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Expression of TCN1 in Blood is 
Negatively Associated with Verbal 
Declarative Memory Performance
Ibrahim A. Akkouh   1, Torill Ueland1,2,3, Ole A. Andreassen1,2, Hans-Richard Brattbakk4,5, 
Vidar M. Steen   4,5, Timothy Hughes1,6 & Srdjan Djurovic   4,6

Memory is indispensable for normal cognitive functioning, and the ability to store and retrieve 
information is central to mental health and disease. The molecular mechanisms underlying complex 
memory functions are largely unknown, but multiple genome-wide association studies suggest that 
gene regulation may play a role in memory dysfunction. We performed a global gene expression 
analysis using a large and balanced case-control sample (n = 754) consisting of healthy controls and 
schizophrenia and bipolar disorder patients. Our aim was to discover genes that are differentially 
expressed in relation to memory performance. Gene expression in blood was measured using Illumina 
HumanHT-12 v4 Expression BeadChip and memory performance was assessed with the updated 
California Verbal Learning Test (CVLT-II). We found that elevated expression of the vitamin B12-related 
gene TCN1 (haptocorrin) was significantly associated with poorer memory performance after correcting 
for multiple testing (β = −1.50, p = 3.75e-08). This finding was validated by quantitative real-time PCR 
and followed up with additional analyses adjusting for confounding variables. We also attempted to 
replicate the finding in an independent case-control sample (n = 578). The relationship between TCN1 
expression and memory impairment was comparable to that of important determinants of memory 
function such as age and sex, suggesting that TCN1 could be a clinically relevant marker of memory 
performance. Thus, we identify TCN1 as a novel genetic finding associated with poor memory function. 
This finding may have important implications for the diagnosis and treatment of vitamin B12-related 
conditions.

The capacity to form short and long-term memories is indispensable for the normal functioning of our cognitive 
abilities, and the central role played by memory impairment in the development of severe psychiatric disorders 
is well established1,2. For these reasons, the molecular underpinnings of memory formation and retrieval have 
been studied extensively, and basic molecular mechanisms underlying memory function have been identified3,4. 
However, most of what we know about the molecular biology of memory is confined to relatively simple mem-
ory performances involving simple sensory stimuli like tone, touch, or shock in invertebrates and non-human 
vertebrates3. The molecular basis of more complex forms of memory, such as human declarative memory, which 
involves the conscious recollection of factual information or previous experiences, remains largely unknown5.

Genome-wide association studies (GWAS) have discovered multiple genetic variants associated with memory 
performance6–8. An interesting aspect of these studies is the large proportion of associated loci that are located in 
non-coding regions of the genome (intergenic or intronic). This indicates that the genetic architecture of complex 
memory functions primarily involves variants that exert their effects through regulating gene expression rather 
than altering protein structure and function6. Studying the transcriptional profiles of declarative memory perfor-
mance may thus provide useful insights into the initial links between statistical genetic associations and cellular 
pathways. Moreover, such insights may help to elucidate the complex molecular mechanisms underlying severe 
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psychiatric illnesses like schizophrenia (SCH) and bipolar disorder (BD), since both disorders are strongly char-
acterized by cognitive dysfunction in general and memory impairment in particular1,2.

In the present study, we explored the genome-wide transcriptional basis of verbal declarative memory. This 
kind of declarative memory involves the verbal recall of facts and events and is among the most affected cogni-
tive domains in SCH and BD9–13. Previous studies examining the expressional profile of memory have generally 
been hypothesis-driven, limiting themselves to investigating the regulatory patterns of candidate genes instead 
of global expression patterns14–17. Additionally, most of these studies examined the association between gene 
expression and general cognitive impairment rather than specifically measuring verbal declarative memory. One 
exception is a recent paper by Zheutlin et al., in which genome-wide peripheral expression with regard to verbal 
memory was assessed18. However, this study was limited by a relatively small sample size (n = 190) and a lack of 
adjustment for critical variables, such as medication use, which is known to influence both gene expression and 
cognitive performance19–22. Addressing these limitations may therefore increase the power to identify differen-
tially expressed genes of smaller effect sizes, as well as help to distinguish the real effects of altered expression 
levels from those of secondary factors.

The aim of our study was three-fold. First, we performed a global gene expression analysis in peripheral blood 
using a large case-control sample (n = 754) aiming to discover novel genes that are differentially expressed in rela-
tion to memory performance. Second, we sought to replicate any significant finding in a non-overlapping sample 
(n = 578) drawn from the same geographical area. Finally, we followed up any discovery with biological relevance 
and strong statistical significance with additional analyses, adjusting for potentially confounding variables.

Results
Genome-wide screening of expression markers.  An initial genome-wide expression analysis was 
performed to identify associations between 23,476 genetic markers and two memory test scores. The verbal 
learning measure (CVLT1; Table 1) was significantly associated with one marker after adjusting for multiple 
testing (α = 1.06e-6): the HLA-DRA probe ILMN_2157441 (β = 6.57, p = 4.90e-7, 95% CI [4.03, 9.11]). The long 
delay free recall measure (CVLT2; Table 2) was only significantly associated with the TCN1 marker (β = −1.50, 
p = 3.75e-8, 95% CI [−2.02, −0.97]). TCN1 was also among the top ten genes associated with CVLT1 per-
formance (β = −4.43, p = 4.42e-6, 95% CI [−6.30, −2.55]). The variance in memory performance explained 
by TCN1 expression was comparable in the two models (partial R2

CVLT1 = 0.030; partial R2
CVLT2 = 0.043). 

Furthermore, TCN1 had a negative correlation with both test scores (CVLT1: Pearson’s R = −0.220, 95% CI 
[−0.290, −0.148]; CVLT2: Pearson’s R = −0.247, 95% CI [−0.316, −0.176]; Fig. 1). Two different markers tar-
geting the gene RNA18S5 were among the top ten candidates in both memory scores, but these markers did not 
survive correction for multiple testing (Tables 1 and 2).

Differential expression between diagnostic groups.  We found a significantly different expres-
sion across diagnostic groups for both TCN1 (F(2,751) = 20.87, p = 1.5e-9, R2 = 0.050) and HLA-DRA 
(F(2,751) = 26.50, p = 7.54e-12, R2 = 0.063). HLA-DRA had significantly reduced expression in the BD 
(mean = 12.67, sd = 0.32, p = 2.14e-9) and SCH (mean = 12.67, sd = 0.33, p = 4.62e-10) groups compared to 
the CTRL group (mean = 12.86, sd = 0.31), but no significant difference was found between the patient groups 

Probe name Gene symbol Gene name Gene function β 95% CI Std β
p-value 
Nominal

p-value 
Bonferroni Adjusted R2

ILMN_2157441 HLA-DRA
Major histocompatibility 
complex, class II, DR 
alpha

Immune system, antigen 
presentation 6.57 4.03, 9.11 0.56 4.90e-07 0.023* 0.101

ILMN_2114720 SLPI Secretory leukocyte 
peptidase inhibitor

Immune system, 
protection of epithelial 
tissues from serine 
proteases

−5.70 −8.01, −3.39 −0.49 1.56e-06 0.073 0.098

ILMN_3239610 RNA18S5 RNA, 18 S ribosomal 5 Structural ribosomal 
component −2.39 −3.39, −1.40 −0.20 2.88e-06 0.135 0.097

ILMN_1703337 RNA18S5 RNA, 18S ribosomal 5 Structural ribosomal 
component −2.64 −3.75, −1.53 −0.23 3.37e-06 0.158 0.097

ILMN_1712888 HSPH1 Heat shock protein family 
H member 1 Protein folding 7.22 4.18, 10.27 0.62 3.72e-06 0.175 0.096

ILMN_2041046 CKS1B CDC28 protein kinase 
regulatory subunit 1B Cell cycle regulation 12.41 7.15, 17.67 1.06 4.32e-06 0.203 0.096

ILMN_1768469 TCN1 Transcobalamin 1; 
haptocorrin

Vitamin B12 
transportation and 
cellular uptake

−4.43 −6.30, −2.55 −0.38 4.42e-06 0.207 0.096

ILMN_1812433 HP Haptoglobin Binding of free plasma 
hemoglobin −7.30 −10.52, −4.07 −0.62 1.04e-05 0.486 0.094

ILMN_1750661 FBXW9 F-box and WD repeat 
domain containing 9

Ligation of ubiquitin to 
proteins −13.40 −19.44, −7.35 −1.14 1.57e-05 0.737 0.093

ILMN_3251587 RNA28S5 RNA, 28S ribosomal 5 Structural ribosomal 
component −1.52 −2.22, −0.83 −0.13 1.79e-05 0.843 0.092

Table 1.  Top Ten Associations between Gene Expression and Verbal Learning (CVLT1). Std β: Standardized 
regression coefficients. *Bonferroni-adjusted p-value < 0.05.
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(p = 0.99; see Supplementary Figure S1), suggesting that the underlying immune-related mechanisms are partly 
similar in the two disorders. Expression of TCN1 was significantly elevated in SCH (mean = 7.87, sd = 0.48) 
compared to both BD (mean = 7.73, sd = 0.48) and CTRL (mean = 7.61, sd = 0.37). All group differences met 
the Bonferroni-corrected significance threshold for pairwise comparisons (SCH-CTRL: p = 7.6e-10; SCH-BD: 
p = 1.21e-3; BD-CTRL: p = 0.019; Fig. 2).

TCN1 association.  To exclude the potentially confounding effects of other variables, we performed a final 
regression analysis in which we controlled for medication use, diagnosis, education, and vitamin B12 serum 
levels in addition to age and sex. After adjusting for these confounders, the TCN1 marker was still nominally 
significantly associated with both verbal learning (β = −3.65, p = 2.60e-3, 95% CI [−6.01, −1.28]) and long delay 
free recall (β = −1.24, p = 4.05e-4, 95% CI [−1.92, −0.56]). Both the effect size of, and the variance explained by, 

Probe name Gene symbol Gene name Gene function β 95% CI Std β
p-value 
Nominal

p-value 
Bonferroni Adjusted R2

ILMN_1768469 TCN1 Transcobalamin 1; 
haptocorrin

Vitamin B12 
transportation and 
cellular uptake

−1.50 −2.02, −0.97 −0.46 3.75e-08 0.0018* 0.095

ILMN_1703337 RNA18S5 RNA, 18S ribosomal 5 Structural ribosomal 
component −0.74 −1.05, −0.43 −0.23 4.05e-06 0.190 0.083

ILMN_1693192 PI3 Peptidase inhibitor 3
Protection againts 
Gram-positive and Gram-
negative bacteria

−0.63 −0.89, −0.36 −0.19 4.72e-06 0.221 0.082

ILMN_1712522 CEACAM6
Carcinoembryonic antigen 
related cell adhesion 
molecule 6

Cell adhesion −1.23 −1.77, −0.69 −0.38 8.34e-06 0.392 0.081

ILMN_3239610 RNA18S5 RNA, 18S ribosomal 5 Structural ribosomal 
component −0.64 −0.92, −0.36 −0.20 8.76e-06 0.411 0.081

ILMN_1761941 FAM198B Family with sequence 
similarity 198 member B

Subfamily of the GASK 
(Golgi-Associated 
Kinase) family of 
secretory kinases

−1.56 −2.25, −0.87 −0.47 1.10e-05 0.516 0.080

ILMN_1692223 LCN2 Lipocalin 2 Transportation of small 
hydrophobic molecules −0.76 −1.098, −0.42 −0.23 1.22e-05 0.571 0.080

ILMN_1751607 FOSB
FosB proto-oncogene, 
AP-1 transcription factor 
subunit

Regulation of 
cell proliferation, 
differentiation, and 
transformation

3.38 1.86, 4.90 1.03 1.38e-05 0.649 0.079

ILMN_2114720 SLPI Secretory leukocyte 
peptidase inhibitor

Immune system, 
protection of epithelial 
tissues from serine 
proteases

−1.46 −2.11, −0.80 −0.44 1.42e-05 0.666 0.079

ILMN_3249578 RNA28S5 RNA, 18S ribosomal 5 Structural ribosomal 
component −0.56 −0.82, −0.31 −0.17 1.50e-05 0.703 0.079

Table 2.  Top Ten Associations between Gene Expression and Long Delay Free Recall (CVLT2). Std β: 
Standardized regression coefficients. *Bonferroni-adjusted p-value < 0.05.

Figure 1.  Association between TCN1 Expression and Two Memory Measures. TCN1 expression was negatively 
correlated with both CVLT1 (Pearson’s R: −0.220) and CVLT2 (Pearson’s R: −0.247). CVLT1: Verbal learning 
subtest. CVLT2: Long delay free recall subtest.



www.nature.com/scientificreports/

4SCIENTIfIC REPOrTS |  (2018) 8:12654  | DOI:10.1038/s41598-018-30898-5

TCN1 expression were comparable to that of age, sex, education, and psychiatric disease, all of which are variables 
that are known to influence memory function (Table 3).

The relationship between TCN1 expression and three subcategories of declarative memory was investigated 
in order to identify which memory process is the most affected by TCN1 expression. The standardized effect size 
and the p-value of recognition memory were almost identical to those of verbal learning (CVLT1), indicating that 
recognition memory along with long-term memory (CVLT2) are the memory domains that are most affected by 
TCN1 expression (see Supplementary Table S1).

The same two models (initial and final) were used to examine the association between TCN1 expression and 
verbal learning in the replication sample using HVLT performances converted to z-scores as the memory meas-
ure. Despite the change in memory metric, a significant negative correlation was found when age and sex were 
adjusted for (β = −0.0031, p = 0.0015, 95% CI [−0.0050, −0.0012]). In the final HVLT analysis with adjustment 
for multiple variables, a negative effect of TCN1 expression with a p-value just above the significance level was 
found (β = −0.0018, p = 0.062, 95% CI [−3.64e-3, 8.64e-5]). Although the effect sizes in the CVLT and HVLT 
models were not comparable in magnitude, the direction was the same for both tests and the variance explained 
by the two models was similar (see Supplementary Table S2).

Verification of TCN1 microarray measurements.  We verified the microarray-based TCN1 expres-
sion data by comparing them to qPCR measurements. qPCR is an orthogonal technology which is considered 
the golden standard for differential expression profiling. The two methods showed a good overall concordance 
(n = 82, Pearson’s R = 0.816, 95% CI: 0.73, 0.88; see Supplementary Figure S2), and the strength of correlation was 
comparable to that of previous studies23–25.

Figure 2.  Pairwise Comparisons of TCN1 Expression across Diagnostic Categories. Expression of TCN1 (F(2, 
751) = 20.87, p = 1.5e-9) was significantly different between diagnostic groups. BD: bipolar disorder, CTRL: 
healthy controls, SCH: schizophrenia. *p > 0.05. **p < 0.001.

Predictor

CVLT1 CVLT2

β std β Partial R2 p-value β std β Partial R2 p-value

TCN1 −3.65 −1.67 0.024 0.0026* −1.24 −0.57 0.033 4.05e-4*

Age −0.27 −2.83 0.058 2.30e-6* −0.058 −0.61 0.033 3.99e-4*

Sex (male) −4.23 −2.11 0.036 2.07e-4* −0.97 −0.48 0.023 0.0031*

Education (years) 0.75 2.10 0.039 5.09e-4* 0.19 0.54 0.030 0.0018*

Vitamin B12 −0.0074 −0.96 2.0e-3 0.088 −0.0014 −0.18 2.4e-4 0.27

Medication use 
(yes) −1.68 −0.83 2.2e-3 0.36 0.26 0.13 6.5e-4 0.62

Psychiatric illness 
(yes) −3.43 −1.62 8.1e-3 0.082 −1.66 −0.78 0.022 0.0039*

Table 3.  Regression Coefficients of Predictor Variables in Final CVLT Models. Standardized β values were 
calculated after converting all predictor variables to z-scores. CVLT1: Verbal learning score. CVLT2: Long delay 
free recall score. Std β: Standardized beta coefficients. *p < 0.01.
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Expression Quantitative Trait Loci (eQTL) analysis.  We examined 127 TCN1-related SNPs for associ-
ations with TCN1 expression and found that 6 were nominally significant at the 0.05 significance level. However, 
none of these SNPs survived correction for multiple testing (see Supplementary Table S3, Supplementary 
Figures S3, and S4).

Discussion
In the present study, we performed a genome-wide expression analysis to examine the relationship between gene 
expression in peripheral blood and verbal declarative memory, using the verbal learning (CVLT1) and long delay 
free recall (CVLT2) measures from the updated California Verbal Learning Test. We identified two genes that were 
significantly related to memory performance. The first gene, HLA-DRA, was positively correlated with the verbal 
learning measure. HLA-DRA (Major Histocompatibility Complex, Class II, DR Alpha) is located within the Major 
Histocompatibility Complex (MHC) locus on chromosome 6 and plays an important role in immune regulation by 
presenting antigenic peptides to T cells26. The MHC region is one of the strongest and most significant susceptibility 
loci for schizophrenia27–29, and the locus has also been implicated in declarative memory impairment30. The second 
identified gene was TCN1, which was significantly associated with long delay free recall performance and among the 
top ten genetic markers associated with verbal learning. TCN1 expression was negatively correlated with both meas-
ures. This inverse correlation is consistent with the fact that TCN1 is able to bind circulating vitamin B12 but unable 
to mediate cellular uptake, and with the well-known effect of vitamin B12 deficiency on memory performance31.

TCN1’s Role in Cobalamin Transportation.  TCN1 (transcobalamin 1; the protein is more commonly 
referred to as haptocorrin) encodes one of three vitamin B12-binding proteins and is expressed in multiple tis-
sues and secretions32. An intricate multistep process is required for the transportation of vitamin B12 (hereafter 
referred to as cobalamin) through the gastrointestinal tract and the subsequent uptake into the various tissues 
of the body33 (Fig. 3A). In the blood stream, cobalamin is bound to either haptocorrin (HC) or transcobalamin 
(TC; encoded by the gene TCN2) (Fig. 3B). HC is almost fully saturated with cobalamin and binds ~80% of the 
vitamin with very high affinity, whereas the remainder is bound by TC (holoTC) with higher specificity32,34,35. 
However, only the smaller fraction of TC-bound cobalamin, so-called active cobalamin, is available for cellular 
uptake36. The physiological function of circulating HC is not fully understood, but its distinctive ability to bind 
enzymatically inactive forms of the vitamin with equally high efficiency suggests a role in cobalamin storage and 
the scavenging of inhibitory cobalamin derivatives34,37.

Cobalamin Metabolism and Memory Performance.  The central role of cobalamin in important met-
abolic pathways is well established38,39. Once taken up by the body’s cells, cobalamin acts as an essential cofactor 
for two enzymes: methionine synthase, which catalyzes the synthesis of methionine from homocysteine in the 
cytosol; and methylmalonyl-CoA mutase, which catalyzes the mitochondrial conversion of methylmalonyl-CoA 
to succinyl-CoA33 (Fig. 3C). These enzymatic reactions are necessary for the biosynthesis of several molecules 
that are indispensable for the normal functioning of the central nervous system, including nucleotides, myelin 
phospholipids, and neurotransmitters31,40,41. The involvement of cobalamin in these biosynthetic pathways may 
therefore partly explain the diversity of clinical and neurological manifestations of cobalamin-related deficiencies. 
Of particular relevance, reduced cellular uptake of cobalamin is associated with psychotic symptoms, depres-
sion, mania, cognitive impairment, and memory loss31,40–44. The association between cobalamin deficiency and 
memory loss is especially interesting, as individuals with low-normal cobalamin levels have significantly lower 
hippocampal microstructure integrity compared to individuals in the normal-high range45.

Thus, TCN1’s role in cobalamin metabolism and the known effect of cobalamin deficiency on memory func-
tion provide a plausible and clinically relevant biological mechanism for the inverse correlation between TCN1 
expression and memory performance in a cobalamin-sufficient context (the majority of the subjects in the discovery 
sample had sufficient cobalamin levels; see Supplementary Table S6). When HC levels in plasma are high, a larger 
fraction of circulating cobalamin is bound by HC due to its superior affinity in comparison to TC. Consequently, 
cellular absorption of active cobalamin is reduced, leading to the disruption of metabolic pathways that involve the 
production of essential chemical compounds, negatively affecting memory function. Interestingly, the pattern of dif-
ferential TCN1 expression with respect to diagnostic status is also consistent with the proposed mechanism. In our 
sample, expression of TCN1 gradually increased going from healthy controls to BP patients to SCH patients (Fig. 2). 
This pattern is in accordance with the well-established finding that cognitive deficits are generally more prominent 
in schizophrenia than in bipolar disorder46–48. Our results suggest that transcriptional dysregulation of TCN1 may 
be a contributing factor to the cognitive impairments associated with severe mental disorders.

TCN1 an Important Marker of Memory Performance.  Confounding factors are a consistent source 
of uncertainty in clinical studies. An important strength of our methodological design was the adjustment for 
critical variables that are either known to influence both gene expression and cognitive performance, such as age, 
sex, and medication use49–55; or are potential confounders due to their causal associations with either of the pre-
dictor or response variables, such as educational attainment, mental disorders, and cobalamin serum levels56,57. 
By controlling for these factors, we were able to largely exclude the possible effects of secondary contributors. 
Considering the significant TCN1 correlation in our final analysis where we control for mental disease (Table 3), 
it does not seem that diagnostic status is the main driver of the negative effect of TCN1 expression on memory 
function. This is also indicated by the fact that we obtained similar results when performing stratified analyses 
in which each diagnostic subgroup was examined separately (see Supplementary Table S4 and Supplementary 
Figure S5). Furthermore, the magnitude of the TCN1 effect on memory performance was comparable to that of 
sex, age, education, and mental disease (Table 3), suggesting that TCN1 is an important and clinically relevant 
marker of memory-related functions.
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Measurement of Cobalamin in Serum.  It is well established that only holoTC, the smaller fraction of 
circulating cobalamin bound to TC, is available for cellular utility. Consequently, it was suggested three decades 
ago that serum levels of holoTC could serve as an optimal marker for cobalamin deficiency58. At the time, the 
uncertainty in holoTC measurements was too large to be useful in clinical practice59. Subsequent research deploy-
ing more sensitive methods, however, has confirmed the soundness of this suggestion59–61. In addition, studies 
examining the relationship between total serum cobalamin and memory impairment have yielded conflicting 

Figure 3.  Cobalamin Transportation, Binding Proteins, and Metabolic Pathways. (A) The transportation 
of cobalamin (Cbl) through the gastrointestinal tract and its subsequent release into the blood stream is a 
multistep process requiring the concerted action of three proteins: intrinsic factor (IF), haptocorrin (HC), 
and transcobalamin (TC). After Cbl has been released from food, it is first bound by HC secreted mainly 
from salivary glands but also from parietal cells in the stomach32. HC forms a complex with Cbl and carries it 
through the stomach while protecting it from hydrolysis in the acidic environment. In the duodenum, HC is 
cleaved off from the complex by pancreatic enzymes and IF, the second Cbl-binding protein, transports Cbl 
to the terminal ileum. Here, Cbl is absorbed by intestinal cells through receptor-mediated endocytosis and 
subsequently released into the blood stream37,75. In the blood, ~80% of Cbl is bound to HC (holoHC), while 
the remainder is bound by TC (holoTC). Only the smaller holoTC fraction is available for cellular uptake. (B) 
Plasma cobalamin and its binding proteins: HC is almost fully saturated with Cbl (holoHC) and its inactive 
derivatives, so-called cobalamin analogues (anaHC). Only ~10% of plasma HC exists as freely circulating 
HC (apoHC). Adapted from Nexo et al.59. (C) Cobalamin is an essential cofactor for the enzymes methionine 
synthase and methylmalonyl-CoA mutase. The enzymatic reactions carried out by these enzymes form part 
of complex pathways required for the biosynthesis of chemical compounds that are indispensable for the 
proper functioning of the central nervous system. When cellular B12 levels are insufficient, homocysteine 
and methylmalonic acid (MMA), the CoA-free form of methylmalonyl-CoA, accumulate in the cell and 
subsequently in the blood stream. Serum concentrations of homocysteine and MMA are negatively correlated 
with circulating holoTC59.
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results, indirectly confirming the clinical and diagnostic advantage of utilizing holoTC62–65. Other indicators of 
cobalamin status include homocysteine and methylmalonic acid (MMA), both of which are essential constituents 
of cobalamin-related metabolic pathways. Although measurement of these metabolites appears to be as sensitive 
as holoTC, a drawback of both of them is poor specificity59,66. Despite the apparent advantages of measuring 
holoTC, there seems to be a general reluctance to begin using the test in both clinical and research practice. Our 
finding that TCN1 has a negative effect in individuals that are cobalamin sufficient further strengthens the case for 
measuring holoTC rather than total cobalamin in both clinical and research applications.

Blood as a Relevant Tissue for Neurocognitive Function and Disorders.  Since gene expression is 
tissue-specific, it is generally assumed that only brain tissue is directly relevant for the transcriptional examina-
tion of neurocognitive function and mental disease. However, researchers are often compelled to use peripheral 
gene expression as a surrogate for brain expression due to the limited accessibility and the ethical considerations 
involved in acquiring human brain samples. This is accepted practice because whole blood shares significant 
transcriptional similarities with multiple tissues in the central nervous system67. This was in fact the logic behind 
the design of the present study, but based on our findings it is interesting to speculate whether peripheral blood 
itself could be a partly relevant tissue for expressional modelling of cognitive functions and psychiatric diseases. 
Both HLA-DRA and TCN1 are highly expressed in whole blood, while the mRNA levels in brain are very low or 
non-existent (www.gtexportal.org), suggesting that the use of blood in addition to brain tissue could be important 
in order to achieve a complete transcriptomic profiling of brain disorders. Given that immune-related loci are 
among the most significant and persistent findings in schizophrenia28, it appears that whole blood is a relevant 
tissue when exploring the expressional status of at least a subset of disease-linked genes.

Limitations of the Present Study.  The clinical interpretation of our findings relies on the assumption 
that there is a positive correlation between serum mRNA levels and total serum protein concentrations of a given 
gene. Although this assumption is generally accepted, it does not always hold. In the case of TCN1, results should 
be interpreted cautiously even if the assumption holds since only the smaller fraction of circulating HC which 
is bound to cobalamin (holoHC; Fig. 3C) can influence cobalamin metabolism. For this reason, further studies 
aimed at holoTC and holoHC measurements and association with memory performance are highly warranted.

In the replication analysis of TCN1, we used HVLT as the verbal learning measure for the majority of study 
participants. Although the verbal learning measure of HVLT has been shown to be significantly related to the 
corresponding measure in CVLT68 with a relatively high correlation (r = 0.74), comparisons between the two 
tests should be made with caution. This is because the list of words in HVLT is shorter compared to CVLT, and 
the test may therefore be less sensitive to detect memory decline than CVLT68. The fact that we obtained positive 
replication results despite this limitation could be an indication of the robustness of our primary TCN1 finding.

Conclusions
In summary, the present study identifies TCN1 (haptocorrin) as a novel genetic finding associated with poor 
declarative memory function. The effect size of TCN1 expression on memory performance is comparable to that 
of age, sex, and mental illness, all of which are known determinants of memory function. This implies that the 
role played by TCN1 could be of clinical importance and relevance. The present findings also suggest that the 
transcriptional status of this gene could have a diagnostic potential in the assessment of conditions related to 
cobalamin metabolism. Furthermore, the expression pattern of TCN1 across diagnostic categories suggests that 
the cognitive impairments associated with SCH and BD may partly be attributed to changes in TCN1 expression 
levels. Finally, our results underscore the clinical importance of using holoTC as a biomarker for cobalamin status 
rather than total cobalamin.

Methods
Sample characteristics.  The discovery sample (n = 754) consisted of 229 healthy controls (CTRL), 234 
bipolar disorder patients (BD; 152 type I, 66 type II, 16 not otherwise specified), and 291 schizophrenia spectrum 
patients (SCH; 212 schizophrenia, 56 schizoaffective, 23 schizophreniform; see Supplementary Table S6). The 
replication sample (n = 578) consisted of 316 CTRL, 67 BD patients (62 type I and 5 not otherwise specified), and 
195 SCH patients (142 schizophrenia, 35 schizoaffective, 18 schizophreniform; see Supplementary Table S7). All 
patients were diagnosed according to the Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I)69. 
Individuals in the CTRL group were excluded if they or their close relatives had a lifetime history of severe psy-
chiatric disorder. All participants gave written informed consent and the study was approved by the Norwegian 
Regional Committee for Medical Research Ethics and the Norwegian Data Inspectorate. All procedures and 
methods were carried out in accordance with relevant guidelines and regulations. The recruitment procedure and 
clinical evaluation for both samples are described in detail in previous reports70,71.

Neurocognitive assessment.  Neurocognitive assessment of all study participants was carried out by psy-
chologists trained in standardized neuropsychological testing. The three-hour test battery was administered in a 
fixed order with two breaks, and included the updated California Verbal Memory Test (CVLT-II) with subscore 
measures of verbal learning (CVLT1) and long delay free recall (CVLT2)72. Participants were read a list of 16 
words in fixed order over five learning trials. After each trial, they were asked to recall, in any order, as many 
words as they could remember (verbal learning). They were also asked to recall the words after 20 minutes (long 
delay free recall). The performance metrics used in this study were the sum of scores across the five learning trials 
(CVLT1) and the long delay measure (CVLT2). The majority of subjects in the replication sample (n = 465) were 
not assessed with CVLT-II, but with the highly similar Hopkins Verbal Learning Test (HVLT)73. In this test, par-
ticipants were read a list of 12 words over three learning trials. The sum of scores was used as the verbal learning 
performance metric in the replication analyses.

http://www.gtexportal.org
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RNA microarray analysis and quality control.  Blood samples were collected in Tempus Blood RNA 
Tubes (Life Technologies Corporation). Total RNA was extracted with the TEMPUS 12-Port RNA Isolation Kit 
(Applied Biosystems) and ABI PRISM 6100 Nucleic Acid PrepStation (Applied Biosystems) according to manu-
facturer’s protocol. Global gene expression analyses were performed with Illumina HumanHT-12 v4 Expression 
BeadChip (Illumina, Inc.) consisting of ~47,000 probes. Multidimensional scaling and hierarchical clustering 
were used for regular quality control, including sample quality measurements and removal of outliers, as well 
as removal of multiple batch effects (RNA extraction batch, RNA extraction method, DNase treatment batch, 
cRNA labelling batch, and chip hybridization). This was followed by log2-transformation. More details on 
microarray preprocessing and quality control are provided in the online supplementary material. Probes showing 
zero expression in more than 90% of the samples were ignored, leaving 23,476 markers left for examination. All 
genome-wide expression analyses were performed on the batch-adjusted log2-transformed data.

Validation of microarray data with qPCR.  Gene expression data from the microarray measurement 
of TCN1 were validated with quantitative real-time PCR (qPCR). From the discovery sample, 94 individuals 
representing all diagnostic categories and spanning the full range of microarray expression levels were picked 
out for validation. High-Capacity cDNA Reverse Transcription Kit (Life Technologies Corporation) was used 
for reverse transcription of 1 µg RNA. The qPCR reaction was performed on 5 ng cDNA using TCN1 TaqMan 
Gene Expression Assay (Hs01055542_m1; Life Technologies Corporation) as target. All samples were run in four 
replicates. 12 individuals were excluded due to poor cDNA quality. The results were analyzed with qbase+ soft-
ware (Biogazelle, Zwijnaarde, Belgium) using the comparative cycling threshold (ΔΔCt) method74 with GUSB 
(Hs00939627_m1) as endogenous control and a positive cDNA control sample as reference. The qPCR measures 
of TCN1 expression were regressed against the log2 microarray TCN1 gene expression values using a linear model 
in R 3.4.1.

Expression Quantitative Trait Loci (eQTL) enalysis.  Subjects in the discovery sample were geno-
typed at Expression Analysis Inc. (Durham, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0 
(Affymetrix Inc., Santa Clara, CA, USA). Samples were excluded if they were low-yield (call rate below 97%); if 
they were duplicates of other samples included in the study; if they their sex as determined by X chromosome 
marker homozygosity was different from their reported sex; or if they were calculated to have other ancestry than 
European. All SNPs located within 20 kb upstream and downstream of the TCN1 gene were examined for associ-
ations with TCN1 expression. In total, 127 SNPs were investigated in 577 subjects.

Statistical analyses.  All patients and controls in the discovery sample (n = 754) were first tested for asso-
ciations between genome-wide expression levels and memory performance. In the initial screening, both verbal 
learning (CVLT1) and long delay free recall (CVLT2) scores were examined for associations with 23,476 genetic 
markers in a multiple linear regression model including only age and sex as covariates. Probes with a p-value 
below the Bonferroni-corrected critical level of α = 0.05/(2 × 23,476) = 1.06e-6 were considered significant. 
One-way analysis of variance (ANOVA) was then used to examine whether the significant probes were differen-
tially expressed across diagnostic categories. To find which specific diagnostic groups were significantly different 
from each other, the ANOVA analyses were followed by pairwise comparisons using Tukey-Kramer’s post-hoc 
test.

Since TCN1 was among the top ten genes associated with CVLT1 performance and the only gene signifi-
cantly correlated with the CVLT2 measure, as well as being a biologically and clinically interesting candidate, 
we explored the effect of potential confounders on the TCN1 association. We performed a final multiple linear 
regression analysis in which we adjusted for age, sex, diagnosis, medication (categorized as yes or no), and edu-
cation (total number of years). As TCN1 is known to play an important role in the transportation and uptake 
of vitamin B12, we also controlled for total B12 serum levels. We did not adjust for multiple testing in this final 
analysis. Normality of the variables was checked with the plot() function in R 3.4.1.

To determine which memory process is most affected by TCN1 expression, we examine the relationship 
between TCN1 expression and three subcategories of declarative memory: working memory, as measured by the 
first learning trial of CVLT; memory consolidation (or retention rate), as calculated by dividing the long delay free 
recall (CVLT2) score by the last learning trial; and recognition memory, which is a separate measure within the 
CVLT test battery. We adjusted for age and sex in these regression analyses.

The association between TCN1 and verbal learning was further examined in the independent replication 
sample (n = 578) drawn from the same geographical region. The majority of these subjects (n = 465) where not 
assessed with CVLT but with the highly similar Hopkins Verbal Learning Test (HVLT). Thus, both HVLT and 
CVLT were used as the verbal learning measure after converting both test values into z-scores. The same covari-
ates as in the main analysis were included in the replication test. All statistical analyses were performed in R 3.4.1.

Data availability.  The datasets generated and analyzed during the current study are not publicly available 
due to Institutional Review Board restrictions but are available from the corresponding author on reasonable 
request.
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