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Abstract

We report the application of a recently proposed approach for modeling biological systems using a 

maximum entropy production rate principle in lieu of having in vivo rate constants. The method is 

applied in four steps: (1) a new ordinary differential equation (ODE) based optimization approach 

based on Marcelin’s 1910 mass action equation is used to obtain the maximum entropy 

distribution; (2) the predicted metabolite concentrations are compared to those generally expected 

from experiments using a loss function from which post-translational regulation of enzymes is 

inferred; (3) the system is re-optimized with the inferred regulation from which rate constants are 

determined from the metabolite concentrations and reaction fluxes; and finally (4) a full ODE-

based, mass action simulation with rate parameters and allosteric regulation is obtained. From the 

last step, the power characteristics and resistance of each reaction can be determined. The method 

is applied to the central metabolism of Neurospora crassa and the flow of material through the 

three competing pathways of upper glycolysis, the non-oxidative pentose phosphate pathway, and 
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the oxidative pentose phosphate pathway are evaluated as a function of the NADP/NADPH ratio. 

It is predicted that regulation of phosphofructokinase (PFK) and flow through the pentose 

phosphate pathway are essential for preventing an extreme level of fructose 1,6-bisphophate 

accumulation. Such an extreme level of fructose 1,6-bisphophate would otherwise result in a 

glassy cytoplasm with limited diffusion, dramatically decreasing the entropy and energy 

production rate and, consequently, biological competitiveness.
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1. Introduction

A grand challenge in biology is to predict the time-dependent behavior of a system. While 

there have been great successes on the atomistic level that have led to the development of 

multiscale modeling methods that address phenomena from the femtosecond timescale to the 

microsecond time scale [1-3], prediction of time-dependent behavior from milliseconds up 

has been hampered by the lack of rate parameters needed to solve the differential equations 

governing the behavior.

Many rate parameters have been measured for a few model organisms, but even for those 

organisms the rate parameters are determined in vitro and do not reflect the in vivo 

environment. A general solution to this challenge was proposed in 1985 by E. T. Jaynes [4]: 

“to predict the course of a time-dependent macroscopic process, choose that behavior that 

can happen in the greatest number of ways while agreeing with whatever information you 

have—macroscopic or microscopic, equilibrium or nonequilibrium.” The approach that 

Jaynes was advocating was that of maximum path entropy or maximum entropy production. 

If one applies constraints to the path, then the method is a variational method referred to as 

maximum caliber [4,5]. Maximum caliber maximizes a path entropy, subject to the imposed 

constraints. Jaynes, basing his insights on the writings of Gibbs, assured readers that, “in 

spite of the conceptual simplicity of the approach, its full mathematical expression does 

prove to be elegant and intricate after all”.

Entropy and maximum entropy are often confusing topics, so it is useful to first define the 

terms used herein and explicitly state what is meant by maximum entropy. Fundamentally, 

entropy itself is a measure of probability while maximum entropy is simply a 

characterization or description of a distribution. An increase in entropy is an increase in 

probability, but to be clear, one should always explicitly specify the probability distribution 

being considered.

Entropy production should not be confused with entropy change, although both are 

associated with changes of state [6]. An entropy change for chemical systems is often based 

on a uniform probability distribution as in the common notion for configurational entropy. 

Less common in the chemical literature but more frequent in the physics literature is the 

expression of entropy change between two states, J and K for instance, as a function of the 

system probability densities, ΔS(K, J) = − log(Pr(J)/Pr(K)) where Pr(J) and Pr(K) are 
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probability density functions based on, for instance, the multinomial Boltzmann distribution 

[6]. In both cases, entropy change is a state function, meaning that the change in entropy due 

to a change in state does not depend on which process or path was followed from state to 

state.

Entropy production, on the other hand, is path-dependent. A maximum entropy production 

path is the thermodynamically optimal or most probable path. The probability density in the 

case of mass action chemical systems is the multinomial Boltzmann distribution. A change 

of state due to following a particular path is related to the thermodynamics odds of each 

respective reaction i, KiQi
−1, where Ki is the chemical equilibrium constant and Qi is the 

reaction quotient. Finding the optimal path for a system is a general problem [7], but is 

especially important for biology where efficiency and time-to-replication are critical for 

natural selection. Finally, maximum entropy production and maximum caliber are very 

similar concepts. A maximum entropy production path is the path that produces a maximal 

amount of entropy [8,9]. (A minimum entropy production path is a path that dissipates a 

minimal amount of heat or entropy to the environment. For the purpose of this paper, the two 

concepts are equivalent and ‘least heat’ can be used as a working definition of optimal.) A 

maximum caliber method specifically maximizes the entropy of the path subject to 

constraints on the system [10]. Either method may be either inferential (applied for the 

purpose of data analysis) or predictive (employed in a simulation). For the intents and 

purposes of this paper, we shall not make a distinction between the maximum entropy 

production and maximum caliber, and will use the term maximum entropy production.

A maximum entropy method is a general term that can refer either to methods that employ 

an entropy change, or to methods that employ entropy production; it can refer to either 

prediction through simulation or inference from data. Maximum entropy production 

specifically refers to a thermodynamically optimal path from one state to another and may 

be used in the context of either simulations, descriptions of processes, or for the purpose of 

inference [4]. Jaynes used the term MAXENT to emphasize the use of maximum entropy 

methods for inference. Regardless of whether maximum entropy is used in the context of 

inference or prediction, or an entropy change or entropy production, a maximum entropy 

distribution is the most probable distribution according to the probability density function 

and boundary conditions.

Maximum entropy production, or more precisely, maximum entropy production rate—the 

rate at which the maximum amount of entropy is produced—has a long history in physical 

biology. Lotka first wrote about the concept in 1922, explaining that “in the struggle for 

existence, the advantage must go to those organisms whose energy-capturing devices are 

most efficient in directing available energy into channels favorable to the preservation of the 

species” ([11,12]; reviewed in [13]). At face value, Lotka’s statement seems obvious in 

retrospect, but he went on to advocate that natural selection is based on the physical 

principles of thermodynamics. Surprisingly, in his report, Lotka states that Boltzmann had 

been talking about these concepts years earlier. More famously Schrodinger in his 1945 

monograph What is Life? [14], used the concept of entropy to describe how order, in the 

form of high-energy compounds in the environment, drives organization within organisms. 
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Prigogine, who received the Nobel prize in 1977 for his work, used the related concept of 

minimization of entropy production (defined above) to explain the emergence of self-

organized systems from non-equilibrium conditions [15]. Recently, Dewar [16] has 

examined the maximum entropy production concept in detail, noting that when the 

predictions from maximum entropy approaches fail, it is not the principle that is inadequate 

but rather the model to which the principle is applied is usually insufficient for the level of 

prediction needed. While some view this to be a controversial statement, we have observed 

this to be true in our own work.

Previously, we developed and implemented a maximum entropy production approach to 

evaluate the dynamics of different versions of the tricarboxylic acid (TCA) cycle found in 

nature using stochastic kinetics [17] and have more recently generalized the concept to show 

how simulations can be carried out from knowledge of chemical potentials [18]. In the 

former study, the rate of the processes were assumed to all occur on the same timescale. In 

this study, we extend that work to central metabolism including glycolysis and the pentose 

phosphate pathway using deterministic kinetics. The challenge in both approaches is to find 

the maximum entropy or most probable distribution, according to a multinomial Boltzmann 

probability density, consistent with the non-equilibrium boundary conditions. Since rate 

parameters (and also transition probabilities) have inherent time dependence, a mathematical 

approach to finding the distribution must be capable of circumventing bottlenecks in phase 

space that prevent the system from locating the global minima. One solution to this 

challenge is to widely sample parameter space using ensemble modeling to find the 

parameters that agree with known behavior or observations [19]. The alternative, as 

suggested by Jaynes, is to “choose that behavior that can happen in the greatest number of 

ways”, which is to choose the most thermodynamically probable parameters.

In this report, we show that the most thermodynamically probable concentrations can be 

predicted using a modified version of Marcelin’s 1910 equation describing mass action 

dynamics using reaction affinities [20]. The first step is to obtain the maximum entropy 

distribution by finding a non-equilibrium steady state that is also a thermodynamic stable 

state, meaning that the net driving forces on all reactions are equal. When only mass action 

kinetics are considered in the model and other considerations such as diffusion are ignored, 

we find that the resulting maximum entropy distribution is appropriate only for the mass 

action model, but not for a more extensive model that would include diffusion. The 

discrepancy, as Dewar predicted [16], is not due to the application of the maximum entropy 

rate principle but rather to the incomplete nature of the model. However, comparison of the 

predicted metabolite concentrations to expected or observed concentrations allows one to 

infer points of regulation in the pathways using a loss function similar to that used in 

machine learning. Once regulation is accounted for, reasonable metabolite concentrations 

are predicted, as are reaction fluxes. From the concentrations and reaction fluxes, rate 

parameters are inferred, and full-scale mass action differential equations can be solved, 

resulting in the time-dependent trajectories of the biological pathways. In doing so, we have 

implemented Jaynes’ proposal of using a simple thermodynamic principle to infer the 

detailed dynamics of a system without the need to construct the detailed dynamics or 

parameters from the bottom up. Finally, we evaluate the dynamics of central metabolism of 

Neurospora crassa, a model organism for studying the multi-scale dynamics of circadian 
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rhythms. We find that the pentose phosphate pathway can act in a cyclical manner to 

produce six NADPH for every glucose consumed instead of the generally expected two 

NADPH per glucose consumed. Together with recent findings that the oxidative pentose 

phosphate pathway and upper glycolysis are 180 degrees out of phase in the circadian cycle 

[21], suggests that under nitrogen-limiting conditions when the pentoses are not used for 

DNA synthesis, the cyclic action of the pentose phosphate pathway may be used to 

maximize NADPH production for lipid or carbohydrate production.

2. Theory and Methods

Maximum Entropy Optimization Using the Marcelin Equation.

Consider a reversible chemical reaction with molecular species i ∈ {A, B, C, D} and 

unsigned stoichiometric coefficients vi,α for each molecular species i in reaction α ∈ {1, −1} 

with forward reaction α = 1 and the reverse reaction α = −1,

vA, 1nA + vB, 1nB rxn − 1
rxn 1 vC, 1nC + vD, 1nD (shcheme 1)

where ni is the count or concentration of species i. The extent of each of the reactions is 

given by ζ1 and ζ−1, such that when ζ1 = 0, the system is in the state where neither of the nA 

and nB reactants have turned into products. When ζ1 = 1, the system is in the state where a 

stoichiometric amount of the nA and nB reactants have turned into products such that there 

are now nC + vC,1 and nD + vD,1 products and nA − vA,1 and nB − vB,1 reactants. The net 

extent of each reversible reaction is ζ1 − ζ−1 ≡ ζ1,net and ζ−1 − ζ1 ≡ ζ−1,net. Consequently, 

dζ1, net ∕ dt = ζ
.
1, net is the net flux through reaction 1. The mass action rate law for the 

reaction in Scheme 1 is,

ζ
.
1, net = dζ1, net

dt = k1nA
vA, 1nB

vB, 1 − k−1nC
vC, 1nD

vD, 1 . (1)

where k1 and k−1 are the rate constants of the forward and the reverse reaction, respectively. 

Using the signed stoichiometric coefficients γi,1 such that γi,1 = −|vi,1| for reactants and γi,1 

=|vi,1| for products, the time-dependence of any molecular species i is,

γi, 1
dni
dt = k1nA

vA, 1nB
vB, 1 − k−1nC

vC, 1nD
vD, 1 . (2)

Although kinetics and thermodynamics are alternate formulations of the law of mass action, 

Equation (2) is a purely kinetic description in that it does not contain any thermodynamic 

functions. Thermodynamics can be introduced into Equation (2) by simply factoring out the 

opposing rate from each term,
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γi, 1
dni
dt = k1nAvA, 1nBvB, 1 k−1nCvC, 1nDvD, 1

k−1nCvC, 1nDvD, 1
− k−1nCvC, 1nDvD, 1 k1nAvA, 1nBvB, 1

k1nAvA, 1nBvB, 1

= k−1nCvC, 1nDvD, 1 k1nAvA, 1nBvB, 1

k−1nCvC, 1nDvD, 1
− k1nAvA, 1nBvB, 1 k−1nCvC, 1nDvD, 1

k1nAvA, 1nBvB, 1

= k−1nCvC, 1nDvD, 1 K1
nAvA, 1nBvB, 1

nCvC, 1nDvD, 1
− k1nAvA, 1nBvB, 1 K−1

nCvC, 1nDvD, 1

nAvA, 1nBvB, 1
,

or,

= ζ
.
−1(t, ni)eA1(ni) ∕ RT − ζ

.
1(t, ni)eA−1(ni) ∕ RT

(3)

Equation (3) is the equation for the Marcelin–de Donder representation of mass action 

kinetics [22,23]. The first term describes the time-dependent thermodynamic forces acting 

on reaction 1 and likewise the second term describes the time-dependent thermodynamic 

forces acting on the opposing reaction −1. The first term is a product of a purely 

thermodynamic component, eA1(ni)/RT, which is the exponential of the thermodynamic 

driving force A1(ni) on reaction 1, and a purely kinetic component, ζ
.
−1(t, ni) which is the 

time derivative of the extent of the opposing reaction −1, ζ
.
−1(t, ni) = dζ−1 ∕ dt. The 

thermodynamic factor eA1(ni)/RT is the odds ratio of the forward reaction to the reverse 

reaction. The odds are reciprocally related such that eA1/RT = e−A−1/RT. The odds of reaction 

1 then change on a time scale determined by ζ
.
−1(t, ni). That is, the thermodynamic driving 

force on the forward reaction has a relaxation time that is the time for the reverse reaction to 

occur. Likewise, the second term describes the odds ratio and time dependence of the odds 

of the reverse (conjugate) reaction, reaction −1. According to this formulation, positive non-

equilibrium forces (A1(ni) > 0) will be associated with slower changes in the odds of the 

forward reaction than the odds of the opposing reaction since the respective relaxation times 

of the odds are inversely related through the relation,

ζ
.
−1(t, ni)eA1(ni) ∕ RT = ζ

.
1(t, ni) . (4)

Equation (4) has the same mathematical form of a fluctuation theorem [24] but is an exact 

relationship,

eA1(ni) ∕ RT =
ζ
.
1(t, ni)

ζ
.
−1(t, ni)

.

Generalizing to a large system consisting of Z reactions, the time-dependence of chemical 

species i is given by,

dni
dt = ∑

α

Z 1
γi, α

ζ
.
−α(t, ni)eAα(ni) ∕ RT − ζ

.
α(t, ni)e−Aα(ni) ∕ RT . (5)
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A convenient thermodynamic optimization procedure can be obtained using the Marcelin 

formulation of Equation (5). The Marcelin Equation [20] is obtained by setting each of the 

functions ζ
.
α(t, ni) ≠ 0 to ζ

.
α(t, ni) = cα where cα is a constant,

dni
dt = ∑

α

Z
cα

1
γi, α

eAα(ni) ∕ RT − e−Aα(ni) ∕ RT .

That is, the Marcelin Equation sets each of the relaxation rates of the forward and reverse 

forces to the same rate. Assuming the same relaxation rate for each respective force for all 

reactions α such that cα = c removes any kinetic bottlenecks in phase space of the system 

such that the relative dynamics are governed only by the thermodynamics,

1
c

dni
dt = ∑

α

Z 1
γi, α

eAα(ni) ∕ RT − e−Aα(ni) ∕ RT . (6)

A simulation using Equation (6) will converge to a thermodynamically-optimal steady state, 

which will be the lowest free energy state given the boundary conditions. The reason for this 

is that the free energy of chemical systems is the negative log of the multinomial (discrete 

particle counts) or Dirichlet (continuous particle counts) distribution plus a constant [6]. The 

multinomial and Dirichlet distributions are members of the exponential family of 

distributions, which are log-concave when counts are always greater than or equal to zero. 

Since the free energy is the negative of the log of the distribution, the free energy in this case 

is a convex surface as a function of the counts. For this thermodynamically-optimal steady 

state, the net flux through a reaction α is given by,

ζ
.
α, net = c eAα(ni) ∕ RT − e−Aα(ni) ∕ RT . (7)

Accordingly, at the thermodynamically-optimal steady state, the net flux through a reaction 

is proportional to the net thermodynamic odds. The thermodynamically-optimal steady state 

is one of many possible kinetic steady states, but its dynamics are such that the state is both 

kinetically and thermodynamically stable. That is, given a stoichiometric matrix S of M 
metabolites × Z reactions and a vector of the net reaction fluxes ξ

.
 of length Z, the usual 

steady state condition applies,

S ⋅ ξ
.

= 0 .

The thermodynamic odds of a reaction in Equation (7) are such that eAα ∕ RT = KαQα
−1

where Kα is the equilibrium constant and Qα is the reaction quotient for reaction α. Given Z 
by Z diagonal matrices of forward and reverse equilibrium constants, K+ and K−, and 

diagonal matrices of the respective forward and reverse reaction quotients, Q+ and Q−, the 

thermodynamically-optimal steady state is the product of the stoichiometric matrix and the 

net thermodynamic odds of each reaction,
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S ⋅ ((K+Q− − K−Q+) ⋅ 1) = 0 .

That is, the system is thermodynamically stable as well as kinetically stable. Furthermore, 

since the parameter c in Equation (7) is arbitrary, the maximum entropy production 

distribution and the maximum entropy production rate distribution are equivalent. Equation 

(7) is an important result as relative rate constants can be determined for each reaction α, as 

will be shown below.

Agreement with Experimental Measurements.

It is possible that the thermodynamically-optimal steady state may not have metabolite levels 

at physiologically realistic values. For example, inference of a steady state model of central 

metabolism will predict concentrations of fructose 1,6-bisphosphate in excess of 1 M (see 

below). If the cell were to produce these large concentrations, the cytoplasm would become 

glassy and practically no diffusion would occur. Hence the entropy production rate would 

actually approach zero. The issue is that the model assumes that diffusion will remain 

sufficient regardless of solute concentrations. This is easily remedied without including 

diffusion in the model by comparing predicted concentrations or counts of metabolite i, n i, 

to experimentally observed values ni and reducing the difference between predicted and 

observed values by optimizing a loss function for each reaction α. As a loss function, we 

have chosen the log ratio of the observed values to the predicted values of the M(α) reaction 

products of reaction α,

Lα = log ∏
i(α)

M(α) n i(α)
ni(α)

. (8)

When the observed and predicted values agree, Lα = 0, and when the predicted values are 

greater or less than the observed values Lα > 0 or Lα < 0, respectively. Unfortunately, 

experimental measurements of metabolite concentrations are hard to obtain; even when 

available, metabolomics data sets are sparse. Part of the reason is that the chemical 

properties of small molecules vary widely, so no single experimental design can discriminate 

and measure each molecular species. Sparsity is also due to the fact that biologically relevant 

metabolite concentrations may span several orders of magnitude, which is often greater than 

typical instrument dynamic ranges. Instead, one can simply use rule-of-thumb estimates for 

metabolite concentrations in place of experimentally observed values. Based on mass 

spectrometry estimates of absolute concentrations of metabolites [25], a reasonable rule-of-

thumb for metabolites is that most metabolites will not exceed millimolar levels. A value of 

Lα > 0 may indicate that the system needs to be modulated or regulated such that the 

metabolite concentrations stay within a physiological range. The desired regulation can be 

implemented using any appropriate function, such as a Hill equation, a logistic function or a 

hyperbolic function. Parameters for the regulation functions are then estimated and the 

simulations and analysis are repeated, adjusting parameters each time, until a physiological 

level of metabolite concentrations is achieved. This resulting steady state is 

thermodynamically optimal conditioned on the required regulation.
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Rate Constants.

From this steady state with reasonable metabolite concentrations and activity λα of reaction 

α, the rate constants are inferred for each reaction as follows. The net flux ζ
.
α, net is,

ζ
.
α, net = λα ⋅ kα ∏

i

reactants α
ni − λα ⋅ k−α ∏

i

reactants −α
ni

= λα ⋅ kα ∏
i

reactants α
ni 1 −

λα ⋅ k−α∏i
reactants −αni

λα ⋅ kα∏i
reactants αni

= λα ⋅ kα ∏
i

reactants α
ni(1 − K−αQ−α−1),

where again λα is the activity of the enzyme catalyzing reaction α as a function of the 

regulation. For example, solving for the rate constants of reaction α = 1 from Scheme 1 

gives,

k1 = c ζ
.
1, net

λ1 ⋅ nAnB(1 − K−1Q−1
−1)

.

k−1 = cK1
k1

,
(9)

since λ1 = 1 (no regulation) in Scheme 1. The usual mass action ODEs using rate constants 

and regulation are then solved during a simulation. The kinetically accessible energy surface 

is not necessarily convex because of the introduction of the rate constants—each reaction 

now has its own time dependence.

Finally, for the readers that are interested in such details, the inference of rate parameters in 

this manner meets the criteria that Jaynes laid out for MAXENT: when we make inferences 
based on incomplete information, we should draw them from that probability distribution 
that has the maximum entropy permitted by the information we do have [26]. Here, we have 

used the maximum entropy distribution from the maximum entropy production simulation to 

infer parameters that we otherwise know nothing about. However, if one has accurate 

metabolite measurements or fluxes of the metabolite population that is free in its biological 

solution (e.g., cytoplasm), then one can also use this information to infer experimentally-

based in vivo rate constants as well [18].

Power and Conductance.

For complex systems such as biological systems, the power is the change in free energy with 

respect to time,

P = − dG
dt .

For a reaction, the rate dependence is due to the net change in the extent of a reaction ζα,net 

with time such that the rate ζ
.
α, net = dζα, net ∕ dt is the usual mass action rate as exemplified 
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by Equation (1). The power generated by a reaction can then be expressed in terms of the 

reaction affinity Aα and the extent of the reaction ζα,

Pα = − dG
dζα

dζα
dt

= Aαζ
.
α .

This relationship is useful for comparing different chemical processes, as will be seen below. 

Likewise, the resistance Rα and conductance Cα of reaction α can be calculated at steady 

state as,

Rα =
ΔGα

ζ
.
α, net

,

Cα = Rα−1 .

where ΔGα is the free energy change across the reaction, which is equal in value to the 

reaction affinity Aα for a system at steady state with a large number of particles. These latter 

equations should not be taken to imply that there is a linear relationship between flux and a 

change in free energy (or flux and resistance). A reaction at steady state has high resistance 

if the change in free energy is large for the steady state flux relative to other reactions in the 

pathway. An example of this will be discussed in the results section, in which a regulated 

reaction has the same flux as other reactions at steady state, but the change in free energy for 

the reaction is large because the regulation decreases the activity of the corresponding 

enzyme.

Implementation, Code, Metabolic Model and Parameters.

The equations described above for both the optimization and simulation were implemented 

in the language C in a software program called Boltzmann, which is available as open source 

code under a Berkeley Software Distribution (BSD) style license [27]. The ODE solver was 

an implementation of the MATLAB® ode23tb solver, a trapezoidal rule and the backward 

differentiation solver [28].

Chemical potentials were obtained from component contribution methods [29,30] and 

adjusted within Boltzmann to the dielectric response ϵ, ionic strength I, and pH of the cell 

cytoplasm, assumed to be ϵ = 0.78, I = 0.25, and pH = 7.0 [31].

The compartmentalized Neurospora crassa metabolic model originally from Dreyfuss et al. 

[32] was updated with new information and used for the optimizations and simulations. The 

updated genome-scale model is publicly available [33]. The model used in this work is a 

subnetwork of the genome-scale model that includes only central metabolism consisting of 

upper and lower glycolysis, the TCA cycle, and the pentose phosphate cycle and is available 

in the supplemental notebooks. In this reduced model, there are 20 variables (metabolite 

concentrations) and 20 equations (reaction equations).

In order to maintain a non-equilibrium state, boundary concentrations for the initial reactant 

glucose 6-phosphate and final product CO2 are set to non-equilibrium values of 2 mM and 
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0.1 mM, respectively. Likewise, the cofactors CoA, ATP, ADP, orthophosphate, NAD, 

NADH, NADP and NADPH are also fixed boundary species; these concentrations were 

taken from a mass spectrometry analysis of absolute metabolite concentrations from Bennett 

et al. [25] The redox pair employed to shuttle electrons into the mitochondrial respiratory 

chain were taken to have equal chemical potentials, as done in previous modeling of the 

TCA cycle [17].

Analysis of simulation data is included in supplementary information/computational 

notebooks using Python.

3. Results

A metabolic model of Neurospora crassa [32] was used along with chemical potentials to 

maximize the entropy production rate of central metabolism. The dynamics of the each 

species are governed by the thermodynamic forces acting on each reaction (Equation (6)) 

and the net flux through each reaction is determined by the thermodynamic odds of the 

reaction at steady state (Equation (7)).

A map of the flux through the system is shown in Figure 1. As can be seen, the maximum 

entropy production rate optimization predicts that the fluxes ζ
.
α, net in lower glycolysis and 

the TCA cycle (ζ
.
α, net ≈ 6.53) are twice that of upper glycolysis (ζ

.
α, net ≈ 3.29), as would be 

expected since an intermediate in upper glycolysis corresponds to two intermediates in lower 

glycolysis and the TCA cycle due to the splitting of fructose 1,6-bisphosphate by fructose 

1,6-bisphosphate aldolase to effectively two molecules of glyceraldehyde-3-phosphate. The 

flux values are relative values but can be calibrated to absolute values by knowledge of just 

one absolute reaction flux.

The maximum entropy production optimization results in metabolite levels tending towards 

their most probable (Boltzmann) distribution such that,

ni
NT

∝ e−μi0(ϵ, I, pH) ∕ RT

∑j
M e−μj0(ϵ, I, pH) ∕ RT ,

where μi0(ϵ, I, pH) is the standard chemical potential for solute i in an aqueous solution with 

dielectric constant ϵ, ionic strength I, and constant pH. The values of ϵ, I, pH are chosen to 

match those in the cell environment, which in this case are assumed to be ϵ = 0.15, I = 78 

and pH = 7.0. The non-equilibrium boundary conditions for the initial reactant glucose and 

final product CO2, and with those for the cofactors CoA, ATP, ADP, orthophosphate, NAD, 

NADH, NADP and NADPH prevent the intermediates of glycolysis and the TCA cycle from 

reaching equilibrium.

The resulting maximum entropy production rate concentrations are shown in Figure 2. There 

are two important aspects of the results shown in Figure 2. First, the consistency of the 

concentrations of each metabolite indicates that steady state has been reached (the time 

derivatives are provided in supplementary Notebook S1). Second, the concentrations of 
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metabolites span a range from 10−22M for mitochondrial oxaloacetate at the low end to 

106M for fructose 1,6-bisphosphate and 109M for mitochondrial acetyl CoA at the high end. 

While a concentration of 10−22M might be reasonable in a cell (effectively zero 

concentration in a typical cell with a volume of 10−15 − 10−12 liters), concentrations above 

10−3M to 10−2M are usually not physiologically realistic [25]. For instance, if fructose 1,6-

bisphosphate had a concentration much above 10−3M, the cytoplasm could become so glassy 

that diffusion of even small molecules would decrease below the level at which metabolism 

could operate.

However, the issue is not whether the maximum entropy production rate formulation is 

appropriate for biological systems, but rather that any model is always a reduced 

representation of a real system [16]. In a complete model of cellular metabolism, diffusion 

would be included and the maximum entropy production rate solution would balance the 

rate of diffusion with the tendency for any chemical species to move towards its 

thermodynamically optimal distribution.

This discrepancy between predicted metabolite concentrations and physiological 

expectations can be taken advantage of, however, to infer points of post-translational enzyme 

regulation. To do this, a loss function is formulated (Equation (8)), similar to that used in 

machine learning approaches, to identify nodes in the system (in this case, reactions or 

enzymes) that need to be adjusted or regulated in order to match observed results. We 

applied Equation (8) to the simulation predictions for each reaction using a rule of thumb 

that physiological concentrations should not exceed 10−3M. The results are shown in Table 

1. Twelve reactions have product concentrations higher than expected. In choosing which 

reactions to apply regulation to, we take a parsimonious approach based on two principles: 

(1) regulation of upstream enzymes should have precedence over regulation of downstream 

enzymes; and (2) the reactions with the highest loss-function value should be evaluated 

before those with lower loss function values. Using these principles, we chose to apply 

regulation to only phosphofructokinase (PFK) and mitochondrial pyruvate dehydrogenase 

(PDHm), which are the two reactions with the highest loss-function values. These are also 

the two reactions that are most commonly regulated in glycolysis.

The loss function does not help to identify how these reactions/enzymes might be regulated. 

In experimental studies of Neurospora crassa, PFK in Neurospora crassa is inhibited by high 

concentrations of ATP [36]. Early studies on Neurospora PDHm indicated that PDHm is 

regulated by acetyl-CoA and covalently by phosphorylation [37,38]. We chose to regulate 

the PFK reaction by ATP concentration and the PDHm reaction by acetyl-CoA 

concentration using Hill equations.

After regulation of PFK and PDHm are applied, the maximum entropy optimization 

produces the steady state concentrations shown in Figure 3. Most metabolite concentrations 

fall within the rule-of-thumb values (≤ 10−3M) and reanalysis of the loss function for each 

reaction finds that only the succinyl-CoA synthetase reaction resulting in the production of 

succinate has a loss-function value, L = 3.8 above the expected value of 0.0. Given that 

succinate is highly soluble, however, this mild increase of the loss function is reasonable. 

The predicted concentration of succinate is 3.4 mM. For comparison, the concentration of 
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succinate in exponentially growing E. coli under similar conditions was estimated to be 0.57 

mM [25].

In addition to changes in the metabolite concentrations, application of regulation to PFK and 

PDHm results in reduced flux through both glycolysis and the TCA cycle, as expected. In 

this case, the flux is reduced by just over 2-fold (6.53/2.86).

With reasonable steady-state metabolite concentrations in hand, rate constants can be 

inferred from the simulation using Equation (9). The resulting rate constants are provided in 

supplementary Notebook S2. The inferred rate constants are not generally comparable to 

rate parameters for the analogous reactions determined from in vitro enzyme kinetic studies, 

however, since in vitro studies characterize reactions using Michaelis–Menten equations and 

the simulation studies reported here do not explicitly model enzyme kinetics. However, the 

flux values from the simulation are consistent with inferred fluxes from metabolic flux 

analysis studies on the related fungus Yarrowia lipolytica [39], which has a very similar 

central metabolism based on genome analysis and modeling [32,40-42].

From the predicted flux values and reaction-free energies, the power characteristics and 

resistance of each reaction can be estimated. Shown in Figure 4 are relative values of the (1) 

reaction free energies; (2) power at each reaction; (3) reaction resistance; and (4) reaction 

flux for each reaction of glycolysis. Since lower glycolysis and the TCA cycle 

(supplementary Notebook S3) have identical net fluxes at steady state and similar reaction-

free energies, the power characteristics and conductances of these reactions are very similar. 

The power generated at the PFK reaction is 6-fold higher than the power generated at other 

reactions of glycolysis. However, while the phosphorylation of fructose 6-phosphate to the 

highly soluble fructose 1,6-bisphosphate contributes significantly to the overall free energy 

change of the combined glycolysis-TCA pathway, if the system were allowed to proceed to 

the maximum entropy distribution (that is, without regulation), all reactions would have very 

similar power characteristics. It is the applied regulation that keeps the thermodynamic 

driving force on the PFK reaction much higher than that for the other reactions. 

Consequently, the chemical resistance at PFK is much higher than for other reactions, as 

well. Due to the regulation, both the flux through upper glycolysis and the flux through 

lower glycolysis and the TCA cycle are reduced more than 2-fold. While it has long been 

stated that PFK is regulated to modulate the flow of material through glycolysis, the 

simulations suggest that the more nuanced explanation is that regulation acts as a 

potentiometer to modulate both the flow of material through the reaction and the 

accumulation of fructose 1,6-bisphosphate in the system. Regardless, flow of material 

through glycolysis to the TCA cycle is reduced significantly. However, if the causal 

explanation for the regulation were solely to reduce the flux through the pathway, this would 

unnecessarily reduce the ability of the organisms using this metabolism to compete since 

energy production would slowed down significantly, as well, which is counter to Lotka’s 

early conjecture.

Rather than simply not extracting this available energy from glucose at a high rate due to 

already high levels of ATP, it is reasonable to expect that the energy from glucose is utilized 

elsewhere. Proteomics studies on Neurospora show that the enzymes of upper glycolysis and 
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the oxidative pentose phosphate pathway oscillate with the circadian cycle but are 180° out 

of phase with each other [21]. Consequently, simulations of glycolysis, the TCA cycle and 

the pentose phosphate pathway were carried out following the same steps as described 

above: (1) maximum entropy production rate optimization without regulation of the pentose 

phosphate pathway followed by (2) inference of regulation and (3) re-optimization with 

regulation to obtain steady state metabolite levels. Evaluation of the loss functions for each 

reaction in the pentose phosphate pathway predicted that glucose-6-phosphate 

dehydrogenase and phosphogluconolactonase, the first and second steps of the pentose 

phosphate pathway, should additionally be regulated. Glucose-6-phosphate dehydrogenases 

are well-known to be regulated by NADP/NADPH, either directly or indirectly, and by 

phosphorylation [43]. No literature was found regarding post-translational regulation of 

phosphogluconolactonase. Accordingly, we added regulation to the glucose-6-phosphate 

dehydrogenase reaction but not to the phosphogluconolactonase reaction. The glucose-6-

phosphate dehydrogenase reaction was again regulated by a Hill equation based on the levels 

of NADPH. We evaluated the kinetics of the system (both oxidative and non-oxidative) 

under three conditions which differed by the NADP/NADPH ratio. An initial low ratio of 

NADP/NADPH was taken from an isotope labeling, mass spectrometry analysis of the 

exponential growth of E. coli in which NADP/NADPH = 2.1 · 10−6/1.2 · 10−4 = 0.0175 [25]. 

This ratio results in a mild driving force on the NADP/NADPH-dependent reactions of the 

oxidative branch of the pentose phosphate pathway (enzymes glucose-6-dehydrogenase and 

phosphogluconate dehydrogenase) of ~−2.7 KJ/mol. A moderate ratio of NADP/NADPH 

was taken to be NADP/NADPH = 1, resulting in driving forces on the latter reactions of ~

−3.6 KJ/mol. A high ratio was taken to be the observed values for NAD/NADH in the E. coli 
study such that NADP/NADPH = 2.6 · 10−3/8.3 · 10−5 = 31, resulting in a driving force of ~

−31.2 KJ/mol on these same dehydrogenase reactions.

As expected, the flow of material increases through the pentose phosphate pathway as the 

NADP/NADPH ratio increases, as shown in Figure 5. At relatively low to moderate ratios of 

NADP/NADPH, the flow of material is mostly through the non-oxidative branch of the 

pentose phosphate pathway, while at high ratios of NADP/NADPH, flow through the 

oxidative branch is maximized, with an average of three cycles through the oxidative pentose 

phosphate branch for each glucose utilized (the simulation conditions are under non-growth 

conditions, so pentose phosphates are not drawn off for biosynthetic purposes). That is, 

rather than acting as a linear pathway from glucose-6-phosphate to glyceraldehyde-3-

phosphate, the pentose phosphate pathway acts cyclically to maximize production of 

NADPH. The overall reaction of the pentose phosphate pathway at high ratios of NADP/

NADPH is,

Glucose 6 − phosphate + 6 NADP+ + 3H2O
glyceraldehyde 3 − phosphate + 6 NADPH + 3CO2 .

4. Discussion

The maximum entropy principle can be used to predict concentrations, obtain optimal rate 

constants, and calculate the characteristics of biological circuits including energy, power, 
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flux and resistance for individual reactions and entire pathways. In the model of central 

metabolism used here, enzyme kinetics are represented as the summary reaction of the 

catalytic process. Dobovišek et al. have shown that the maximum entropy production 

principle can be used to evaluate enzyme kinetics, as well [45,46]. In this study, for 

convenience the enzyme catalysts are not explicitly represented in the model except for 

regulation. It is entirely feasible to do so, however, even without the use of the assumptions 

built into Michaelis–Menten model that the system be at steady state and far from 

equilibrium.

The calculated rate constants are optimal for the growth conditions used in the simulation. 

Similarly, organisms will have rate constants that are optimal for the conditions to which 

they have adapted. Ideally, to compare predicted metabolite concentrations to those from a 

wet lab experiment, the organism should be cultured over many generations to ensure 

adaptation to the laboratory conditions.

One could calculate experimentally based in vivo rate constants for many reactions, as well, 

following the same procedure outlined above but using experimentally measured 

concentrations of metabolites free (unbound) in the cytoplasm [18]. But this population is 

challenging to measure [47] or even estimate as a trend [25]. If such metabolite 

measurements were available, the hypothesis of maximum entropy production for steady 

states of evolutionary optimized systems is testable [48].

Park et al. have recently argued that one can calculate free energies of reaction from the 

respective whole cell concentrations because most cellular metabolites are in free form [49]. 

The argument is that the total measured metabolite concentration is approximately 300 mM, 

whereas the protein concentration is approximately 7 mM, and that this suggests that most 

metabolites are free in solution. However, this argument can be turned around to argue the 

opposite as well. For example, if three metabolites have concentrations of 100 mM and other 

species are 1 nM–1 μM, then the pooled concentration of all metabolites may be ~300 mM, 

depending on the number of other metabolic species. Further suppose that the total pooled 

protein concentration was 7 mM. In this case, only the three former species may have a 

significant population free in the cytoplasm. In order to determine the concentration of each 

free or unbound metabolite experimentally, we need either new experimental isolation 

technologies or to use predictions such as those discussed herein, but on the genome scale, 

as prior information in the data analysis. Measured whole-cell population of metabolites can 

be used to set bounds on reaction-free energies, however.

Using measured whole-cell concentrations of metabolites as the upper bound for metabolites 

free in solution can also be employed to infer regulation rather than using a rule-of-thumb 

(e.g., that metabolite concentrations should not exceed 1 mM), as was done here. The 

experimentally determined concentrations would give more precise estimates of regulation, 

although the rule-of-thumb values worked well in this study for demonstration purposes.

It is assumed that any predicted concentrations far away from the data are due to the 

incompleteness of the model and not the maximum entropy production principle. In the 

cases studied here, it is clear that the predicted high levels of some metabolites would reduce 
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the ability of molecules to diffuse in the cell. In cases such as this, regulation may be 

inferred by comparison to experimental data or expectations. But it can also be expected that 

branching reactions for metabolites that are not included in a model may impact the 

predictions. Branching per se at the point where the metabolite is an intermediate does not 

necessarily impact metabolite concentrations because the metabolite level is a function of 

the inward and outward flux producing and consuming the metabolite. The total inward and 

outward flux may not change when there is a branching reaction if the boundary conditions 

have not changed; in this case, the output flux splits but the total outward flux may be 

conserved.

Likewise, changing the boundary conditions would change the overall flux through all 

pathways. Figure 5 shows the effect on flux through the pentose phosphate pathway as a 

function of the boundary conditions for NADP and NADPH. The flux through the pentose 

phosphase pathway changes by 55-fold (12.5/0.224). However, the fluxes in this case are 

modulated by regulation at the first step in the pathway, the reaction for glucose 6-phosphate 

dehydrogenase. The corresponding simulations without regulation would change the flux by 

much more. Small changes in boundary conditions can result in significantly greater flux 

through pathways because the boundary conditions in this case include internal metabolites 

as well as external nutrients/waste products. Because the internal metabolites such as NADP/

NADPH, NAD/NADH and ATP/(ADP+Pi) may be used in many reactions, the impact on 

flux can be multiplicative.

The ability to completely characterize each individual reaction with regard to flux, energy 

dissipation, power and resistance can also lead to a more complete characterization of 

biological circuits, as is done for electrical circuits, and even allow for the use of 

sophisticated control theory analyses of the operations of a cell. Such developments could be 

extremely useful for synthetic biology, in that the addition to a cell of an engineered circuit 

often results in decreased growth and other unintended consequences. Being able to fully 

characterize the impact of the new circuit before implementing it in the laboratory could 

dramatically change the design process and success rate.

For example, in an effort to increase the production of fatty acids in Yarrowia lipolytica, 

Wasylenko et al. used 13C-metabolic flux analysis (MFA) in a control strain and an 

engineered strain to understand where NADPH was primarily being produced, which turned 

out to be the oxidative pentose phosphate pathway [39]. MFA is a valuable but relatively 

costly experimental analysis. In comparison, this study used predictive simulations and 

found that the oxidative branch can act in a cyclical manner to iteratively produce high levels 

of NADPH. Routinely carrying out modeling studies such as this is promising for bringing 

more predictive rational design into the development cycle.

Finally, there is a need for faster optimization methods to reach the steady state. While 

optimization using Equation (6) will find the optimal (least heat dissipation) steady state, the 

ODEs can become particularly stiff when regulation is not applied. In this case, it is possible 

for the range of concentrations to vary by many orders of magnitude, leading to very stiff 

ODEs and long time-to-solution. This may be important as these methods are used to model 
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secondary metabolism as well as to scale up to a genome-scale model, which we plan to do 

for Neurospora crassa.

Scaling up to a genome-scale model will likely bring new challenges. The time scale of 

metabolism spans the range from milliseconds for individual reactions to on the order of an 

hour for secondary metabolites to reach steady state. The assumption in Equation (6) that cα 
is reaction-independent allows one to find the maximum entropy production distribution at a 

non-equilibrium steady state. However, one concern is that this would imply that all 

reactions in the eventual simulation would occur on the same timescale. If all the processes 

are represented at the same level, for instance that of elementary reactions, then the inferred 

rates will likely be sufficiently representative of the true processes. However, if one mixes 

elementary reactions and summary reactions (that represent larger processes) in the model, 

then it could be the case that there is not a realistic separation of time scales. Summary 

reactions representing larger processes, for instance, could be rescaled by ncα instead of cα, 

where cα represents the average transit time through a reaction at the faster scale and n is the 

number of elementary reactions represented by the summary reaction. Multi-scale 

simulations can be used in which fast and slow processes are run independently based on the 

assumption that the fast processes reach steady state quickly on the time scale of the slow 

processes. If the processes to be represented are scaled appropriately, for instance by ncα, 

the processes do not need to be run independently but can be run together using 

computational singular perturbation methods [50] or other approaches that automatically 

separate the fast and slow degrees of freedom [51]. Further developments in the methods for 

inferring regulation, however, will likely be required. Including biomass formation in the 

form of replication will be challenging, as it will require a chemical potential for biomass to 

be estimated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of net odds (Equation (7)) for reactions of glycolysis and the tricarboxylic acid (TCA) 

cycle. Values next to each reaction name indicate the net flux through the reaction, and two 

flux values are provided for each reaction. The first value (left) is the flux after maximum 

entropy optimization. The second value (right) is the flux after the same optimization but 

including regulation at PFK (by ATP) and PDHm (by acetyl-CoA). Reaction and metabolite 

abbreviations are derived from the BiGG database [34]; full common names are provided as 

supplementary Tables S1 and S2. The metabolic pathway visualizations here and in Figure 5 

were created with Escher [35].
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Figure 2. 
Concentrations as a function of time in maximum entropy optimization without regulation.
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Figure 3. 
Concentrations as a function of time in maximum entropy optimization with regulation.
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Figure 4. 
Energetics of glycolysis reactions. Columns from left to right indicate: (G) −ΔGrxn, (P) 

power, (R) resistance, and (F) flux. Red indicates high values and blue indicates low values. 

Values are in arbitrary, relative units but the specific values are provided in supplementary 

Notebook_S3. The phosphofructokinase reaction has dramatically different characteristics 

than the other reactions because feedback regulation of ATP turns it into a potentiometer. 

The metabolic pathway visualization was created with Pathway Tools [44].
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Figure 5. 
Reaction flux through upper glycolysis and the pentose phosphate pathway as a function of 

the NADP/NADPH ratio. (Left) Low values of the ratio combined with high values of ATP 

result in approximately equal flow of material through upper glycolysis and the non-

oxidative branch of the pentose phosphate pathway, minimizing the production of fructose 

1,6-bisphosphate; (Middle) a NADP/NADPH ratio of 1 results in flow through each of 

upper glycolysis, non-oxidative and oxidative pentose phosphate pathways, with the 

oxidative pentose phosphate pathway containing approximately 65% of the flow of material; 

(Right) a high value of the ratio results in the cycling of flow iteratively through the 

oxidative pentose phosphate pathway while flow through upper glycolysis is minimal.
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Table 1.

Product of the reaction product concentrations for the optimization predictions and expected values, and 

resulting value of the loss function L (Equation (8)). Full common names are provided as supplementary Table 

S2.

Product of Concentrations

Reaction Predicted Expected L

CSm 4.85 × 10−6 1.00 × 10−6 1.58

SUCOASm 6.62 × 10−9 1.00 × 10−9 1.89

ENO 6.65 × 10−1 1.00 × 10−3 6.50

PGM 1.33 1.00 × 10−3 7.19

HEX1 4.26 × 10−2 1.00 × 10−6 10.66

PGI 4.58 × 101 1.00 × 10−3 10.73

GAPD 4.82 × 10−2 1.00 × 10−6 10.78

PYRt2m 8.43 × 102 1.00 × 10−3 13.64

PGK 1.09 1.00 × 10−6 13.90

PYK 5.84 1.00 × 10−6 15.58

PFK 9.21 × 102 1.00 × 10−6 20.64

PDHm 8.66 1.00 × 10−9 22.88
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