeast longevity by lowering the baseline 
mortality rate, decreasing the rate of biological aging 
or by altering both these rates. Therefore, we conducted 
the Gompertz mortality rate analysis of WT cells under 
non-CR conditions that were either treated with one of 
these PEs or subjected to mock treatment. We found the 
following: 1) none of the fifteen longevity-prolonging PEs 
affects the baseline mortality rate, and 2) each of them 
elicits a decline in the coefficient G of the age-specific 
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mortality rate and causes a rise in the value of MRDT 
(Figure 4). Based on these observations, we concluded 
that each of these PEs is a geroprotector that lengthens the 
longevity of chronologically aging yeast because it lowers 
the rate of aging but not because it decreases the baseline 
mortality rate.

Our data allow us to conclude that each of the fifteen 
longevity-prolonging PEs slows yeast chronological 
aging because it decreases both the extrinsic and the 
intrinsic rates of aging. This conclusion is based on our 
findings that each of these PEs extends both the mean 
and maximum CLS of yeast (Figures 1 and 2). The mean 
lifespans of evolutionarily distant organisms are thought 
to depend on certain environmental (extrinsic) factors to 
which cells are exposed before they enter the quiescent or 
senescent state [24, 48, 57, 58]. In contrast, the maximum 
lifespans of organisms across species are considered to 
rely on certain cellular and organismal longevity modifiers 
that operate after cells enter the quiescent or senescent 
state [48, 52, 57, 58, 59].

Our data also show that the ability of each of the 
fifteen longevity-prolonging PEs to decelerate yeast 

chronological aging correlates with (and is possibly 
caused by) its ability to elicit a “hormetic” stress response. 
A characteristic feature of such a response is a nonlinear 
and biphasic (i. e., inverted U-shaped or J-shaped) dose-
response curve [21, 60–63]. As we found, the curves that 
reflect relationships between PE concentrations and mean 
or maximum yeast CLS are inverted U-shaped or J-shaped 
for all these PEs (Supplementary Figures 1–6).

Each of the fifteen geroprotective PEs intensifies 
mitochondrial respiration and alters the pattern 
of age-related changes in intracellular ROS

A distinct set of cellular processes is known to define 
the rate of yeast chronological aging [1, 4, 64–72]. These 
processes include coupled mitochondrial respiration [1, 4, 
64, 69, 73–77]. We investigated how each of the fifteen 
geroprotective PEs influences an age-related chronology 
of changes in coupled mitochondrial respiration, which 
we measured as the rate of oxygen consumption by yeast 
cells. We found that each of these PEs causes a statistically 
significant increase in the rate of mitochondrial respiration 

Figure 3: Each of the fifteen PEs extends the longevity of chronologically aging yeast under non-CR conditions on 
2% (w/v) glucose significantly more efficiently than it does under CR conditions on 0.5% (w/v) glucose. WT cells were 
cultured in the synthetic minimal YNB medium initially containing 2% (w/v) or 0.5% (w/v) glucose, in the presence of a PE or its absence. 
In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In the same experiment, WT 
cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium initially containing 0.5% 
(w/v) or 2% (w/v) glucose and 2.5% (v/v) ethanol. The extent to which each of the PE tested increases the mean (A) and maximum (B) 
CLS under non-CR and CR conditions was calculated based on the data presented in Figures 1 and 2, and Supplementary Figures 10 and 
11. *p < 0.05, **p < 0.01, ***p < 0.001; the p values for comparing the means of two in groups were calculated using an unpaired two-tailed 
t test as described in Materials and Methods.
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on days 3 and 4 of culturing in the YNB medium initially 
containing 2% (w/v) glucose (Figure 5). On these days 
of culturing in the YNB medium with 2% (w/v) glucose, 
yeast cells are known to enter and proceed through a 
stationary (ST) phase of culturing [33].

We found that the fifteen geroprotective PEs belong 
to two different groups regarding their effects on the age-
related dynamics of changes in coupled mitochondrial 
respiration under non-CR conditions. The first group of 
these PEs includes PE47, PE64, PE69, PE72, PE75, PE77, 
PE79 and PE81. Although all these geroprotective PEs 
allowed the yeast to maintain the rates of mitochondrial 
respiration significantly exceeding those in yeast subjected 
to ethanol-mock treatment, none of them prevented an 
age-related decline in mitochondrial respiration during 
the ST phase of culturing (Figure 5D, 5F, 5H–5K, 5M 
and 5N). Of note, all geroprotective PEs from the first 
group were able to extend yeast CLS only under non-
CR conditions on 2% (w/v) glucose (Figures 1D, 1F, 1H, 
2A, 2B, 2C, 2E and 2F) but not under CR conditions on 
0.5% (w/v) glucose (Supplementary Figures 10D, 10F, 
10H, 11A, 11B, 11C, 11E and 11F). The second group of 
geroprotective PEs includes PE26, PE39, PE42, PE59, 
PE68, PE78 and PE83. These PEs increased the rate of 
mitochondrial respiration and sustained it high in ST-phase 
cultures that were recovered on day 4 (Figure 5A, 5B, 
5C, 5E, 5G, 5L and 5O). Noteworthy, all geroprotective 
PEs from the second group were able to extend yeast 
CLS under both non-CR conditions on 2% (w/v) glucose 
(Figures 1A–1C, 1E, 1G, 2D and 2G) and CR conditions 
on 0.5% (w/v) glucose (Supplementary Figures 10A–10C, 
10E, 10G, 11D and 11G). As we hypothesized earlier in 
the text, it is conceivable that the geroprotective PEs from 
the first group could target only CR-regulated cellular 
processes (including mitochondrial respiration), whereas 
the geroprotective PEs from the second group could target 
both CR-regulated and housekeeping (i.e., not regulated 
by CR) cellular processes (including mitochondrial 
respiration).

Several ROS are known to be the primary by-
products of coupled mitochondrial respiration [78–80]. 
These ROS of mitochondrial origin are known for their 
essential roles in defining the rate of aging in organisms 
across species, including S. cerevisiae [69, 79–87].

We found that all fifteen geroprotective PEs alter 
the age-related dynamics of changes in intracellular ROS 
(Figure 6). Each of these PEs slowed an age-related 
decline in intracellular ROS on days 3 and 4 of culturing, 
thus enabling a moderate but statistically significant rise 
in intracellular ROS during the ST phase (Figure 6). 
During the post-diauxic (PD) phase on day 2 of culturing, 
most of the fifteen geroprotective PEs (other than PE69; 
Figure 6H) elicited a modest but statistically decline in 
intracellular ROS (Figure 6).

Noteworthy, as described below, we found that there 
are two different groups of geroprotective PEs with respect 

to their effects on intracellular ROS during the logarithmic 
(L) phase on day 1.

PE47, PE64, PE69, PE72, PE75, PE77, PE79 and 
PE81 did not elicit a substantial change in intracellular 
ROS during the L phase of culturing on day 1 (Figure 6D, 
6F, 6H, 6I–6K, 6M and 6N). All of them extended yeast 
CLS only under non-CR conditions on 2% (w/v) glucose 
(Figures 1D, 1F, 1H, 2A, 2B, 2C, 2E and 2F) but not under 
CR conditions on 0.5% (w/v) glucose (Supplementary 
Figures 10D, 10F, 10H, 11A, 11B, 11C, 11E and 11F).

In contrast, PE26, PE39, PE42, PE59, PE68, PE78 
and PE83 caused a substantial decline in intracellular 
ROS during the L phase of culturing on day 1 (Figure 
6A–6C, 6E, 6G, 6L and 6O). All these geroprotective 
PEs stimulated mitochondrial respiration and sustained 
it high in ST-phase cultures (Figure 5A–5C, 5E, 5G, 5L 
and 5O). All of them were also capable of prolonging 
yeast CLS under both non-CR conditions on 2% (w/v) 
glucose (Figures 1A, 1B, 1C, 1E, 1G, 2D and 2G) and CR 
conditions on 0.5% (w/v) glucose (Supplementary Figures 
10A–10C, 10E, 10G, 11D and 11G).

Each of the fifteen geroprotective PEs decreases 
the extent of age-related oxidative damage to 
cellular proteins, and many of them slow the 
aging-associated buildup of oxidatively impaired 
membrane lipids as well as mitochondrial and 
nuclear DNA

An age-related rise in the intracellular ROS above 
a toxic threshold has been shown to cause oxidative 
damage to cellular proteins, lipids and nucleic acids [65, 
78–80, 84–95]. The aging-associated accumulation of 
these oxidized macromolecules is one of the essential 
contributors to the aging process in yeast and other 
organisms [65, 78–80, 84–95].

Each of the fifteen geroprotective PEs perturbed the 
age-related chronology of changes in intracellular ROS 
(see above). Therefore, we investigated whether each of 
them also influences the aging-associated accumulation 
of oxidatively impaired proteins, lipids and DNA in yeast 
cells cultured under non-CR conditions on 2% (w/v) 
glucose.

We found that all fifteen geroprotective PEs elicit 
a statistically significant decline in the abundance of 
oxidatively damaged (carbonylated) cellular proteins in 
ST-phase cultures recovered on day 4 (Figure 7).

We noticed that these geroprotective PEs belong to 
two different groups regarding their effects on the extent 
of protein carbonylation in yeast cells taken on day 1, 2 or 
3 of culturing.

The first group of these PEs includes PE47, PE64, 
PE69, PE72, PE75, PE77, PE79 and PE81, all of which 
did not cause a statistically significant decline in the 
abundance of oxidatively damaged proteins within yeast 
cells recovered on day 1, 2 or 3 of culturing (Figure 7D, 
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7F, 7H–7K, 7M and 7N). All geroprotective PEs from 
the first group extended yeast CLS only under non-CR 
conditions on 2% (w/v) glucose (Figures 1D, 1F, 1H, 2A, 
2B, 2C, 2E and 2F) but not under CR conditions on 0.5% 
(w/v) glucose (Supplementary Figures 10D, 10F, 10H, 
11A, 11B, 11C, 11E and 11F).

The second group of geroprotective PEs includes 
PE26, PE39, PE42, PE59, PE68, PE78 and PE83, all of 
which substantially lowered the abundance of oxidatively 
damaged proteins in yeast recovered on day 1, 2 or 3 of 
culturing (Figure 7A–7C, 7E, 7G, 7L and 7O). Only for 
PE78 and PE83 such effects on protein carbonylation 
were not statistically significant in yeast taken on day 1 of 
culturing (Figure 7L and 7O). All geroprotective PEs from 
the second group increased yeast CLS under both non-CR 

conditions on 2% (w/v) glucose (Figures 1A–1C, 1E, 1G, 
2D and 2G) and CR conditions on 0.5% (w/v) glucose 
(Supplementary Figures 10A, 10B, 10C, 10E, 10G, 11D 
and 11G).

Our analysis of how each of the fifteen 
geroprotective PEs influences the extent of oxidative 
damage to membrane lipids revealed that PE26, PE39, 
PE42, PE47, PE59, PE64, PE68, PE69, PE72, PE75, PE78 
and PE83 statistically significantly decrease it in ST-phase 
cultures recovered on day 4 (Figure 8A–8J, 8L and 8O). 
For PE77, PE79 and PE81, a decline in the abundance of 
oxidatively impaired membrane lipids in yeast cells taken 
on day 4 of culturing was noticeable but not statistically 
significant (Figure 8K, 8M and 8N). We also found that 
only those of the fifteen geroprotective PEs that extend 

Figure 4: Each of the fifteen PEs extends the longevity of chronologically aging yeast because it decreases the rate of 
aging but not because it lowers the baseline mortality rate. WT cells were cultured in the synthetic minimal YNB medium initially 
containing 2% (w/v) glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 
0.5% (w/v) PE39 (B), 0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 1.0% 
(w/v) PE69 (H), 0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% (w/v) 
PE81 (N) or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% 
(v/v). In the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB 
medium initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. Survival curves shown in Figures 1 and 2 were used to calculate the 
age-specific mortality rates of chronologically aging WT yeast populations cultured without a PE (cells were subjected to ethanol-mock 
treatment) or with a PE (which was added at the concentration optimal for CLS extension). The natural logarithms of the mortality rate 
values for each time point were plotted against days of cell culturing. The values of the age-specific mortality rates, Gompertz slope (also 
known as the mortality rate coefficient G) and mortality rate doubling time (MRDT) were calculated as described in Materials and Methods. 
Each of the fifteen longevity-extending PEs caused a substantial decline in the value of G and a considerable rise in the value of MRDT.
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yeast CLS under both non-CR and CR conditions 
significantly lower the abundance of oxidized membrane 
lipids even in yeast recovered on day 3 of culturing on 
2% (w/v) glucose (Figure 8A–8C, 8E, 8G, 8L and 8O 
for PE26, PE39, PE42, PE59, PE68, PE78 and PE83). 
In contrast, a decline in the abundance of oxidatively 
damaged membrane lipids on day 3 of culturing on 
2% (w/v) glucose was noticeable but not statistically 
significant for any of the geroprotective PEs that increased 
yeast CLS only under non-CR conditions (Figure 8D, 8F, 
8H–8K, 8M and 8N for PE47, PE64, PE69, PE72, PE75, 
PE77, PE79 and PE81).

We also examined how each of the fifteen 
geroprotective PEs influences the extent of oxidative 
damage to mitochondrial DNA (mtDNA) and nuclear 
DNA (nDNA). The oxidative damage to each of these 
two types of DNA molecules is known to cause an 
aging-associated buildup of mutations in mtDNA 
and nDNA [96–100]. Therefore, we investigated the 

effect of each of the fifteen geroprotective PEs on 
the frequencies of spontaneous point mutations in the 
RIB2 and RIB3 genes of mtDNA [64, 101] as well 
as the frequencies of spontaneous point mutations in 
the CAN1 gene of nDNA [64, 101]. We found that all 
fifteen geroprotective PEs statistically significantly 
decrease the incidences of rib2 and rib3 mutations in 
mtDNA of yeast recovered from the ST phase on day 
4 but not on any other day of culturing (Figure 9). 
Furthermore, PE26, PE39, PE42, PE59, PE64, PE69, 
PE75, PE78, PE79 and PE81 caused a statistically 
significant decline in the frequencies of can1 mutations 
in nDNA of yeast cells that were taken from the ST 
phase on day 4 of culturing only (Figure 10A–10C, 
10E, 10F, 10H, 10J and 10L–10N). In contrast, neither 
PE47, PE68, PE72, PE77 nor PE83 elicited a significant 
change in the incidences of these mutations in nDNA of 
yeast recovered on any day of culturing (Figure 10D, 
10G, 10I, 10K and 10O, respectively).

Figure 5: Each of the fifteen geroprotective PEs stimulates mitochondrial respiration in yeast cultured under non-CR 
conditions. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose, in the presence of a 
PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 0.5% (w/v) PE39 (B), 0.5% (w/v) PE42 (C), 0.3% 
(w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 1.0% (w/v) PE69 (H), 0.1% (w/v) PE72 (I), 0.3% 
(w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% (w/v) PE81 (N) or 0.5% (w/v) PE83 (O). In 
the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In the same experiment, WT 
cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium initially containing 2% 
(w/v) glucose and 2.5% (v/v) ethanol. Oxygen uptake by live yeast cells was measured using polarography, as described in Materials and 
Methods. Age-related changes in the rate of mitochondrial oxygen consumption are shown. Data are presented as means ± SEM (n = 3; *p 
< 0.05, **p < 0.01, ns, not significant; the p values for comparing the means of two in groups were calculated using an unpaired two-tailed 
t test as described in Materials and Methods).
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Each of the fifteen geroprotective PEs increases 
cell resistance to long-term oxidative and 
thermal stresses

Genetic, dietary and chemical interventions that 
decrease cell susceptibility to chronic (long-term) 
oxidative and/or thermal stresses have been shown to 
decelerate the aging process and extend longevity in 
yeast and other organisms across species [1, 4, 60–64, 78, 
102–106]. Therefore, we investigated the effect of each 
of the fifteen geroprotective PEs on the susceptibility of 
chronologically aging yeast cells to these two types of 
chronic stresses.

To examine aging-associated changes in cell 
susceptibility to these long-term stresses, we recovered 
aliquots of yeast cells on days 1, 2, 3 and 4 of culturing 
under non-CR conditions in liquid YNB medium with 
2% (w/v) glucose. To assess cell susceptibility to chronic 

oxidative stress, we spotted serial dilutions of these cell 
aliquots on solid YEP medium with 2% (w/v) glucose and 
5 mM hydrogen peroxide and incubated them for 3 days. 
To assess cell susceptibility to chronic thermal stress, we 
spotted serial dilutions of these cell aliquots on solid YEP 
medium with 2% (w/v) glucose, incubated at 60°C for 60 
min, transferred the plates to 30°C and incubated at this 
temperature for 3 days.

We found that each of the fifteen geroprotective 
PEs makes yeast cells more resistant to chronic oxidative 
and thermal stresses, especially cells in ST-phase cultures 
recovered on days 3 and 4 (Figure 11A, 11B and 11C, 
respectively).

DISCUSSION

We discovered fifteen PEs that extend the longevity 
of chronologically aging budding yeast. All these PEs 

Figure 6: Each of the fifteen geroprotective PEs alters the age-related chronology of changes in intracellular ROS in 
yeast cultured under non-CR conditions. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% 
(w/v) glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 0.5% (w/v) PE39 
(B), 0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 1.0% (w/v) PE69 
(H), 0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% (w/v) PE81 (N) 
or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In 
the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. The intracellular concentrations of ROS were measured in live yeast by 
fluorescence microscopy of dihydrorhodamine 123 staining, as described in Materials and Methods. Age-related changes in the intracellular 
concentration of ROS are shown. Data are presented as means ± SEM (n = 3; *p < 0.05, **p < 0.01, ns, not significant; the p values for 
comparing the means of two in groups were calculated using an unpaired two-tailed t test as described in Materials and Methods).



Oncotarget2202www.oncotarget.com

originate from plants used in traditional Chinese and other 
herbal medicines or the Mediterranean and other long-
established diets. However, none of these PEs has been 
previously known for its ability to prolong lifespan in 
yeast or other organisms.

Our data indicate that each of the fifteen longevity-
extending PEs prolongs yeast CLS not because it slows 
the metabolism of glucose, the only source of carbon and 
energy added to the growth medium. We also revealed that 
the longevity-extending ability of each of the fifteen PEs 
is not caused by its negative effect on the proliferation of 
yeast cells. Thus, it seems likely that none of these PEs 
can prolong yeast CLS because it slows the formation and 
release of harmful products of cell proliferation.

Our study provides evidence that each of the fifteen 
longevity-extending PEs satisfies all the criteria previously 
proposed for a CRM. CRMs are chemical interventions 
that can mimic the CR-like lifespan-increasing and 

healthspan-improving effects even if calorie supply is 
not limited [40–45]. Indeed, we uncovered the following. 
First, each of the fifteen PEs prolongs yeast CLS under 
non-CR conditions. Second, none of these PEs impairs 
glucose uptake and metabolism. Third, each of them 
exhibits CR-like effects on specific aspects of metabolism 
and physiology; these effects include an increased rate of 
coupled mitochondrial respiration, an altered chronology 
of changes in intracellular ROS, and a decline in the 
oxidative damage to cellular proteins, membrane lipids 
and mtDNA. Fourth, each of them makes cells more 
resistant to long-term oxidative and thermal stresses. Of 
note, PE26, PE39, PE42, PE59, PE68, PE78 and PE83 
can prolong yeast CLS even under CR conditions, when 
all cellular processes that limit longevity under non-CR 
conditions are likely to be suppressed. Therefore, it seems 
conceivable that each of these seven PEs may stimulate 
the longevity-extending cellular processes and/or may 

Figure 7: Each of the fifteen geroprotective PEs decreases the extent of age-related oxidative damage to cellular 
proteins in yeast cultured under non-CR conditions. WT cells were cultured in the synthetic minimal YNB medium initially 
containing 2% (w/v) glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 
0.5% (w/v) PE39 (B), 0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 
1.0% (w/v) PE69 (H), 0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% 
(w/v) PE81 (N) or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 
2.5% (v/v). In the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal 
YNB medium initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. The concentrations of oxidatively damaged (carbonylated) 
proteins were measured as described in Materials and Methods. Age-related changes in the intracellular concentration (nmoles/mg protein) 
of carbonylated proteins are shown. Data are presented as means ± SEM (n = 3; *p < 0.05, **p < 0.01, ns, not significant; the p values for 
comparing the means of two in groups were calculated using an unpaired two-tailed t test as described in Materials and Methods).
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suppress the longevity-shortening cellular processes 
that operate only under CR conditions. Moreover, as we 
hypothesized above in the text, each of these seven PEs 
may target both CR-regulated and housekeeping (i. e., 
not regulated by CR) cellular processes (including cell 
susceptibility to long-term oxidative and thermal stresses).

Our analyses of the Gompertz mortality rates and dose-
response curves have led us to the following two conclusions. 
First, each of the fifteen PEs prolongs yeast CLS because it is 
a geroprotective agent that decreases the rate of chronological 
aging but has no effect on the baseline mortality rate. Second, 
each of these PEs promotes a hormetic stress response in 
chronologically aging yeast, as it is evident from a nonlinear 
and biphasic (i. e., inverted U-shaped or J-shaped) dose-
response curve observed for each of them.

In this study, we discovered that the fifteen 
geroprotective PEs differently affect three groups of 
cellular processes in chronologically aging yeast, as 
summarized below.

First, each of the fifteen geroprotective PEs 
significantly increases the rate of coupled mitochondrial 
respiration and slows a decline in intracellular ROS 
(known to be the primary products of mitochondrial 
respiration) within yeast cells that enter and proceed 
through the ST phase of culturing.

Second, each of them substantially suppresses 
oxidative damage to cellular proteins and mtDNA in ST-
phase yeast cells that enter day 4 of culturing. We noticed 
that twelve of these geroprotective PEs also significantly 
decrease oxidative damage to membrane lipids in ST-
phase yeast cells on day 4, whereas PE77, PE79 and 
PE81 cause a statistically insignificant decline in oxidized 
membrane lipids within these cells. We also found that ten 
of these geroprotective PEs significantly reduce oxidative 
damage to nDNA, while neither PE47, PE68, PE72, PE77 
nor PE83 exhibits such effect on nDNA.

Third, each of them significantly decreases cell 
susceptibility to long-term oxidative and thermal stresses, 

Figure 8: Many of the fifteen geroprotective PEs slow the aging-associated buildup of oxidatively impaired membrane 
lipids in yeast cultured under non-CR conditions. WT cells were cultured in the synthetic minimal YNB medium initially containing 
2% (w/v) glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 0.5% (w/v) 
PE39 (B), 0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 1.0% (w/v) PE69 
(H), 0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% (w/v) PE81 (N) 
or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In 
the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. The concentrations of oxidatively damaged membrane lipids were measured 
as described in Materials and Methods. Age-related changes in the intracellular concentration (equivalents of nmoles H2O2/mg protein) of 
oxidatively damaged membrane lipids are shown. Data are presented as means ± SEM (n = 3; *p < 0.05, ns, not significant; the p values for 
comparing the means of two in groups were calculated using an unpaired two-tailed t test as described in Materials and Methods).
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especially the susceptibility of yeast cells that enter and 
proceed through the ST phase of culturing.

Future perspectives

Our goals for the future research of the fifteen 
geroprotective PEs described here are outlined below.

First, we are interested in investigating and 
understanding the molecular and cellular mechanisms 
through which each of these PEs slows yeast chronological 
aging. We have recently described mechanisms underlying 
the aging-delaying action of PE21 [36], an extract from 
the white willow Salix alba we discovered in our previous 
screen for geroprotective PEs [33].

Second, we would like to explore how each of the 
fifteen geroprotective PEs may coordinate the information 
flow through a longevity-defining network of signaling 

pathways and protein kinases operating in budding yeast 
and other organisms. This network incorporates the pro-
aging TORC1, PKA and PKH1/2 pathways as well as 
the pro-aging serine/threonine-protein kinase Sch9 [1, 
4, 8, 34]. This network also integrates the anti-aging 
SNF1 and ATG pathways as well as the anti-aging serine/
threonine-protein kinase Rim15 [1, 4, 8, 34]. Our recent 
study has revealed that each of the six geroprotective PEs 
we discovered in the previous screen [33] slows yeast 
chronological aging through different functional modules 
of this longevity-defining signaling network [34]. Of note, 
pairwise mixes of these six geroprotective PEs slow the 
process of yeast chronological aging in a synergistic or 
additive manner only if they include the PEs that target 
different modules of this network [35]. Therefore, we are 
interested in investigating how different combinations of 
the fifteen geroprotective PEs described here influence 

Figure 9: Each of the fifteen geroprotective PEs decreases the frequencies of rib2 and rib3 mutations in mitochondrial 
DNA (mtDNA) of yeast cultured under non-CR conditions. WT cells were cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 
(A), 0.5% (w/v) PE39 (B), 0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 
1.0% (w/v) PE69 (H), 0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% 
(w/v) PE81 (N) or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 
2.5% (v/v). In the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal 
YNB medium initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. The incidences of spontaneous point mutations in the RIB2 
and RIB3 genes of mtDNA were measured as described in Materials and Methods. Age-related changes in the frequencies of these mtDNA 
mutations are shown. Data are presented as means ± SEM (n = 3; *p < 0.05, ns, not significant; the p values for comparing the means of two 
in groups were calculated using an unpaired two-tailed t test as described in Materials and Methods).
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the extent of yeast chronological aging delay. We will be 
looking for the combinations of geroprotective PEs that 
exhibit synergistic or additive effects on the extent of yeast 
chronological aging delay.

Third, the Health Canada government agency 
defines thirteen of the fifteen geroprotective PEs described 
here as the ones that are safe for human consumption 
[107]. The agency recommends using eight of them as 
health-improving supplements with clinically proven 
benefits to human health [107]. Among these health-
improving PEs are PE26, PE47, PE59, PE64, PE69, 
PE75, PE77 and PE83 [107]. For each of them, Health 
Canada provides a detailed description of source material, 
routes of administration, doses and dosage forms, uses or 
purposes, durations of use, risk information, cautions and 
warnings, contraindications, known adverse reactions, 
non-medicinal ingredients, specifications, references 
cited and reviewed, examples of appropriate dosage 

preparations, and frequencies of use [107]. Our ongoing 
collaborative research aims to investigate which of the 
eight geroprotective PEs recommended by Health Canada 
as healthspan-extending dietary additives for humans 
can increase the replicative lifespan of cultured human 
fibroblasts or for delaying the onset of aging-associated 
human diseases. These diseases include arthritis, 
diabetes, heart disease, kidney disease, liver dysfunction, 
sarcopenia, stroke, neurodegenerative diseases (including 
Parkinson’s, Alzheimer’s and Huntington’s diseases), and 
many forms of cancer [8, 21, 22, 26, 28, 48, 108–123].

MATERIALS AND METHODS

Yeast strains, media and growth conditions

The wild-type (WT) strain Saccharomyces 
cerevisiae BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 

Figure 10: PE26, PE39, PE42, PE59, PE64, PE69, PE75, PE78, PE79 and PE81 (but not PE47, PE68, PE72, PE77 or 
PE83) cause a statistically significant decline in the frequencies of can1 mutations in nuclear DNA (nDNA) of yeast 
cultured under non-CR conditions. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% (w/v) 
glucose, in the presence of a PE or its absence. The following PEs were added to the culture: 0.5% (w/v) PE26 (A), 0.5% (w/v) PE39 (B), 
0.5% (w/v) PE42 (C), 0.3% (w/v) PE47 (D), 0.3% (w/v) PE59 (E), 0.1% (w/v) PE64 (F), 0.5% (w/v) PE68 (G), 1.0% (w/v) PE69 (H), 
0.1% (w/v) PE72 (I), 0.3% (w/v) PE75 (J), 0.5% (w/v) PE77 (K), 0.3% (w/v) PE78 (L), 0.5% (w/v) PE79 (M), 0.3% (w/v) PE81 (N) 
or 0.5% (w/v) PE83 (O). In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In 
the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. The incidences of spontaneous point mutations in the CAN1 gene of nDNA 
were measured as described in Materials and Methods. Age-related changes in the frequencies of these nDNA mutations are shown. Data 
are presented as means ± SEM (n = 3; *p < 0.05, ns, not significant; the p values for comparing the means of two in groups were calculated 
using an unpaired two-tailed t test as described in Materials and Methods).
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Figure 11: Each of the fifteen geroprotective PEs makes yeast more resistant to chronic (long-term) oxidative and 
thermal stresses. WT cells were cultured in the synthetic minimal YNB medium initially containing 2% (w/v) glucose, in the presence 
of a PE or its absence. In the cultures supplemented with a PE, ethanol was used as a vehicle at a final concentration of 2.5% (v/v). In 
the same experiment, WT cells were also subjected to ethanol-mock treatment by being cultured in the synthetic minimal YNB medium 
initially containing 2% (w/v) glucose and 2.5% (v/v) ethanol. Spot assays for examining cell resistance to chronic oxidative (B) and thermal 
(C) stresses were performed as described in Materials and Methods. (A) In control samples, serial 10-fold dilutions of cells recovered on 
different days of culturing were spotted on plates with solid YEP medium containing 2% (w/v) glucose. All pictures were taken after a 3-d 
incubation at 30°C. (B) In samples subjected to long-term oxidative stress, serial 10-fold dilutions of cells recovered on different days of 
culturing were spotted on plates with solid YEP medium containing 2% (w/v) glucose and 5 mM hydrogen peroxide. All pictures were 
taken after a 3-d incubation at 30°C. (C) In samples subjected to long-term thermal stress, serial 10-fold dilutions of cells recovered on 
different days of culturing were spotted on plates with solid YEP medium containing 2% (w/v) glucose, incubated at 60°C for 60 min and 
then transferred to 30°C. All pictures were taken after a 3-d incubation at 30°C.
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ura3Δ0) from Thermo Scientific/Open Biosystems was 
grown in a synthetic minimal YNB medium (0.67% (w/v) 
Yeast Nitrogen Base without amino acids from Fisher 
Scientific; #DF0919-15-3) initially containing 2% (w/v) 
or 0.5% (w/v) glucose (#D16-10; Fisher Scientific), 20 
mg/l L-histidine (# H8125; Sigma), 30 mg/l L-leucine 
(#L8912; Sigma), 30 mg/l L-lysine (#L5501; Sigma) and 
20 mg/l uracil (#U0750; Sigma), with a PE or without it. A 
stock solution of each PE in ethanol was made on the day 
of adding this PE to cell cultures. For each PE, the stock 
solution was added to growth medium with 2% (w/v) or 
0.5% (w/v) glucose immediately following cell inoculation 
into the medium. In a culture supplemented with a PE, 
ethanol was used as a vehicle at the final concentration of 
2.5% (v/v). In the same experiment, yeast cells were also 
subjected to ethanol-mock treatment by being cultured 
in growth medium initially containing 2% (w/v) or 0.5% 
(w/v) glucose and 2.5% (v/v) ethanol. Cells were cultured 
at 30°C with rotational shaking at 200 rpm in Erlenmeyer 
flasks at a “flask volume/medium volume” ratio of 5:1.

Chronological lifespan assay

A sample of cells was taken from a culture at a 
certain day following cell inoculation and PE addition 
into the medium. A fraction of the sample was diluted to 
determine the total number of cells using a hemacytometer. 
Another fraction of the cell sample was diluted, and 
serial dilutions of cells were plated in duplicate onto 
YEP medium (1% (w/v) yeast extract, 2% (w/v) peptone; 
both from Fisher Scientific; #BP1422-2 and #BP1420-
2, respectively) containing 2% (w/v) glucose (#D16-10; 
Fisher Scientific) as carbon source. After 2 d of incubation 
at 30°C, the number of colony-forming units (CFU) per 
plate was counted. The number of CFU was defined as 
the number of viable cells in a sample. For each culture, 
the percentage of viable cells was calculated as follows: 
(number of viable cells per ml/total number of cells per 
ml) × 100. The percentage of viable cells in the mid-
logarithmic growth phase was set at 100%.

Miscellaneous procedures

The age-specific mortality rate [46, 48], Gompertz 
slope or mortality rate coefficient (G) [46, 47], and 
mortality rate doubling time (MRDT) [46, 47] were 
calculated as previously described. The value of the 
mortality rate was calculated as the number of cells that 
lost viability (i. e. are unable to form a colony on the 
surface of a solid nutrient-rich medium) during each time 
interval divided by the number of viable (i. e. clonogenic) 
cells at the end of the interval. The natural logarithms of 
the mortality rate values for each time point were plotted 
against days of cell culturing. The coefficient G of the 
age-specific mortality rate was calculated as the slope 
of the Gompertz mortality line, whereas the value of 

MRDT was calculated as 0.693/G. Oxygen consumption 
assay for monitoring mitochondrial respiration [64], ROS 
measurement in live yeast [124], fluorescence microscopy 
[64], quantitative assays for oxidatively damaged proteins 
and membrane lipids [125], measurements of the 
frequencies of spontaneous mutations in mitochondrial 
and nuclear DNA [126], plating assays for the analysis 
of resistance to oxidative and thermal stresses [126], and 
glucose concentration measurement assay [124] have been 
described elsewhere.

Statistical analysis

Statistical analysis was performed using Microsoft 
Excel’s Analysis ToolPack-VBA. All data on cell survival 
are presented as mean ± SEM. The p values for comparing 
the means of two groups using an unpaired two-tailed 
t-test were calculated with the help of the GraphPad Prism 
7 statistics software. The logrank test for comparing each 
pair of survival curves was performed with GraphPad 
Prism 7. Two survival curves were considered statistically 
different if the p value was less than 0.05.

Abbreviations
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