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Abstract: Manganese dioxide (MnO2), as a promising green material, has recently attracted
considerable attention of researchers from various fields. In this work, a facile method was
introduced to prepare binary hybrids by fabricating three-dimensional (3D) zinc hydroxystannate
(ZHS) cubes on two-dimensional (2D) MnO2 nanosheets towards excellent flame retardancy and toxic
effluent elimination of epoxy (EP) resin. Microstructural analysis confirmed that the morphologies
and structures of MnO2@ZHS binary hybrids were well characterized, implying the successful
synthesis. Additionally, the morphological characterization indicated that MnO2@ZHS binary
hybrids could achieve satisfactory interfacial interaction with the EP matrix and be well dispersed
in nanocomposites. Cone calorimeter test suggested that MnO2@ZHS binary hybrids effectively
suppressed the peak of heat release rate and total heat release of EP nanocomposites, performing
better than MnO2 or ZHS alone. Condensed-phase analysis revealed that MnO2@ZHS binary hybrids
could promote the char density and graphitization degree of char residues and thereby successfully
retard the permeation of oxygen and flammable gases. Moreover, through the analysis of gas phase,
it can be concluded that MnO2@ZHS binary hybrids could efficiently suppress the production of
toxic gases during the degradation of EP nanocomposites. This work implies that the construction of
2D/3D binary hybrids with an interfacial interaction is an effective way to fabricate high-performance
flame retardants for EP.

Keywords: binary hybrids; manganese dioxide; zinc hydroxystannate; flame retardancy; epoxy resin

1. Introduction

Epoxy resin (EP), one of the most important thermosetting polymers, has been widely used in
the fields of furniture coatings [1], circuit boarding [2], aeronautical material [3], and so forth [4–6]
in virtue of its excellent mechanical properties, outstanding optical property, glorious resistance to
solvent and chemical corrosion, and high climate resistance. However, analogous to most other
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polymers, EP resin can be easily ignited and sharply spread, accompanied with large amounts of
smoke and heat release. It is well known that smoke and toxic gases are the main reasons for death
in fire accidents. Hence, to meet fire safety regulations and expand the use of EP in the fields that
require flame resistance, a significant number of flame-retardant techniques for EP resins are developed.
Some kinds of flame retardants have been gradually forbidden in most countries, due to toxic gases,
such as hydrogen cyanide, contained in the pyrolysis products during the combustion process [7,8].
For instance, the most used brominated flame retardants often result in the formation of notorious
pollutants, most notably, brominated and mixed halogenated dioxins [9,10]. Therefore, how to prepare
green and effective flame retardants for EP remains a global topic for researchers.

In recent years, the nanoscale fillers, such as inorganic materials, have attracted considerable
attention to impart polymers with excellent mechanical properties, antibacterial properties,
flame retardancy, and so forth [11–16]. Generally, inorganic materials can endow polymers with
excellent flame retardancy at a low loading. Moreover, different from other organic flame retardants,
the incorporation of inorganic materials with a low addition will not deteriorate the mechanical
properties of polymer materials. Inorganic materials with different morphologies and element
composition show total flame retardancy mechanism towards a variety of polymers. Usually,
one-dimensional inorganic materials, such as carbon nanotubes, FeOOH, and titanium dioxides [17–21],
could form networks during the degradation process of the polymer matrix, which can play the
function of physical barrier retarding the permeation of heat, oxygen, and pyrolysis products.
Two-dimensional (2D) materials, including graphene, layered double hydroxides, molybdenum
disulfide, and manganese dioxide (MnO2), are usually regarded as the most efficient in improving the
flame retardancy of polymers in virtue of their large surface area [22–24], which can effectively delay
the transfer of oxygen and toxic and flammable gases. For the three-dimensional materials, for instance,
silica spheres, titanium dioxides spheres, and zinc hydroxystannate (ZHS) [25–27], these inorganic
materials can also improve the flame retardancy of polymers; the catalytic charring effect and large
inner specific surface area are the main reasons for the enhanced properties. It is reported that the
Lewis acid catalyst forms an initial cation, promoting the Friedel–Crafts reaction, which can effectively
build C–C bonds with aromatic compounds, thereby improving the char density [28]. In the case of
ZHS cubes, such as metal hydroxides, they have been regarded as affinity probes, which possess the
Lewis acidity [29]. Therefore, ZHS cubes are usually used as an efficient flame retardant to promote
the formation of char residue.

Up to date, the concept of multicomponent systems has been applied in a variety of fields,
including environment, lithium batteries, water research, and materials. In the case of materials,
multicomponent systems can be realized by different methods. Very recently, the layer-by-layer
technique has been employed to improve the flame retardancy of polymers such as cotton, polyamides,
and flexible polyurethane foam [30,31]. This technique is mainly driven by the forces from electrostatic
interactions, hydrogen bond interactions, and covalence bonds. A wide variety of functional molecules
can be incorporated within the layer-by-layer coating, including polyelectrolytes and inorganic
materials, to impart the matrix with the desired properties.

In this work, a binary component consisting of 2D MnO2 nanosheets and three-dimensional
(3D) ZHS binary hybrids was synthesized by the self-assembly method to endow the EP matrix with
flame retardancy and toxic suppression properties. In our previous works, MnO2 nanosheets were
confirmed to have an excellent physical barrier effect during the degradation process in virtue of
their two-dimensional structure [32,33]. Hence, fabrication of 2D/3D MnO2@ZHS binary hybrids was
anticipated to achieve excellent flame retardancy and toxic effluent elimination, and the corresponding
flame retardancy mechanism was also explored.
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2. Materials and Methods

2.1. Raw Materials

All chemicals were of analytical grade and used as received without further purification.
Zinc sulfate heptahydrate (ZnSO4·7H2O), sodium stannate trihydrate (Na2SnO3·3H2O), and potassium
permanganate (KMnO4) were supplied by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).
Bisphenol-A type EP was purchased from Shixian Chemical Industry Co., Ltd. A curing agent
(diaminodiphenylmethane) and sodium hydroxide were purchased from Sinopharm Chemical Reagent
Co., Ltd.

2.2. Synthesis of MnO2 Nanosheets and ZHS Cubes

The synthesis process of MnO2 was according to the reported work [34]. In a typical process,
15 mmol of KMnO4 was completely dissolved in 750 mL of deionized water. Then, 200 mL of ethyl
acetate was added into the above solution by constantly stirring. The solution was maintained at 95 ◦C
and refluxed overnight. The obtained brown product was filtrated and washed with deionized water
and ethanol consecutively, then dried at 80 ◦C for further use. In the case of ZHS cubes [25], 10 mmol
of ZnSO4·7H2O was dissolved in 300 mL of deionized water at 25 ◦C. Once completely dissolved,
the equal loading of Na2SnO3·H2O was added into the above solution. The continuous stirring was
maintained for 4 h, and the white suspension was centrifuged and washed with deionized water
several times and then dried at 60 ◦C overnight.

2.2.1. Preparation of MnO2@ZHS Binary Hybrid

MnO2@ZHS binary hybrid was prepared by a simple electrostatic adsorption method.
MnO2 (1 g) was dispersed in 500 mL of deionized water with ultrasound-assisted mechanical agitation
for 2 h. On the other hand, 0.2 g of ZHS was dispersed in 300 mL of deionized water under ultrasonic
and mechanical stirring for 1 h. The pH value of ZHS suspension was adjusted to 5 by 0.1 M HCl
solution and stirred for another 1 h. Subsequently, the ZHS suspension was dropwise added into the
MnO2 suspension within 30 h by constant mechanical stirring. Finally, the mixed suspension was
stirred and maintained for 4 h. The resultant was selected by centrifugation, washed by deionized
water and dried at 80 ◦C overnight.

2.2.2. Preparation of Pure EP and EP Nanocomposites

The preparation of EP nanocomposites was in accordance with our previous works [18].
Typically, 1.22 g of MnO2@ZHS binary hybrid was added into 50 mL of acetone under ultrasonically
assisted stirring to form a homogeneous suspension. Then, 50 g of premelted EP was poured
into the above suspension under mechanical stirring and maintained over 6 h. Subsequently,
the suspension was maintained at 100 ◦C for 12 h to remove the solvent. Thereafter, 10 g of
premelted 4,4’-diaminodiphenylmethane was injected into the mixture under constant stirring. Finally,
EP nanocomposites could be obtained after being cured at 100 ◦C for 2 h and 150 ◦C for 2 h, respectively.
The sample was marked as EP/MnO2@ZHS 2%, and the others were fabricated by using the same
strategy. The preparation process is illustrated in Figure 1.
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Figure 1. Synthesis of MnO2@ZHS hybrids and flame retardancy mechanism in epoxy.

2.3. Characterization

X-ray diffraction (XRD) measurements were performed using a Japan Rigaku D = Max-Ra rotating
anode X-ray diffractometer (RIGAKU, Tokyo, Japan) equipped with a Cu–Ka tube and Ni filter
(k = 0.1542 nm). Transmission electron microscopy (TEM) images were obtained using a JEOL
JEM-100SX transmission electron microscope (JEOL, Tokyo, Japan) with an acceleration voltage of
100 kV. Thermogravimetric analysis (TGA) of as-prepared samples was undertaken using TGA-Q5000
apparatus (TA Co., New Castle, DE, USA) from 50 to 700 ◦C at a heating rate of 20 ◦C min−1. The weight
of all samples was maintained within 3–5 mg in an open platinum pan. The morphologies of MnO2

materials with three different dimensions, coated with a gold layer in advance, were observed using
scanning electron microscopy (SEM; AMRAY1000B, Beijing R&D Center of the Chinese Academy
of Sciences, Beijing, China). TG-IR of the samples was performed using a TGA Q5000IR thermal
gravimetric analyzer (TA Co., New Castle, DE, USA) that was interfaced to the Nicolet 6700 FTIR
spectrophotometer (Thermo Scientific, Waltham, MA, USA). Approximately 5.0 mg of the sample was
placed in an alumina crucible and heated from 30 to 800 ◦C at a heating rate of 20 ◦C min−1 (helium
atmosphere, flow rate of 45 mL min−1). A combustion test was performed on the cone calorimeter
(Fire Testing Technology, Derby, UK) according to ISO 5660 standard, using specimens with size of
100 × 100 × 3 mm3. Each specimen was exposed horizontally to an external heat flux of 35 kW
m−2. X-ray photoelectron spectroscopy (XPS) was performed on a VG Escalab Mark II spectrometer
(Thermo-VG Scientific Ltd., West Sussex, UK), using Al Kα excitation radiation (hυ = 1486.6 eV).

3. Results and Discussion

3.1. Characterization of MnO2@ZHS Binary Hybrid

TEM technique was employed to observe the morphologies of the MnO2 nanosheets and the
MnO2@ZHS binary hybrid, and the morphologies of the MnO2 nanosheets and their hybrid are
presented in Figure 2. As can be observed in Figure 2a, the MnO2 nanosheets show layered structure
with large surface area, and the wrinkle belonging to the layers can be obviously observed. After the
assembly procedure forced by electrostatic adsorption, ZHS cubes are successfully fabricated on the
surface of MnO2. As is shown in Figure 2b–d, the ZHS cubes are firmly absorbed on the layers,
and no ZHS cubes exist in the area beside the MnO2 nanosheets, indicating that there exist very strong
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electrostatic forces between the ZHS cubes and the MnO2 nanosheets. Moreover, the EDS spectrum
of the MnO2@ZHS binary hybrid is presented in Figure 3. The EDS profile confirms the presence
of corresponding elements such as Zn, Sn, Mn, and O. Figure 4 presents XRD patterns of the MnO2

nanosheets, ZHS cubes, and the MnO2@ZHS binary hybrid. It is evident that the MnO2@ZHS binary
hybrid contains all the characteristic peaks of MnO2 and ZHS [35,36]. These results indicate that the
crystalline structures of ZHS and MnO2 have no changes during the absorption procedure. Moreover,
TGA was used to measure the thermal stability of the MnO2@ZHS binary hybrid and investigate the
changes compared with that of the MnO2 nanosheets. Figure 5 shows the TGA curves of the MnO2

nanosheets and MnO2@ZHS binary hybrid. The thermal stability of the MnO2@ZHS binary hybrid is
relatively lower than that of MnO2 nanosheets, due to the existence of predecomposition compared
with MnO2. It is probably because of the separation of hydrate water from ZHS [37]. The further
chemical state and element composition of MnO2 and MnO2@ZHS were explored by XPS test.
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In Figure 6a, the XPS survey spectra of MnO2 and MnO2@ZHS are presented. The XPS survey
spectra indicate that the MnO2@ZHS hybrid is mainly comprised of Mn, O, Sn, Zn, K, and C elements.
The high-resolution Zn 2p3 and Sn 3d are also shown in Figure 6b,c. The binding energies of Zn 2p3

and Sn 3d are centered at 121.5 and 486.7 eV, respectively, which are attributed to Zn–O and Sn–O
bonds [38]. Additionally, the high-resolution O1s spectra is exhibited in Figure 6d–f. The location at
529.8 eV is ascribed to the O–Mn–O bond, and the peak centered at 531.2 eV belongs to the O–Mn–H
bond [39,40]. Additionally, it can be clearly found that the binding energy of O1s at around 532.3 eV
attributed to the weak bond (-OH) of the MnO2@ZHS binary hybrid is higher than that of MnO2.
This is reasonable due to the fabrication of ZHS, which is accompanied by abundant hydroxyl groups.
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Figure 6. (a) XPS survey spectra of MnO2 and MnO2@ZHS binary hybrid, (b) the high-resolution Zn
2p3, and (c) Sn 3d5 spectra of MnO2@ZHS binary hybrid, (d) O1s spectra of MnO2 and MnO2@ZHS
binary hybrid, the deconvoluted O1s spectra of (e) MnO2 and (f) MnO2@ZHS binary hybrid.

3.2. Interfacial Adhesion Beween MnO2@ZHS Binary Hybrid and EP Matrix

The morphology of the fracture surface of the samples is observed by SEM test, in order to further
investigate the interfacial interaction between the nanofillers and EP matrix. As can be observed
in Figure 7a, the fracture surface of pure EP shows smooth and clean. After the addition of MnO2

nanosheets, the surface of EP/MnO2 with a 2 wt % loading appears rough and wrinkled, indicating
the improved interfacial interaction between the MnO2 nanosheets and EP matrix (Figure 7b). In the
case of EP/MnO2@ZHS with different loadings, the wrinkles on the surface show deeper than the
addition of MnO2, declaring that the interfacial interactions between the MnO2@ZHS binary hybrid
and EP matrix are improved (Figure 7c–e). Moreover, as the loading of the MnO2@ZHS binary hybrid
increases, the fish-like folds become more delicate. EP/MnO2@ZHS 2% exhibits the most delicate
surface among the samples, which is reasonably due to the increase of MnO2@ZHS acting as stress
points. Moreover, the EDS information of Figure 7e is listed in Figure 8, and the elements from the
MnO2@ZHS binary hybrid can also be found. Therefore, the results obtained from SEM images
demonstrate that the incorporation of MnO2@ZHS can improve the interfacial interaction between
MnO2@ZHS and the EP matrix.
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Figure 7. SEM images of fracture surfaces cryogenically broken after immersion in liquid nitrogen of (a)
pure EP, (b) EP/MnO2 2%, (c) EP/MnO2@ZHS 0.5%, (d) EP/MnO2@ZHS 1%, and e) EP/MnO2@ZHS 2%.
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Figure 8. EDS profile of EP/MnO2@ZHS 2%.

3.3. Thermal Stabilities of Pure EP and Its Nanocomposites Studied by TGA Test

The thermal stability of pure EP and EP nanocomposites is studied by TGA test, as shown in
Figure 9. The onset decomposition temperature and the temperature at the maximal weight loss
rate are denoted as T-10 and Tmax, respectively. Pure EP and EP nanocomposites exhibit the same
degradation process, showing a one-stage degradation process, which is ascribed to the decomposition
of macromolecular chains. Additionally, it can be seen that after the incorporation of MnO2, the char
residue of EP/MnO2 at 800 ◦C increases compared with that of pure EP, but the T-10% and Tmax of
EP/MnO2 decrease, which is possibly attributed to the catalysis effect from MnO2 promoting the
predecomposition of the matrix and the degradation of metal oxides. In the case of EP/MnO2@ZHS
nanocomposites, the values of T-10% and Tmax further decrease, which can be due to the predegradation
of ZHS, thereby resulting in the predecomposition of the matrix. However, the increased residual
content at 800 ◦C of EP/MnO2@ZHS nanocomposites is enhanced with the increase of the loading.
Therefore, the addition of the MnO2@ZHS binary hybrid improves the char residue of the EP matrix.
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Figure 9. (a) TGA curve of pure EP and EP nanocomposites under nitrogen condition. (b,c) represent
magnified TGA profiles of (a) at different temperatures.
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3.4. Flame Retardancy Evaluated by Cone Calorimeter

The cone calorimeter is generally regarded as the most powerful tool to evaluate the force burning
fire performance of materials through simulating a developing fire scenario on a fixed-sized specimen.
The parameters, including peak heat release rate (PHRR) and total heat release (THR), are recognized
as the crucial data for evaluating the fire safety of matrix. HRR and THR curves of pure EP and EP
nanocomposites are presented in Figure 10. According to Figure 10a, incorporating MnO2 into the
EP matrix can reduce the values of PHRR of EP nanocomposites, which is mainly attributed to the
physical barrier effect. In the case of EP/MnO2@ZHS nanocomposites, all the values of PHRR are
decreased as compared to that of pure EP. Moreover, as the amount of percent add-ons increases,
the value of PHRR is further reduced. Thus, in terms of the decreased PHRR values, it can be indicated
that the MnO2@ZHS hybrid shows the superior inhibition of heat release of the EP matrix. In addition,
THR values of all EP nanocomposites shown in Figure 10b decrease obviously, in comparison with the
pure one, showing that both MnO2 and the MnO2@ZHS binary hybrid can effectively suppress the
heat release of EP nanocomposites during combustion. Moreover, the THR value of EP/MnO2@ZHS
with a 2 wt % loading can achieve near 40% reduction, compared with the control EP, which is rarely
attained for the nanocomposites. The results of cone calorimetry illustrate that the function of charring
formation of ZHS is successfully grafted on the MnO2 nanosheets. The catalytic charring function,
combined with the physical barrier effect from the MnO2 nanosheets, can significantly enhance the
flame retardancy of EP nanocomposites.
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Figure 10. (a) HRR and (b) THR curves of pure EP and EP nanocomposites evaluated by
cone calorimeter.

3.5. Char Residues Analysis of EP and EP/MnO2@ZHS Nanocomposites

Digital photos of char residues of pure EP and EP nanocomposites are plotted in Figure 11,
in order to directly observe their morphologies. As shown in Figure 11a, pure EP exhibits lower
amount of char residues compared with other EP nanocomposites incorporated by MnO2@ZHS binary
hybrids. According to Figure 11d, the char residue of EP/MnO2@ZHS 2% shows a larger volume,
illustrating a more effective catalytic charring formation by MnO2@ZHS. Additionally, the char residues
of EP nanocomposites are covered by yellow-colored materials, which are the pyrolysis products
obtained by the degradation of the MnO2@ZHS binary hybrids. Usually, for inorganic nanocomposites,
the inorganic fillers would transfer to the surface of the matrix during the decomposition process.
These yellow-colored degradation products can act as the insulation barrier, delaying the permeation
of oxygen and flammable gases, thereby reducing the values of both PHRR and THR.
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Figure 11. Digital images of char residues for (a) pure epoxy, (b) EP/MnO2@ZHS 0.5%,
(c) EP/MnO2@ZHS 1%, (d) EP/MnO2@ZHS 2% after cone calorimeter tests. The scale of these samples
is 100 × 100 mm2.

To investigate the surface morphologies of char residues of pure EP and EP/MnO2@ZHS, the char
residues studied here were obtained after cone calorimetry and imaged via SEM test. According
to the char residue of pure EP portrayed in Figure 12a, deep cracks and collapses are obviously
observed and thereby lead the oxygen and flammable gases to transfer easily. After the incorporation
of MnO2@ZHS into the EP matrix, the char residue shows as more intact with less cracks (Figure 12b–d).
Furthermore, as the loading increases up to 2 wt %, the surface of EP/MnO2@ZHS is very smooth,
and there are no collapses and cracks, which can perfectly retard the permeation of oxygen and toxic
and flammable products. Overall, SEM images visually confirm that the addition of MnO2@ZHS can
significantly improve and perfect the char formation of EP nanocomposites. Besides, the Raman test
was used to further study the inner graphitic structure of the char residues. As shown in Figure 12e–h,
the Raman spectra of pure EP and EP nanocomposites all present two visible characteristic bands,
namely, the D-band (1353 cm−1) and G-band (1592 cm−1), respectively attributed to the vibration of
carbon atoms with dangling bonds in the plane terminations of disordered graphite or glass carbons
and the vibration of sp2-bond carbon atoms in graphite layers. Generally, the ratio of the intensity of
the D-band and G-band (ID/IG) is used to evaluate the graphitization degree of char residues. It is well
recognized that sp2-bond carbon atoms in graphite layers can behave as insulation barriers retarding
the transfer of heat, oxygen, and flammable products. For the value of ID/IG, the lower value means
the better graphitic structure and physical insulation [41]. With the incorporation of MnO2@ZHS in the
EP matrix, the value of ID/IG gradually becomes lower. As the loading increases, EP/MnO2@ZHS 2%
exhibits the lowest value of ID/IG, compared with the others, indicating the most intact char structure.
These results are in good agreement with the SEM results.
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Figure 12. SEM images and Raman spectra of the char residues of (a,e) pure EP, (b,f) EP/MnO2@ZHS
0.5%, (c,g) EP/MnO2@ZHS 1%, and (d,h) EP/MnO2@ZHS 2%.

The XPS test was employed to further explore the carbon structure of interior and exterior char
residues of pure EP and EP/MnO2@ZHS 2% and their flame retardancy mechanism, as plotted in
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Figure 13. For all the high-resolution C 1s spectra, it can be deconvoluted to three characteristic peaks
centered at 284.6, 285.6, and 288.3 eV, assigned to aliphatic and aromatic species, hydroxyl group
and/or ether, and carbonyl groups, respectively. It is generally accepted that the ratios of Cox /Ca (Cox:
oxidized carbon; Ca: aliphatic and aromatic carbons) are employed to evaluate the thermal oxidative
resistance of EP nanocomposites [18]. The lower value of Cox /Ca means better thermal oxidative
resistance. It is found that the values of Cox /Ca in interior and exterior char residues of pure EP are
0.74 and 0.77, respectively, which are much higher than those of EP/MnO2@ZHS 2% (0.19 and 0.41).
Therefore, based on these results, it can be well confirmed that MnO2@ZHS can promote the char
density and graphitization degree of char residues, thereby efficiently enhancing the flame retardancy
of the EP matrix.
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Figure 13. The high-resolution C1s spectra of interior and exterior char residues of (a,b) pure EP and
(c,d) EP/MnO2@ZHS 2%.

3.6. Gas-Phase Analysis of Pure EP and EP Nanocomposites

It is well known that the pyrolysis products of the EP matrix are extremely harmful to the health
of humans. Here, TG-IR technique was adopted to study the composition of pyrolysis products
during the degradation process of the EP matrix and further investigate the gas-phase mechanism.
The FTIR spectra of the pyrolysis products of pristine EP and EP/MnO2@ZHS 2% are presented in
Figure 14. It can be concluded that the composition of the pyrolysis products is rarely changed, and the
characteristic peaks are strictly ascribed to the functional groups with unambiguous band positions,
such as alkane groups mainly for allyl alcohol; hydrocarbons (2820–3120 m−1); aromatic compounds
(750, 830, 1460, 1510, and 1610 cm−1); CO (2180 cm−1); CO2 (2356 cm−1); and water and/or phenol
(ca. 3640–3670 cm−1) [26,33].

Figure 15a shows the Gram–Schmidt curves of EP and EP/MnO2@ZHS 2%. The incorporation
of MnO2@ZHS binary hybrids obviously reduces the absorbance of pyrolysis products, rivalled by
that of pure EP. Moreover, Figure 15b,c,f suggest that aromatic compounds and alkane groups are all
effectively decreased, implying the reduction of organic gases and improved toxic effluent elimination.
Additionally, Figure 15d,e respectively present the absorbance of CO and CO2, and it can be seen
that as the absorbance of CO decreases, the absorbance of CO2 increases for all the nanocomposites.
This could not have an alternative explanation that less pyrolysis gases penetrate the char, making
the combustion more ventilated. Therefore, it might very well be a catalysis effect for conversion of
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CO into CO2. In summary, TG-IR results demonstrate that MnO2@ZHS binary hybrids can efficiently
suppress the production of toxic gases during the degradation of EP nanocomposites, and the addition
of binary hybrids can catalyze conversion of CO into CO2. The mechanism of catalytic conversion
of CO into CO2 is proposed in Figure 16. Combined with the XPS results obtained from Figure 6,
it is inferred that the capacity of Mn to adapt several oxidation states enables it to undergo oxygen
reduction reactions, indicating MnO2 nanosheets can act as a reservoir for oxygen, analogous to the
previous work [42]. Certainly, toxic gases in real scenarios only contain CO instead of a wide array of
hydrocarbons. Therefore, the catalytic conversion of CO into CO2 is of great significance. In addition,
the increase of CO2 can dilute the oxygen and flammable gases in the air and thereby retard the
combustion process.
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Figure 15. Absorbance of pyrolysis products versus time for EP and its nanocomposites:
(a) Gram–Schmidt; (b,c) aromatic compounds located at 1510 and 1610 cm−1; (d) CO; (e) CO2;
and (f) hydrocarbons.
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Figure 16. The proposed mechanism of catalytic conversion of CO into CO2.

4. Conclusions

In this work, a facile method was introduced to synthesize binary hybrids by fabricating ZHS
cubes on MnO2 nanosheets with better flame retardancy and toxic effluent elimination of EP. XRD,
TEM, and XPS results confirmed the successful synthesis of MnO2@ZHS binary hybrids. Moreover,
the SEM and TEM ultrathin images indicated that MnO2@ZHS binary hybrids could achieve strong
interfacial interaction with the EP matrix and be well dispersed in nanocomposites. Cone calorimeter
test suggested that MnO2@ZHS binary hybrids could effectively suppress the curves of HRR and THR
of EP nanocomposites, performing better than MnO2 or ZHS alone. Condensed-phase analysis revealed
that MnO2@ZHS binary hybrids could promote the char density and graphitization degree of char
residues and thereby successfully retard the permeation of oxygen and flammable gases. Additionally,
it was concluded that MnO2@ZHS binary hybrids could efficiently suppress the production of toxic
gases during the degradation of EP nanocomposites through the analysis of gas phase.
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