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Metabolism archetype cancer cells induce
protumor TREM2+ macrophages via oxLDL-
mediated metabolic interplay in
hepatocellular carcinoma

Tianhao Chu1,2,5, Guiqi Zhu 1,2,5, Zheng Tang1,2,5, Weifeng Qu1,2,5, Rui Yang1,2,
Haiting Pan3, Yi Wang1,2, Ruilin Tian4, Leilei Chen4, Zhiqi Guan1,2, Yichao Bu 1,2,
Qianfu Zhao1,2, Jiafeng Chen1,2, Shengwei Mao1,2, Yuan Fang1,2, Jun Gao1,2,
Xiaoling Wu1,2, Jian Zhou 1,2, Weiren Liu1,2 , Dan Ye 4 , Jia Fan 1,2 &
Yinghong Shi 1,2

The functional programs adopted by cancer cells and their impact on the
tumor microenvironment are complex and remain unclear. Here, we identify
three distinct single-cell archetypes (i.e. metabolism, stemness and inflam-
mation) in hepatocellular carcinoma (HCC) cells, each exhibiting unique spa-
tial distribution. Further analysis shows an immune-suppressive niche
populated by metabolism archetype cancer cells and TREM2-positive tumor-
associated macrophages (TREM2+ TAMs), which exacerbates immune exclu-
sion and compromises patient outcomes. Mechanistically, we demonstrate
that the upregulated squalene epoxidase (SQLE) expression in metabolism
archetype cancer cells facilitates the generation of oxidized LDL (oxLDL).
OxLDL induces TREM2+ TAMpolarization through theTREM2-SYK-CEBPα axis,
enabling these TAMs to promote cancer cell invasion, resistance to effector
cytokines and CD8+ T cell dysfunction. Importantly, cancer cell-intrinsic SQLE
and TREM2+ TAMs are associated with inferior immunotherapy response in
human and mouse HCC. Our results highlight an oxLDL-mediated metabolic
interplay between cancer cells and TREM2+ TAMs, offering a promising ther-
apeutic avenue for HCC immunotherapies.

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-
related death worldwide1. Despite great advances in early detection
and treatment strategies for HCC, the majority of patients are diag-
nosed at advanced stages, precluding surgical resection and resulting
in a dismal 5-year survival rate below 20%2. Intratumoral heterogeneity

(ITH) is a hallmark of HCC, profoundly influencing metastasis, recur-
rence, and resistance to treatment3. Recent studies applying high-
dimensional, single-cell methods have fueled the understanding of
tumor microenvironment (TME) heterogeneity in HCC4. However,
exploration of the subtypes and functional programs adopted by HCC
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cancer cells at the single-cell level remains limited, largely due to the
technical challenges in capturing hepatocyte-lineage cells through
single-cell RNA sequencing (scRNA-seq)5,6. While prior studies have
proposed classification models pertaining to cancer cells7 or cancer
stem cells (CSCs)8 in HCC, their investigations have been hindered by
relatively small cell populations, leaving unanswered questions
regarding the modulation of the TME by distinct cancer cell
subpopulations.

The reprogramming of TME by cancer cells is crucial for sup-
pressing anti-tumor immunity, fostering tumor proliferation and
metastasis9. Aberrant metabolism within cancer cells can greatly
influence the features of tumormetabolicmicroenvironment (TMME),
including altered nutrient availability, hypoxia, and immunosuppres-
sive metabolite production10. These changes impair the metabolic fit-
ness of immune cells, hindering their proliferation, differentiation, and
effector functions10. Notably, cancer cells often display a marked
upregulation in lipidmetabolism, a strategicmove that not only caters
to their proliferation demands but also manipulates stromal cells, like
tumor-associated macrophages (TAMs), contributing to an immuno-
suppressive TME11,12. Understanding these metabolic interactions will
provide new insights into potential therapeutic targets, which can
restore normativemetabolic function or enhance themetabolic fitness
of immune cells to combat cancer effectively.

TREM2 (triggering receptor expressed on myeloid cells 2) is a
TAM-specific cell surface receptor that functions as a lipid sensor with
broad implications for lipid metabolism, immune reaction, and
phagocytosis13. Previous studies have demonstrated an immunosup-
pressive role of TREM2+ TAMs in multiple cancers14. TREM2+ TAMs are
noted for their high expression of immune inhibitory molecules and
play a pivotal role in inducing the exhaustion of CD8+T cells15. Never-
theless, the impact of TREM2+ TAMs in HCC appears to be more
complex and controversial. Reports indicated that the expansion of
TREM2+ TAMs following transarterial chemoembolization (TACE)
treatment in HCC may hinder the effector function of CD8+ T cells16.
Conversely, another study showed that the presence of fetal liver-like
FOLR2+CD163+ TAMs, rather than TREM2+ TAMs, was associated with
increased immunosuppressive interactions17. Moreover, despite the
recognized enrichment of TREM2+ TAMs in HCC tumor tissues17, their
exact origin and themechanisms driving their accumulationwithin the
TME of HCC remain unclear.

In this work, we employ a comprehensive approach including
single-nucleus RNA sequencing (snRNA-seq), scRNA-seq, and spatial
transcriptomic sequencing to unveil the heterogeneity of HCC can-
cer cells and their impact on TME. Leveraging snRNA-seq, known for
its improved performance in sequencing hepatocyte-linage cells5,6,
we identify three distinct functional archetypes (i.e., metabolism,
inflammation, and stemness) within HCC cancer cells. Moreover, we
highlight a co-localization pattern between metabolism archetype
cancer cells and TREM2+ TAMs that restrict immune infiltration.
Mechanistically, we find that the upregulated SQLE, a pivotal cho-
lesterol biosynthesis enzyme, in metabolism archetype cancer cells
leads to oxLDL formation, subsequently inducing TREM2+ TAM
infiltration via the activation of the TREM2-SYK-CEBPα axis. Impor-
tantly, targeting either TREM2 or SQLE disrupts this metabolic
crosstalk, reactivates anti-tumor immunity, and improves the
immunotherapy efficacy in HCC.

Results
Integrative single-cell and nucleus transcriptomic atlas of
hepatocellular carcinoma
To obtain a comprehensive transcriptomic landscape of HCC, we
applied two single-cell genomic methods: (1) scRNA-seq on 8 primary
HCC tumors and 4 adjacent normal tissues, as well as 7 mouse tumors
from our established spontaneous HCC model18 integrated with a
previous published dataset covering 2 normal mouse livers19, and (2)

snRNA-seq on 12 primary HCC tumors integrated with a previous
published dataset encompassing 2 adjacent normal tissues20 (Fig. 1A).
To enable integrated analysis of single-cell multi-omics data, we uti-
lized scANVI21 for batch correction, which has been shown to perform
well on integrating strongbatchwhilepreserving underlying biological
information22 (Illustrated in Supplementary Fig. S1A). To this end, we
classified 10major cell types in both human andmouse single-cell data
(Fig. 1B and Supplementary Fig. S1B, E) and found that snRNA-seq
captured more hepatocytes while scRNA-seq performed better at
detecting immunocytes (Supplementary Fig. S1C).Weobserved strong
similarity between the transcriptome profiles of major cell types in
mouse and human (SVM-predicted probability > 0.4) except for lym-
phocytes (T, NK, and B cells) (SVM-predicted probability < 0.4, Sup-
plementary Fig. S1F). Notably, the proportions of monocytes/
macrophages and hepatocytes were significantly upregulated in
human and mouse HCC tissue compared to adjacent normal liver
(Supplementary Fig. S1G), indicating pivotal roles of these cell types in
shaping HCC TME.

Three functional archetypes of HCC cancer cells
Due to its higher capture rate of hepatocyte-lineage cells5,6, we utilized
snRNA-seq to investigate the functional programs adopted by HCC
cancer cells. The origins of cancer cells were confirmed by inferring
copy number variations (inferCNV) (Supplementary Fig. S2A). Our
snRNA-seq data revealed higher total cancer cells, cancer cells per
sample, and cancer cell fractions compared to other published scRNA-
seq datasets (Supplementary Fig. S2B). To dissect coherent functional
programs preferentially expressed by cancer cell subsets across
patients, we employednon-negativematrix factorization (NMF) onour
snRNA-seq data. This analysis uncovered eight metaprograms,
reflecting common expression patterns across multiple tumors
(Fig. 1C). The observed 8 metaprograms were further annotated using
the top 50 genes ranked by NMF scores (Supplementary Fig. S2C and
Supplementary Data 3). Correlation analysis of obtained metapro-
grams revealed four expression modules presented in human HCC,
including (1) Metaprogram P1, P2, and P3 (metabolism); (2) Metapro-
gram P4 (proliferation); (3) Metaprogram P5 (inflammation);
(4) Metaprogram P6, P7 and P8 (stemness), which showed strong
correlation within program while followed co-exclusion patterns with
each other (Fig. 1D). NMF analysis on cancer cells of scRNA-seq data
revealed these four similar expression modules (Supplementary
Fig. S2D). Furthermore, a similar correlation pattern was observed in
the public scRNA-seq dataset (GSE149614) and HCC bulk tran-
scriptomes (TCGA-LIHC) (Supplementary Fig. S2E).

Notably, across individual cancer cells, metabolism, stemness,
and inflammatory modules exhibited aggregated yet co-exclusion
distribution (Fig. 1E and Supplementary Fig. S2E, F). However, the
proliferation module was found to be upregulated in both a subset of
metabolism and stemness archetype cancer cells (Fig. 1E and Supple-
mentary Fig. S2G), indicating that it represented a cell state that
occurred in multiple cancer cell subtypes23. Therefore, the above
findings identified three functional archetypes in HCC cancer cells,
including the metabolism archetype displaying enhanced lipid (cho-
lesterol/fatty acid), lipoprotein, and xenobiotic metabolism, the
stemness archetype exhibiting higher protein translation, EMT, and
stem cell signatures, and the inflammation archetype characterized by
acute-phase and complement responses (Supplementary Fig. S2H).
Principal component analysis (PCA) confirmed that cancer cells of
different archetypes formed independent clusters (Fig. 1F). In accord,
we validated cancer cell metaprograms in our spontaneous HCC
mouse model by showing 7 metaprograms (NMF programs mP1-mP7)
(Supplementary Fig. S3A and Supplementary Data 3). We found that
mP1, mP2, mP3, mP4, and mP7 partially simulated their functional
counterparts of P4 (Proliferation), P1, P3 (lipid metabolism), and P8
(cancer stemness) programs in human HCC, while mouse HCC lacked
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inflammatory response or a discrete EMT program as observed in HCC
patients (Supplementary Fig. S3B).

To explore the spatial heterogeneity of these identified HCC
archetypes, we integrated spatial transcriptomic data with our single-
cell transcriptomic data using two different approaches: (1) spatial
integration workflow implemented by the Seurat package24; (2) spatial
deconvolution workflow implemented by the Cell2location package25.
We performed spatial transcriptomics on 4 primary HCC tumors

(Fig. 1A). Integration of spatial transcriptomics with snRNA-seq data
revealed that functional archetypes exhibited distinct distribution
patterns (Fig. 1G, J and Supplementary Fig. S3C). Further analysis
showed that regions of different archetypes upregulated corre-
sponding genes and GO terms observed in single-cell archetypes
(Fig. 1H, I, K, L). The heterogeneous distribution of cancer cell arche-
types was also confirmed by examining the mutually exclusive
expressions of archetype-relatedmarkers in PanCK+ cancer cells (APOE
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for metabolism, SAA1/2 for inflammation, and CD44 for stemness)
(Fig. 1M). Furthermore, H&E staining revealed distinct pathological
features of HCC archetypes: stemness archetype cells were char-
acterized by spindle-shaped nucleus, indicating the upregulation of
EMT process26; metabolism archetype cells had generally round nuclei
and medium cell size; inflammation archetype cells were identified
with increased cytoplasmic volume,whichcouldbedue to cell swelling
that resulted from persistent inflammatory stress27 (Supplementary
Fig. S3D).

We next extended the archetype identification to human and
mouseHCC cell lines. Analysis of the expression data of 31 humanHCC
cell lines (GSE97098) revealed that these cell lines can be classified into
metabolism (9 cell lines) and stemness (22 cell lines) archetypes based
on the archetype signature genes (Supplementary Fig. S3E), but no cell
lines demonstrated prominent inflammatory archetype character-
istics. Further, RNA sequencing on 4 mouse HCC cell lines revealed
similar metabolism/stemness classification patterns (Supplementary
Fig. S3F): Hepalclc7 and Hepa1-6 were classified as metabolism
archetypes, with elevated expressions of apolipoprotein (Apoa2,
Apoc1), xenobiotic (Fmo3) and fatty acid/cholesterol (Fabp4, Hmgcr,
Sqle) metabolism, while RIL-175 and Hep53.4 showed closer relation-
ships with stemness archetype, with elevated expressions of stemness-
related genes (Cd24a, Klf5). Scoring analysis confirmed that cancer cell
lines that belong to themetabolismarchetype have higher expressions
of metabolism-related NMF program (P1, P2, P3, mP3, mP4), while
cancer cell lines of the stemness archetype upregulated stemness-
related NMF program (P6, P8, mP7) (Supplementary Fig. S3G, H).

Together, our study unveils three distinct archetypes (metabo-
lism, stemness, and inflammation) in HCC cancer cells, each exhibiting
unique spatial distribution.

Identification of an immuno-inhibitory niche supported by
metabolism archetype cancer cells and TREM2+TAMs
During the development of human malignancies, genetically hetero-
geneous malignant cells have distinct interactions with the local
microenvironment. Togain insights into the impactofHCCarchetypes
on the TME, we investigated the spatial co-localization of malignant
cells with nonparenchymal cells, such as immune cells, endothelial
cells, and fibroblasts. Re-clustering of non-malignant cells revealed 31
different cell subtypes (Fig. 2A and Supplementary Fig. S4A–C).
Notably, Seurat spatial integration revealed thatmetabolismarchetype
cancer cells showed spatial co-localization with immunosuppressive
TAMs, characterized by TREM2+TAMs and FOLR2+TAMs, while exhi-
biting spatial segregation with effector lymphocytes, such as CD8+T
effector memory (Tem), CD4+T activated, and B cells (Fig. 2B, C and
Supplementary Fig. 4D, E). A similar localization pattern was observed
in public HCC spatial transcriptomic datasets (GSE224411, Supple-
mentary Fig. S4F). Furthermore, across the tumor region in all four
spatial transcriptomic samples, cancer cells of metabolism but not
stemness or inflammation archetype exhibited strong spatial co-
localization with TREM2+TAMs (Fig. 2D and Supplementary Fig. 4G),
suggesting that TREM2+TAM formed an immunosuppressive niche
specifically with metabolism archetype cancer cells. This niche was

validated by cell2location spatial deconvolution, which demonstrated
a similar colocalization of metabolism archetype cells and
TREM2+TAMs that restricted effector immune cell infiltration (Fig. 2E,
F).Moreover,multiplex immunofluorescence (mIF) analysis confirmed
this colocalization pattern of metabolism archetype cancer cells
(APOE+PanCK+) and TREM2+TAMs (TREM2+CD68+) at the protein
expression level (Fig. 2G). Consistently, expression ofmacrophage and
TREM2+TAM signature genes was elevated in metabolism archetype-
high regions (Supplementary Fig. S4H).

To validate and understand the role of this colocalization pattern
in a larger patient cohort, we deconvoluted TCGA-LIHC bulk RNA-
sequencing data with the BayesPrism algorithm28. Our results revealed
that patients with higher metabolism archetype proportion exhibited
increasedTREM2+TAM,decreasedCD8+T cell andCD8+Tem infiltration
(Supplementary Fig. S4I). Moreover, higher proportions of both
metabolism archetype cancer cells and TREM2+TAMs defined a sub-
group of patients with shorter progression-free interval (PFI) and
disease-free interval (DFI) (Supplementary Fig. S4J). In this subgroup,
protumor myeloid infiltration was increased, but the infiltration of
other TME cells was decreased, including lymphocytes and stromal
cells (Supplementary Fig. S4K). These results suggested that the co-
upregulation of TREM2+TAMs and metabolism archetype cancer cells
may promote immuno-suppressive TME formation and HCC
progression.

Considering that this niche showed immuno-suppressive char-
acteristics, we sought to investigatewhether TREM2+TAM,metabolism
archetype cancer cells, and their co-localization were associated with
HCC immunotherapy response. We established an HCC neoadjuvant
cohort of 10 patients who underwent anti-PD1 therapy before surgical
resection, followed by scRNA-seq (4 patients) and immunohis-
tochemistry (10 patients) analysis (Fig. 1A and Supplementary Fig. S5A,
B). To investigate the association between cancer cell heterogeneity
and immunotherapy response in the context of cancer cell archetypes,
we transferred the archetype annotation from snRNA-seq data to the
cancer cells of immune checkpoint blockade non-responsive (ICB-NR)
and ICB-responsive (ICB-R) tumors using Seurat reference mapping
algorithms24. This method accurately identified the presence of
metabolism and stemness archetype cancer cells in ICB-R/ICB-NR
tumors, as evidenced by the expression of archetype-related markers
(Supplementary Fig. S5C). However, only a limited number of cells
(<10) were assigned to the inflammation archetype, likely due to the
limited capture of cancer cells by scRNA-seq. Proportion analysis
showed that the metabolism archetype of cancer cells is enriched in
ICB-NR tumors (Supplementary Fig. S5D). Consistently, genes related
to lipoprotein, xenobiotic, and fatty acid/cholesterol metabolismwere
upregulated in ICB-NR cancer cells (Supplementary Fig. S5E). Further
analysis of the myeloid cells revealed that TREM2+TAMs were sig-
nificantly enriched in ICB-NR HCC (Supplementary Fig. S5F, G). Mar-
kers of TREM2+TAMs, rather than those of other TAMs, were
upregulated in TAMs of ICB-NR HCC (Supplementary Fig. S5H). The
enrichment of metabolism archetype cancer cells and TREM2+TAMs
was validated in an independent HCC immunotherapy cohort con-
taining bulk RNA-seq and CD45+ scRNA-seq data (GSE235863)

Fig. 1 | Three functional archetypes of HCC cancer cells. A Schematic diagram of
this study design. B UMAP (uniform manifold approximation and projection) of
main cell types in human primary HCC sc & snRNA-seq dataset (left) and mouse
HCC scRNA-seq dataset (right). C Hierarchical clustering of pairwise similarities
between NMF programs identified across all cancer cells from snRNA-seq samples.
D Heatmap displays the Pearson correlation coefficients calculated between the
single-cell gene signature scores of NMF metaprograms. E Heatmap showing the
expression of NMF metaprograms. Cells were ordered by the P2 score. F PCA of
1000 random-sampled cancer cells colored by functional archetypes (left). The
normalized, scaled expression of indicated marker genes for each functional

archetype (right).G, JHE staining and predicted abundanceof indicated cancer cell
archetypes in spatial sections ofHCC-2 (G) andHCC-3 (J). Data are representative of
n = 4 spatial transcriptomic slides. Scale bar, 1mm. H, K Volcano plot displays the
DEGsbetween indicated spatial regions inHCC-2 (H) andHCC-3 (K). I,LGOanalysis
of the DEGs of indicated spatial regions in HCC-2 (I) and HCC-3 (L).
M Immunofluorescence staining of CD44, APOE, SAA1/2, and PanCK on HCC sec-
tions. For each field, representative cells are indicated by arrows, including
CD44+PanCK+ cells (red), APOE+PanCK+ cells (yellow), and SAA1/2+PanCK+ cells
(green). Scale bar, 50μm. Images are representative of n = 3 HCC samples. Sche-
matic inAwas created in BioRender. Chu, T. (2025) https://BioRender.com/r2v4jgs.
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(Supplementary Fig. S5I). These data demonstrated the association of
metabolism archetype cancer cells and TREM2+TAMs with HCC
immunotherapy resistance. Furthermore, we analyzed the spatial
localization of metabolism archetype cancer cells and TREM2+TAMs in
ICB-R/ICB-NR samples bymIF analysis. Our results showed that the co-
localization structure between TREM2+TAMs and metabolism arche-
type cancer cells (APOE+PanCK+) is preserved in ICB-NR but not ICB-R

HCC (Supplementary Fig. S5J). This observation was validated in a
public spatial transcriptomic dataset29, which revealed spatial co-
expression ofmetabolism archetype and TREM2+TAM signature genes
in ICB-NR but not ICB-R samples, with notably decreased CD8A
expression in this co-expression region (Supplementary Fig. S5K).

Taken together, our results indicate that metabolism archetype
cancer cells support an immuno-inhibitory niche characterized by
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increased myeloid cell infiltration, especially TREM2+TAMs, which
promotes HCC progression and immunotherapy resistance.

TREM2+TAM drives HCC progression and immunotherapy
resistance via SPP1-mediated dual action on CD8+T cells and
cancer cells
We next examined the mechanisms of TREM2+TAMs in HCC progres-
sion and immunotherapy resistance. Scissor30 prediciton analysis
revealed that cells associated with worse clinical outcomes (Scissor+

cells) were mainly enriched in TREM2+TAMs (Fig. 3A). Correspond-
ingly, TREM2+TAM was the only cluster that indicated worse clinical
outcomes after adjusting for clinical variables in multivariable Cox
survival analyses (Fig. 3B). These results indicated that TREM2+TAMs
were more associated with HCC progression than other myeloid
clusters.

To understand the transcriptional identities of cancer-promoting
TAMs, we performed differential expression (DE) analysis of Scissor+

cells with other myeloid cells and found that SPP1 ranks the highest
among the differential expressed genes (Fig. 3C and Supplementary
Data 3). SPP1 is a glycoprotein secreted by cancer cells, CAFs, or mac-
rophages, which plays a pivotal role in regulating cancer growth, drug
resistance, and anti-tumor immunity31,32. Interestingly, TREM2+TAMs
but not CAFs or cancer cells expressed the highest level of SPP1 in the
HCC TME (Supplementary Fig. S6A), and TREM2 strongly correlated
with SPP1 in TAMs but not normal macrophages (Fig. 3D), which was
confirmed bymIF (Fig. 3E). Furthermore, single-cell proportion analysis
and flow cytometry revealed that TREM2+SPP1+TAMs were significantly
enriched in HCC tumor tissues (Supplementary Fig. S6B, C). Notably, in
the TCGA-LIHC cohort, TREM2 and SPP1 expressions are strongly cor-
related in tumor samples (Supplementary Fig. S6D), and co-
upregulation of TREM2/SPP1 was indicative of worse prognosis
(Fig. 3F). Additionally, analysis of mouse HCC scRNA-seq revealed a
similar tumor-specific TREM2+SPP1+TAM subset with conserved tran-
scriptomic signatures across species (SVM-predicted probability > 0.4,
Supplementary Fig. S6E–H). These results indicated that TREM2+TAM
promoted HCC progression, possibly via SPP1 secretion.

We further confirmed that TREM2+TAM was the major source of
SPP1 in our neoadjuvant cohort, and SPP1 expression was significantly
upregulated in TAMs from ICB-NR HCC (Fig. 3G and Supplementary
Fig. S6I). Similar results were obtained in CD45+ scRNA-seq data from
GSE235863 (Supplementary Fig. S6J). Furthermore, spatial co-
expressions of TREM2 and SPP1 were detected in ICB-NR but not
ICB-RHCC (Supplementary Fig. S6K). Consistently,mIF confirmed that
TREM2+SPP1+TAMs were enriched in ICB-NR HCC tissues (Supple-
mentary Fig. S6L). These results supported that TREM2+TAM and its
SPP1 production are upregulated in immunotherapy-resistant HCC.
Moreover, we analyzed putative crosstalk of TREM2+TAM-derived
SPP1 signaling using LIANA ligand-receptor analysis30. Our results
revealed that SPP1-integrin interactions between TREM2+TAM and
cancer cells, as well as SPP1-CD44 interactions between TREM2+TAM
and CD8+T cells, were increased in ICB-NR HCC (Supplementary

Fig. S6M). Analyzing expressions of SPP1 receptors confirmed that
integrins and CD44 were upregulated in cancer cells and CD8+T cells
from ICB-NR HCC, respectively (Fig. 3H). Notably, expressions of SPP1
and its receptorswereenhanced in theniche supportedbymetabolism
archetype cancer cells and TREM2+TAMs (Supplementary Fig. S6N),
and co-expression of metabolism archetype-related markers, TREM2,
SPP1, andSPP1 receptors,wasdetected in ICB-NRHCC (Supplementary
Fig. S6O). Previous reports suggested that SPP1-CD44 is an important
immune checkpoint restricting CD8+T cell activation33, while SPP1-
integrin signaling is crucial for cancer cell survival, invasion, and
treatment resistance34. Therefore, TREM2+TAM-secreted SPP1 acting
on cancer cells and CD8+T cells could play a role in supporting
immunosuppressive niche formation and immunotherapy resistance
in HCC (Fig. 3I).

Next, we sorted TREM2+/TREM2− TAMs from fresh human HCC
samples, followed by co-culture assays with CD8+T cells or cancer cells
(Supplementary Fig. S7A). Cancer cell line resembling metabolism
archetype signatures (Hep3B) was used to model the in vivo co-
localization of metabolism archetype cancer cells and TREM2+TAMs.
Isolated TREM2+TAMs expressedmarkers resembling the TREM2+TAM
subset in single-cell data (SPP1, MSR1, FABP5, CTSB, etc.) (Fig. 3J) and
upregulated SPP1 mRNA and protein expressions (Supplementary
Fig. S7B, C). Co-culture assays with CD8+T demonstrated that
TREM2+TAMs hindered IFNγ+CD8+T expansion, which can be reversed
by SPP1 neutralization (Fig. 3K), suggesting that TREM2+TAM-derived
SPP1 is a mediator of CD8+T dysfunction. Furthermore, co-culture
assays with Hep3B showed that TREM2+TAMs promoted cancer cell
proliferation, migration, and invasion in an SPP1-dependent manner,
confirming that TREM2+TAM-derived SPP1 promotedHCCprogression
(Supplementary Fig. S7D, E). Additionally, TREM2+TAM co-culture did
not affect the expression of metabolism archetype signature genes
(Supplementary Fig. S7F), suggesting that the cancer-promoting effect
of TREM2+TAMs was not contingent upon shaping the metabolic
phenotype of cancer cells.

IFNγ and TNF (IFNγ/TNF) are two CD8+T-cell effector cytokines
that play an important role in anti-tumor immunity, and resistance of
cancer cells to IFNγ/TNF-mediated apoptosis contributes to immu-
notherapy resistance35. We found that despite the enrichment of
immunosuppressive TREM2+TAMs, TNF/IFNG expressions of
CD8+T cells were upregulated in ICB-NR tumors (Fig. 3L), consistent
with previous reports36. TNF and IFNG expressions were mainly
restricted to effector CD8+T clusters (CD8+Teff, early CD8+Tem, and
CXCL13+CD8+T) (Fig. 3M), which were mostly enriched in ICB-NR
tumors (Fig. 3N). This phenomenon suggested the ongoing cytokine
elaboration in ICB-NR HCC, which could be due to the failure of tumor
control and continuing tumor-elicited inflammation37. Considering
that SPP1 mediated cancer cell treatment resistance, we examined
whether TREM2+TAM-derived SPP1 induced the resistance of cancer
cells to IFNγ/TNF-mediated apoptosis. Hep3B co-cultured with
TREM2+TAMs exhibited decreased sensitivity to combined treatment
of TNF/IFNγ, which was reversed by SPP1 neutralization (Fig. 3O).

Fig. 2 | Identification of an immuno-inhibitory niche supported bymetabolism
archetype cancer cells and TREM2+TAMs. A UMAP of main cell types and their
subtypes recovered from the human sc & snRNA-seq dataset.B,C Seurat-predicted
cell abundance of indicated cell subtypes on spatial sections of HCC-2 (B, left) and
HCC-3 (C, left). Visualization of cell type co-localization by Pearson correlations in
HCC-2 (B, right) andHCC-3 (C, right). Positive correlation values indicate spatial co-
localization, while negative values represent spatial segregation. Scale bar, 1mm.
D Dotplot displays the mean estimated cell abundance (x-axis) and spatial corre-
lation coefficients with metabolism archetype cancer cells (y-axis) of indicated cell
clusters across the tumor region of four spatial transcriptomic slices in this study
(HCC-1, HCC-2, HCC-3, and HCC-4). Positive correlation values indicate spatial co-
localization, while negative values represent spatial segregation. E Cell2location-
predicted cell abundance of indicated cell subtypes on spatial sections of HCC-2

(upper) and HCC-3 (lower). Scale bar, 1mm. F Cell abundance for CD8+Tem,
TREM2+TAM, and metabolism archetype cancer cells in HCC-2 (upper) and HCC-3
(lower), shown as overlaid color intensity over the hematoxylin and eosin (H&E)
images. White dotted lines indicated the niche formed by metabolism archetype
cancer cells and TREM2+TAMs that restricted CD8+Tem infiltration. Data are
representative of n = 4 spatial transcriptomic slides. Scale bar, 1mm.
G Immunofluorescence staining of PanCK, APOE, CD68, and TREM2 on HCC tissue
sections. Two images represented the colocalization region and non-colocalization
region ofmetabolism archetype cancer cells and TREM2+TAMs, respectively. White
arrows indicated the close proximity between metabolism archetype cancer cells
(APOE+PanCK+) and TREM2+TAMs (CD68+TREM2+). Scale bar, 100 μm. Images are
representative of n = 3 HCC samples.
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Furthermore, recombinant SPP1 drove the resistance to TNF/IFNγ in
cultured cancer cells and HCC organoids, which can be reversed by
integrin inhibitors (Fig. 3P, Q), suggesting SPP1-integrin interaction as
an importantmechanism for the resistanceof cancer cells to TNF/IFNγ-
mediated cell death.

To validate the function of TREM2+SPP1+TAMs in vivo, we isolated
TREM2+/TREM2-TAMs from our spontaneous HCC tumors and

performed co-injection experiments with Hepa1–6 cells, which better
simulated the transcriptional identities of metabolism archetype can-
cer cells (Supplementary Fig. S3F). TREM2+TAMs promoted tumor
growth in immunocompetent C57/BL6mice (Supplementary Fig. S7G),
which was associated with increased intratumoral SPP1+TAMs and
decreased effector CD8+T cells (Supplementary Fig. S7H, I). Cancer
cells isolated from TREM2+TAM co-injection tumors exhibited
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decreased sensitivity to IFNγ/TNF treatment (Supplementary Fig. S7J).
Additionally, TREM2+TAMs enhanced tumor growth in immunodefi-
cient NOD-SCID Il2rγ−/− (NSG) mice (Supplementary Fig. S7K) and
increased tumoral Ki67 expression (Supplementary Fig. S7L). Fur-
thermore, considering that different cancer cell archetypes were
observed in mouse spontaneous HCC, we established the Trem2-defi-
cient spontaneous HCCmodel to investigate the effect of TREM2+TAM
on cancer growth and immunotherapy efficacy in the context of tumor
heterogeneity (Supplementary Fig. S7M). We found that Trem2-defi-
cient mice exhibited increased sensitivity to anti-PD1 (Supplementary
Fig. S7N). Trem2 deficiency decreased SPP1 expression of TAMs and
showed an addictive effect on activating CD8+T cells with anti-PD1
(Supplementary Fig. S7O, P). Moreover, treatment of SPP1 antibody
reduced tumor growth in wild-type but not Trem2-deficient mice
(Supplementary Fig. S7Q), confirming that TREM2+TAM-derived SPP1
is crucial for HCC immunosuppression and tumor progression.

Overall, our findings highlight the role of TREM2+TAMs in pro-
moting tumor progression and immunotherapy resistance via SPP1-
mediated dual action on HCC cancer cells and CD8+T cells.

TREM2+TAMsexhibit elevated lipidmetabolismandare induced
by oxLDL produced from metabolism archetype cancer cells
To gain more mechanistic insights into the co-localization of meta-
bolism archetype cancer cells and TREM2+TAMs, we examined but
failed to find any specific ligand-receptor pairs between these two cell
types (Supplementary Fig. S8A). Given that the modulation of local
TMME by cancer cells potentially influences immune cell functions10,
we hypothesized that local TMME affected by metabolism archetype
cancer cells might reprogram TREM2+TAM polarization. Indeed,
metabolite flux estimation (FLUXestimator)38 revealed an upregulation
of lipid-related metabolic flux and metabolites in the regions with co-
localization of TREM2+TAMs and metabolism archetype cancer cells
(Supplementary Fig. S8B, C). Furthermore, TREM2+TAMs were enri-
ched in lipid metabolism, oxidative phosphorylation, and endocytosis
program but depleted of immune response GO terms (Fig. 4A, B),
resembling lipid-associated macrophages (LAMs)39. Besides,
TREM2+TAMs exhibited high levels of LAM signatures but low levels of
M1/M2 signatures (Supplementary Fig. S8D). These results thus indi-
cate a potential role of lipids in inducing TREM2+TAM polarization in
the TME.

For validation, primary macrophages were cultured with tumor
interstitial fluid (TIF) isolated from fresh HCC samples, representing

themetabolite profile of TME, followed by determining the expression
of TREM2 and SPP1, twomarkers of TREM2+TAMs.We found thatHCC-
derived TIF was enriched in lipid-related metabolites (Supplementary
Fig. S8E). Furthermore, HCC-derived TIF potently induced the
expression of TREM2 and SPP1 in macrophages, which was attributed
to lipids, but not lactate acid (Fig. 4C and Supplementary Fig. S8F, G).
In addition, the co-localization of TREM2 and SPP1 expression and
Bodipy staining was readily detected in HCC tissue sections (Fig. 4D),
reaffirming that lipids induced TREM2+TAM polarization.

To further investigate which lipid component(s) induce
TREM2+TAM polarization, we examined the effect of diverse lipids or
lipoproteins, known to be enriched in TIF40, on regulating TREM2 and
SPP1 expressions in TAMs generated by an in vitro induction system
(Fig. 4E and Supplementary Fig. S8H). Our data demonstrated that
oxLDL most potently induced the expression of TREM2 and SPP1 as
well as SPP1 secretion in TAMs (Fig. 4E). This effect of oxLDL on
inducingTREM2andSPP1 expressionwas in a dose-dependentmanner
(Fig. 4F). As a result, oxLDL-treated TAMs promoted invasion, pro-
liferation, resistance to TNF/IFNγ of Hepa1-6 cells, and inhibited CD8+T
cell activation in a SPP1-dependent manner (Fig. 4G, H and Supple-
mentary Fig. S8I, J). In accord, oxLDL was the most upregulated lipo-
protein in HCC TIF (Fig. 4I and Supplementary Fig. S8K), and tumor
interstitial levels of oxLDL (Fig. 4J), but not other lipoproteins (Sup-
plementary Fig. S8L), were positively correlated with
TREM2+SPP1+TAM infiltration in human HCC samples. Similar results
were observed in the mouse spontaneous HCC model (Fig. 4K, L).
Furthermore, RNA sequencing revealed a distinct transcriptomic shift
triggered by oxLDL but not LDL treatment in TAMs (Fig. 4M). DE
analysis showed that oxLDL-induced genes were over-represented in
the single-cell transcriptome of TREM2+TAMs (Fig. 4N and Supple-
mentary Fig. S8M). Moreover, we co-injected mock/oxLDL-treated in
vitro-induced TAMs with Hepa1–6 cells (Fig. 4O), and found that
oxLDL-treated TAMs promoted tumor growth (Fig. 4P), which was
associated with increased intratumoral TREM2+SPP1+TAMs (Fig. 4Q)
and decreased IFNγ+CD8+T cell infiltration (Fig. 4R). Additionally, given
that heterogeneous cancer cell modules were observed in our spon-
taneous HCC model (Supplementary Fig. S3A, B) and tumor-derived
organoid is a powerful approach to replicate intratumoral
heterogeneity41, we further constructed co-injection models of mock/
oxLDL-treated TAMs with spontaneous HCC-derived organoid to
validate above findings in the context of cancer cell heterogeneity. Our
data showed that oxLDL-treated TAMs promoted organoid growth,

Fig. 3 | TREM2+TAMdrivesHCCprogression and immunotherapy resistance via
SPP1-mediated dual action on CD8+T cells and cancer cells. A UMAP of the
Scissor-selected cells (left). Barplot shows the distribution of Scissor+ cells across
different myeloid populations and conditions (right). B Forestplot shows the
hazard ratios and 95% confidence intervals for different myeloid cluster signatures
and clinical information according to a multivariable Cox model in the TCGA-LIHC
cohort (n = 353 patients). Squares represent the hazard ratios, and the horizontal
bars extend from the lower limits to the upper limits of the 95%confidence intervals
of the estimates of the hazard ratios. CDotplot displays the DEGs between Scissor+

cells and all other cells. D Dotplot displays the expression correlation of SPP1 with
other genes in myeloid cells (left). Heatmap shows the expression correlation of
indicated genes with SPP1 in myeloid cells from adjacent non-tumor (ANT) and
tumor samples (right). E Representative images and quantification of TREM2, SPP1,
and CD68 immunofluorescence staining on human HCC sections. Representative
cells that denote the co-upregulation of TREM2 and SPP1 in CD68+ TAMs are circled
by a dotted line. Scale bar, 50μm. F Kaplan–Meier survival analysis of HCC patients
from the TCGA-LIHC cohort categorized into groups based on normalized TREM2
and SPP1 expression. The cutpoints for patient grouping were calculated by the
surv_cutpoint function from the survminer R package. G Barplot shows the mean
expression of SPP1 across different myeloid cell populations (upper) and in TAMs
from ICB-R and ICB-NR HCC samples (lower). H Dotplot shows the expression of
SPP1 ligands in CD8+T cells (above) or cancer cells (below) from pre-ICB, ICB-NR,
and ICB-R HCC scRNA-seq samples. I Schematic of the interaction between

TREM2+TAMs and CD8+T cells or cancer cells in immunotherapy-resistant HCC.
J Heatmap shows the relative expression of indicated genes in isolated TREM2+/
TREM2−TAMs.K Flow cytometryof IFNγ expression in CD8+T cells co-culturedwith
human HCC-isolated TREM2-TAMs or TREM2+TAMs ± SPP1 antibody (1μg/mL).
CD8+T cells were isolated from human PBMC and then activated with anti-CD3/
CD28 + IL-2 (50U/mL) before co-culture assays. L Violin plots display the expres-
sion of IFNG and TNF in CD8+T cells from ICB-NR or ICB-R scRNA-seq samples, with
two-tailedWilcoxon-test statistics.MDotplot shows the relative expression of IFNG
and TNF in CD8+T cell clusters.N Tissue preference of CD8+T cell clusters, revealed
by odds ratio (OR) value. O Relative cell viability (mean of n = 3 biological repli-
cates) for Hep3B cells treatedwith a half-log dilution series of TNF (2.5–250 ng/mL)
and IFNγ (1–100ng/mL), cocultured with human HCC-isolated TREM2-TAMs or
TREM2+TAMs ± SPP1 antibody (1μg/mL). P Relative cell viability of Hep3B cells
treated with mock, SPP1 (50 ng/mL), integrin inhibitor TFA (100μM), TNF (250 ng/
mL) plus IFNγ (100ng/mL) (TNF/IFNγ), TNF/IFNγ plus SPP1, or TNF/IFNγ plus SPP1
plus TFA (100μM) for 24h. Q Relative cell viability for patient-derived HCC orga-
noid with indicated treatment. Data represent the mean ± SD, n = 5 biological
replicates in (P), n = 6 biological replicates in (K, Q). Statistical significance was
determined by two-tailed Wald test (B), two-tailed unpaired t test (K, P, Q), two-
tailed Wilcoxon signed rank test (L), and log rank test (F). Schematic in I was cre-
ated in BioRender. Chu, T. (2025) https://BioRender.com/r2v4jgs. Source data are
provided as a Source Data file.
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increased intratumoral TREM2+SPP1+TAMs, and decreased
IFNγ+GZMB+CD8+T infiltration (Supplementary Fig. S8N–P). These
results confirmed oxLDL as a TMME factor capable of eliciting the
protumor TREM2+TAM state in HCC.

We next investigated whether the metabolism archetype of can-
cer cells was associated with oxLDL production and the following
TREM2+TAM expansion. The formation of oxLDL requires lipid per-
oxidation, which is induced by deregulated lipid metabolism and
increased oxidative stress in cancer42. We found that lipid
peroxidation-associated genes and oxidative stress response

signatures were elevated in metabolism archetype cancer cells and
their enriched spatial region (Supplementary Fig. S9A–C). Cancer cell
lipid peroxidation score was also positively associated with
TREM2+TAM infiltration in the snRNA-seq dataset (Supplementary
Fig. S9D). To validate the association between metabolism archetype
cancer cells and oxLDL production, we used in vitro-cultured Hepa1–6
and Hep53.4 tomodel themetabolism and stemness archetype cancer
cells. RNA sequencing revealed increased expression of oxidative
stress response and lipid peroxidation-related genes in Hepa1–6 cells
(Supplementary Fig. S9E). Further analysis showed that Hepa1–6 had
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upregulated lipid peroxidation and oxLDL production levels than
Hepa53.4 and normal hepatocytes (AML12) in vitro (Supplementary
Fig. S9F, G). Furthermore, orthotopic tumors of Hepa1–6 showed
elevated oxLDL expression and TREM2+TAM infiltration than those of
Hepa53.4 or adjacent liver (Supplementary Fig. S9H, I). These results
supported the role of the metabolism archetype of cancer cells in the
activation of the oxLDL-TREM2+TAM axis. To extend the above find-
ings to humans, we demonstrated similar elevation of lipid peroxida-
tion levels and oxLDL production in Hep3B compared to MHCC97H
cells (Supplementary Fig. S9J). Moreover, we collected a cohort of 13
HCC samples, followed by TIF isolation and paired RNA sequencing
analysis (Fig. 4S). These samples were classified into metabolism and
stemness subtypes based on the fractions ofmetabolismand stemness
archetype cancer cells (Fig. 4T), which were confirmed by the
expressions of metabolism and stemness-related NMF programs
(Supplementary Fig. S9K). Notably, we found that TIF isolated from
metabolism-subtype HCCs had elevated oxLDL levels (Fig. 4U and
Supplementary Fig. S9L), and could more potently induce
TREM2+SPP1+TAM expansion (Fig. 4V and Supplementary Fig. S9M).
Additionally, mIF on serial sections of HCC tissue confirmed the
upregulation of oxLDL levels and TREM2+TAM infiltration in the
metabolism archetype-enriched region (R1) but not the stemness
archetype-enriched region (R2) (Supplementary Fig. S9N). These
results suggested that the metabolism archetype of cancer cells was
associated with oxLDL production and the following TREM2+TAM
expansion in HCC.

Together, our findings uncover tumor-enriched oxLDL as a TMME
factor capable of eliciting the protumor TREM2+TAM state in HCC.
Furthermore, themetabolism archetype of cancer cells was associated
with increased oxLDL production and the following TREM2+TAM
expansion.

OxLDL induces TREM2 and SPP1 expression via the TREM2/SYK/
CEBPα axis in TAMs
ScRNA-seq data from wildtype and Trem2−/− tumors14 demonstrated
repressed expression of Spp1 in Trem2−/− TAMs (Fig. 5A), which is
consistent with our observation in Trem2−/− HCC (Supplementary
Fig. S7N).We therefore assumed that TREM2may participate in oxLDL
sensing to regulate SPP1 expression and subsequent secretion. To test
this hypothesis, we treated wildtype and Trem2−/− TAMs with oxLDL,
and found that loss of Trem2 hindered the effect of oxLDL on inducing
SPP1 mRNA and protein expression (Fig. 5B). Trem2−/− TAMs failed to
upregulate SPP1 expression in response to oxLDL (Supplementary

Fig. S10A), and they were less potent in promoting T cell dysfunction
and cancer cell invasion under oxLDL stimulation (Fig. 5C, D). Fur-
thermore, oxLDL-induced SPP1 expression in wild-type TAMs was
hindered by pre-incubating oxLDL with recombinant TREM2 protein
or pre-treating TAMs with TREM2 blocking antibody (Supplementary
Fig. S10B), confirming the crucial role of oxLDL-TREM2 interaction in
controlling SPP1 expression. RNA-sequencing analysis revealed that
Trem2−/− TAMs exhibited upregulation of marker genes that resemble
liver resident macrophages (Macro, Cd5l, Vcam1, etc.; over-
represented in RTM-TAMs), and downregulation of genes involved in
lipid metabolism (Lpl, Ldlr, Fabp3, etc.; over-represented in
TREM2+TAMs) (Supplementary Fig. S10C, D). These results indicated
that TREM2 deficiency could induce TAM to polarize from LAM-like to
RTM-like under oxLDL stimulation.

Upon ligand binding, TREM2 recruits SYK via DAP12, leading to
SYK phosphorylation13. To determine whether oxLDL stimulates
TREM2 signaling, we examined and found that oxLDL treatment could
dose-dependently increase the phospho-SYK (pSYK) levels in TAMs
(Fig. 5E and Supplementary Fig. S10E). Conversely, in vitro-induced
and in vivo-isolated Trem2−/− TAMs exhibited decreased pSYK levels
(Fig. 5F, G). Treatmentwith SYK inhibitors (R406 or Piceatannol) could
reverse the effect of oxLDL on inducing SPP1 expression in TAMs
(Fig. 5H), reaffirming that oxLDL-stimulated TREM2-SYK signaling
upregulates SPP1 expression in TAMs.

Activation of SYK regulates multiple transcription factors (TFs)
that modulate cellular responses. By utilizing SCENIC to infer TF acti-
vation in TAM subsets, we identified three TFs (i.e., CEBPα, BHLHE41,
and PBX3) that were upregulated in both human and mouse
TREM2+TAMs (Fig. 5I). Further analysis revealed that loss of Cebpa
showed the most prominent effect on compromising the induction of
Trem2 and Spp1 (Fig. 5J). Notably, CEBPα was one of the most upre-
gulated TFs in TAMs compared to normal macrophages (Supplemen-
tary Fig. S10F). Full-length CEBPα (42 kDa, p42) was dose-dependently
upregulated by oxLDL in in vitro-induced TAMs (Fig. 5K and Supple-
mentary Fig. S10G). In contrast, CEBPα expression was decreased in
Trem2−/− TAMs (Fig. 5L), as well as in TAMs treated with Syk inhibitors
(Supplementary Fig. S10H). According to these findings, we next set
out to check whether CEBPα controls TREM2 and SPP1 transcription in
TAMs. Analysis of Trem2 and Spp1 gene promoters revealed predicted
CEBPα binding sites (Supplementary Fig. S10I), which could be con-
firmed by chromatin immunoprecipitation-qPCR (ChIP-qPCR) analysis
(Supplementary Fig. S10J). By introducing the binding sites into a
luciferase reporter system, we showed that the luciferase activity was

Fig. 4 | TREM2+TAMs exhibit elevated lipid metabolism and are induced by
oxLDL produced frommetabolism archetype cancer cells. A Gene set enrich-
ment analysis (GSEA) on genes ranked by log2 fold change between TREM2+TAMs
and other TAM clusters. B Dotplot shows the expression of selected genes
belonging to the indicated biological process in TAM subsets. C Flow cytometry of
TREM2 and SPP1 expression in macrophages treated with TIF ±Na2CO3 or lipid
removal reagent (Cleanascite).D Bodipy, TREM2, and SPP1 staining on HCC frozen
sections. Scale bar, 500μm (left), 100μm (right). Images are representative of n = 2
HCC samples. E Heatmap summarizing TREM2, SPP1 expression (mean of n = 3
biological replicates, upper) and supernatant SPP1 concentrations (lower) in
BMDMs or TAMs treated with indicated lipids. F Relative TREM2, SPP1mRNA (left),
protein expression (middle), and supernatant SPP1 concentration (right) in BMDM
or TAM treated with vehicle or oxLDL (25 or 50μg/mL).G Transwell migration and
evasion assays of Hepa1–6 co-cultured with BMDM or TAM treated with vehicle,
LDL (50 μg/mL) or oxLDL (50μg/mL) ± SPP1 antibody (1μg/mL). Scale bar, 100μm.
Quantification was performed with n = 5 random fields. H Flow cytometry of IFNγ
expression inCD8+T cells co-culturedwith BMDMorTAMtreatedwith vehicle, LDL,
or oxLDL± SPP1 antibody. I, K Concentrations of indicated lipoproteins in human
plasma (n = 16 patients) or human TIF (n = 12 patients) (I), and in mouse plasma or
mouse TIF (n = 12 mice) (K). J, L Correlation between TIF oxLDL level and
TREM2+SPP1+TAM proportion in human HCC tumors (n = 12) (J) and mouse HCC

tumors (n = 12) (L).M PCA of the transcriptome of BMDM (n = 3 biological repli-
cates) or TAM treatedwith vehicle (n = 3 biological replicates), LDL (n = 2 biological
replicates), or oxLDL (n = 3 biological replicates). N GSEA of genes upregulated by
oxLDL (log2 fold change > 1), on genes ranked by log2 fold change between TAM
subsets versus other TAMs. Statistical P value was determined from 10,000 per-
mutations. O Schematic of co-injection experiments. P Tumor volume of mock/
oxLDL-treated TAM co-injection tumors (n = 6 mice). Q, R Flow cytometry of
TREM2, SPP1 expression in TAMs (Q) and IFNγ expression in tumor-infiltrating
CD8+T cells (R) (n = 6 mice). S Schematic of the sample collection and analysis
workflow.THeatmapdepicts the BayesPrism-inferred fractions of indicated cancer
cell subpopulations in 13 HCC samples. Hierarchical clustering shows that these 13
HCC samples can be classified into metabolism (8 samples) and stemness (5 sam-
ples) subtypes. U OxLDL concentrations (mean of n = 3 experimental replicates) in
the TIF isolated from metabolism (n = 8) and stemness (n = 5) subtype HCC sam-
ples. V Flow cytometry of TREM2 and SPP1 expression in macrophages (mean of
n = 3 biological replicates) treated with TIF (1:10) isolated from metabolism (n = 8)
and stemness subtype (n = 5) HCC samples. Data represent the mean± SD, n = 3
biological replicates in (C, E, F,H). Statistical significance was determined by a two-
tailed unpaired t-test (C, E–I,K, P–R, U, V) and a two-tailed one-sample t-test (J, L).
Schematics inO and Swere created inBioRender. Chu, T. (2025) https://BioRender.
com/r2v4jgs. Source data are provided as a Source Data file.
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Fig. 5 | OxLDL induces TREM2 and SPP1 expression via the TREM2/SYK/CEBPα
axis in TAMs. A UMAP projection (upper) and barplot (lower) show Spp1 expres-
sion in TAMs from Trem2-wildtype or Trem2-KO tumors, with two-tailedWilcoxon-
test statistics. B Relative SPP1 protein (left, representative of n = 3 biological repli-
cates), mRNA (middle), and supernatant (right) expression in wildtype or Trem2−/−

TAMs treated with oxLDL (50μg/mL). C Flow cytometry of IFNγ in CD8+T cells co-
culturedwithwildtypeorTrem2−/− TAMs treatedwith oxLDL.D Transwellmigration
and evasion assays of Hepa1–6 co-cultured with wildtype or Trem2−/− TAMs treated
with oxLDL. Scale bar, 100μm. Quantification was performed with n = 5 random
fields. E–GWestern blot (WB) and flow cytometry of pSYK expression in BMDM or
TAM treated with vehicle, LDL (50μg/mL) or oxLDL (E), in wildtype or Trem2−/−

TAMs treated with oxLDL (F), and in TAMs isolated from wildtype or Trem2−/−

tumors (G). H Protein (left, representative of n = 3 biological replicates) and
supernatant (right) expression of SPP1 in TAMs treated with oxLDL ± R406 (5μM)
or Piceatannol (40μM). I Venn diagram shows the overlapping activated TFs in
human andmouse TREM2+TAM (left). Regulon ranks of top enriched TFs in human
and mouse TREM2+TAM (right). J Heatmap summarizing the qPCR results in TAMs
treated with vehicle or oxLDL with indicated TF KD (mean of n = 3 biological

replicates).K,LWBofCEBPα levels inBMDMorTAMtreatedwithvehicle, LDLor
oxLDL (K), inwildtypeorTrem2−/−TAMstreatedwithoxLDL(L, left), and inTAMs
isolated from wildtype or Trem2−/− tumors (L, right).M ChIP-qPCR assays of
CEBPα binding at the Trem2 or Spp1 promoter (n = 3 experimental replicates).
N Co-immunoprecipitation assays of DNMT3A and CEBPα interaction in TAMs
treatedwith vehicle or oxLDL.O 5mC levels at theCpG-rich promoter regions of
Trem2andSpp1weredeterminedbyBS-PCRinwildtypeorTrem2−/−TAMstreated
with vehicle or oxLDL ± siCebpa. P Schematic of the co-injection experiments.
Q Tumor volume of Hepa1-6 cells co-injected with shNC/shCebpa TAMs (n = 6
mice). R, S Flow cytometry of TREM2, SPP1 expression in TAMs (R) and IFNγ
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marizing the mechanism of oxLDL inducing TREM2 and SPP1 expression in
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created in BioRender. Chu, T. (2025) https://BioRender.com/r2v4jgs. Source
data is provided as a Source Data file.
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upregulated byCebpa overexpression but downregulated bymutation
of CEBPα binding sites (Supplementary Fig. S10K). Furthermore, we
observed that CEBPα occupancy at the promoter regions ofTrem2 and
Spp1 gene loci could be enhanced by oxLDL treatment in TAMs
(Fig. 5M). We previously reported that CEBPα regulates gene expres-
sion via binding to and inhibiting DNMT3A43. Indeed, co-
immunoprecipitation (co-IP) showed that the interaction of endo-
genous CEBPα andDNMT3A proteins was increased by oxLDL in TAMs
(Fig. 5N). As a result, DNMT activity (Supplementary Fig. S10L) and
global DNA methylation (Supplementary Fig. S10M) were suppressed
in oxLDL-treated TAMs, which was diminished by Cebpa knockdown.
Bisulfite (BS)-PCR and sequencing analysis showed that oxLDL treat-
ment could decrease 5mC levels at the CpG-rich promoter regions of
Trem2 and Spp1, and this effect was, however, abolished by Cebpa or
Trem2 knockdown (Fig. 5O). Furthermore, Cebpa was depleted in in
vitro-induced TAMs via lentiviral transduction of shRNA (Supplemen-
tary Fig. S10N), followed by co-injection with Hepa1–6 cells (Fig. 5P).
We found that shCebpa TAMs were less potent in promoting tumor
growth (Fig. 5Q), which was associated with decreased intratumoral
TREM2+SPP1+TAMs (Fig. 5R) and increased IFNγ+CD8+T cell infiltration
(Fig. 5S). Similar results were observed in the co-injection models of
shNC/shCebpa TAMs with spontaneous HCC-derived organoid (Sup-
plementary Fig. S10O–Q).

In summary, our results suggest that the TREM2-SYK-CEBPα
axis is required for oxLDL-induced TREM2 and SPP1 transactivation
in TAMs, elucidating a mechanistic pathway underlying
TREM2+SPP1+TAM polarization and its impact on tumor progres-
sion (Fig. 5T).

Targeting SQLE enzyme enhances anti-tumor immunity by act-
ing on the oxLDL-TREM2+TAM axis
We next sought to find potential targets in metabolism archetype
cancer cells to impair their action on oxLDL-TREM2+TAM axis and
cancer progression. Integrative survival analysis on 73 metabolism
archetype-specific metabolism genes revealed that cholesterol
metabolism-related genes (SQLE, HMGCR, HMGCS1, FDFT1) exhibited
significant associationwith survival outcomes inmultipleHCC cohorts
(Fig. 6A). These genes were highly expressed in metabolism archetype
cancer cells and corresponding spatial regions (Supplementary
Fig. S11A, B), and showed tumor-specific expression (Supplementary
Fig. S11C, D). Furthermore, the cholesterol metabolism activity of
cancer cells was correlated with cancer cell lipid peroxidation and
TREM2+TAM infiltration in our snRNA-seq dataset (Supplementary
Fig. S11E), suggesting dysregulated cholesterol metabolism of cancer
cells as a potential target to impair the oxLDL-TREM2+TAM axis.

We next selected SQLE, a rate-limiting enzyme in cholesterol
metabolism, as the intervention target because of its strong associa-
tion with HCC patient survival (Fig. 6A). Previous studies reported that
SQLE induced intracellular NADPH/NADP+ reduction and oxidative
stress, which is essential for lipid peroxidation and subsequent oxLDL
formation44. Furthermore, SQLE inhibition resulted in intracellular
squalene accumulation, which is a natural antioxidant that prevents
oxLDL accumulation44. Therefore, SQLE might be a crucial upstream
regulator of the oxLDL-TREM2+TAM axis in metabolism archetype
cancer cells. Consistent with this notion, SQLE expression in cancer
cells was positively correlated with TREM2+TAM infiltration (Fig. 6B)
rather than other TAM signatures (Supplementary Fig. S11F). IHC and
mIF further showed a positive relationship of tumoral SQLE expression
with oxLDL and TREM2+SPP1+TAM infiltration (Fig. 6C), and revealed a
spatial co-localization between SQLEhigh cancer cells, oxLDL, and
TREM2+TAMs on HCC sections (Supplementary Fig. S11G). Notably,
single-cell and IF analysis showed upregulation of SQLE expression in
ICB-NR cancer cells (Fig. 6D, E). These data indicated the role of SQLE
in regulating the oxLDL-TREM2+TAM axis and immunosuppressive
microenvironments of HCC.

To explore the potential mechanism for SQLE reshaping the TME,
Sqle was depleted in Hepa1–6 cells by shRNA (Supplementary
Fig. S11H). As expected, depletion of Sqle led to decreased NADP+/
NADPH ratio and intracellular ROS (Fig. 6F), as well as repressed lipid
peroxidation (Fig. 6G) and reduced oxLDL production (Fig. 6H).
Interestingly, shSqle increased the uptake of Dil-labeled oxLDL by
cancer cells (Fig. 6I), which was associated with upregulation of CD36
(Supplementary Fig. S11I), a major receptor responsible for oxLDL
uptake. Treatment with CD36 inhibitor (Sulfo-N-succinimidyl oleate,
SSO) reversed the elevated uptake of oxLDL in shSqle cancer cells
(Fig. 6I). It is likely that the enhanced oxLDL uptake may compensate
for the repression of de novo lipogenesis due to Sqle knockdown
(Supplementary Fig. S11J). These results thus indicate that the intrinsic
SQLE expression within cancer cells influences lipid peroxidation and
the uptake of oxLDL, resulting in altered oxLDL levels within the TME
(Supplementary Fig. S11K).

To further validate our findings in vivo, we constructed ortho-
topic mouse HCC models with Sqle knockdown (Fig. 6J). Our data
demonstrated that shSqle tumors exhibited decreased growth com-
pared to control cells (Fig. 6K). TIF-derived oxLDL levels were reduced
by Sqle knockdown (Fig. 6L). Depletion of Sqle in cancer cells inhibited
TREM2+SPP1+TAMs infiltration and promoted CD8+T cell activation
(Fig. 6M, N). Additionally, oxLDL levels were found to be positively
correlated with TREM2+TAMs while negatively correlated with
IFNγ+CD8+T cells (Supplementary Fig. S11L, M). Despite the limited
growth of shSqle tumors in immunodeficient NSG mice, the inhibition
rate was lower than that in the immunocompetent model (Supple-
mentary Fig. S11N), suggesting that retard tumor growth in shSqle
tumors involves the alteration of immune response.

Finally, we investigated the effect of targeting SQLE on immu-
notherapy efficacy. Our data from the orthotopic HCC mouse model
demonstrated an additive effect of shSqle and anti-PD1 on suppressing
tumor growth (Fig. 6O, P). Sqle inhibition, but not anti-PD1, repressed
TREM2+SPP1+TAM infiltration (Fig. 6Q). The combination of shSqle and
anti-PD1 showed the highest efficacy in upregulating effector CD8+

T cells (Fig. 6R). Importantly, administration of an FDP-approved SQLE
inhibitor, terbinafine, in spontaneous HCC mouse models showed a
combinatory effectwith anti-PD1 against tumorgrowth (Fig. 6S, T). The
tumoricidal effect of terbinafine and anti-PD1 was associated with
decreased tumor interstitial oxLDL (Supplementary Fig. S11O),
decreased TREM2+SPP1+TAMs (Fig. 6U), and elevated effector
CD8+T cells (Fig. 6V). Additionally, terbinafine treatment did not affect
TREM2+SPP1+TAM proportion in response to oxLDL stimulation (Sup-
plementary Fig. S11P), excluding the possibility that SQLE inhibition
directly affects TREM2+TAM polarization.

Taken together, our findings highlight the role of cancer cell-
intrinsic SQLE in remodeling tumor immunity by modulating oxLDL
levels and TREM2+TAM infiltration in the TME, suggesting SQLE is a
potential target to enhance immunotherapy efficacy in HCC.

Discussion
Increasing evidence suggests the complex heterogeneity and pheno-
typic variations within HCC. For instance, previous proteomic analyses
identified three HBV-HCC subgroups (metabolism, proliferation, and
microenvironment dysregulated)45. Likewise, transcriptomic analysis
has uncovered three HCC subtypes: inflammatory, metabolic, and
immunosuppressive46. Another study through transcriptomics has
identified five HCC subtypes, highlighting that two subtypes with
pronounced stem cell characteristics exhibit increased vascular inva-
sion and poorer outcomes47. Our observation supports and extends
these findings by identifying that metabolism, stemness, and inflam-
mation co-exist as opposite cellular archetypes within HCC cancer
cells, with proliferation acting as a common trait across multiple sub-
populations of cancer cells. Distinct from previous bulk-level investi-
gations, our work contributes to the understanding of heterogeneity
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within HCC cancer cells at single-cell resolution, highlighting that
metabolism, inflammation, and stem-cell reprogramming act as con-
cert events in cancer cells to affect HCC progression. Furthermore,
through the integration of multi-omics data, we demonstrated that
heterogeneousmalignant cell populations formed distinct niches with
other non-malignant stromal cells. Except for the co-localization of
metabolism archetype cancer cells and TAMs, our data showed that
stemness archetypes tended to localize with CAFs and ECs, while the
inflammation archetype was associated with the infiltration of

lymphocytes (Fig. 2B, C). Nevertheless, how stemness and inflamma-
tion archetypes influence HCC progression is not well investigated in
this study and requires further exploration.

The interaction between cancer cells and non-cancer cells within
the TME through metabolic pathways is critical for influencing anti-
tumor immunity and cancer progression10. Supporting this notion,
enhanced lipogenesis activity in cancer cells can create a lipid-rich
microenvironment, leading to M2-like TAM polarization48 and
myeloid-derived suppressor cell (MDSC) expansion49. In this study, we
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discovered that metabolism archetype cancer cells created an
immune-inhibitory niche in conjunction with TREM2+TAMs by altering
the local TMME profile. While TREM2+TAMs are known to exert an
immuno-suppressive role in various types of cancer14, themechanisms
of their origin and their role in reshapingTME remain elusive inHCC. In
this scenario, we uncover that oxLDL is a potential factor driving
TREM2+TAM expansion via the TREM2/SYK/CEBPα axis. This is in
accord with the recognized role of TREM2 in sensing and uptake of
oxLDLby foamymacrophages50.Moreover, we show that SPP1, derived
from TREM2+TAMs, plays a crucial role in tumor proliferation, inva-
sion, and CD8+T dysfunction. Previous studies have linked SPP1 pro-
duced by cancer cells51, CAF52, or TAM53 to malignant progression.
Nevertheless, the understanding of molecular mechanisms behind
SPP1 production in TAMs was limited. While prior studies proposed
hypoxia as a factor to induce SPP1 secretion of TAMs53, this cannot
explainwhyTAMs formeddifferent subtypeswith heterogeneous SPP1
expression, as hypoxia is a common feature of TME in solid tumors54.
Our results unveiled the significance of oxLDL-mediated
TREM2 signaling to control SPP1 secretion of TAMs and HCC pro-
gression, providing insights into the differential modulation of TAM
phenotype by local TMME.

While abnormal cholesterol metabolism is well-documented in
human cancers, its effects on TME have been much less explored.
Several studies demonstrated that enriched cholesterol in theTMEwas
responsible for the induction of protumor TAM phenotype55 and CD8+

T cell exhaustion56. A recent investigation reported that tumor-
intrinsic X-box binding protein 1 (XBP1) stimulates cholesterol meta-
bolism, which in turn activates MDSCs through the release of small
extracellular vesicles49. In this study, we pinpointed cancer cell-
intrinsic SQLE, a rate-limiting enzyme in cholesterol metabolism, as a
potential immunotherapy target due to its significant association with
patient survival and immunotherapy resistance in HCC. While the
therapeutic potential of targeting SQLE has been demonstrated across
various cancer types, prior research has primarily focused on its role in
cancer cell proliferation, survival, and evasion57,58. Our study broadens
the understanding of how tumoral SQLE remodels the TME by facil-
itating lipid peroxidation and subsequent TREM2+TAM infiltration to
diminish anti-tumor immunity. Terbinafine (SQLE inhibitor) is a U.S.
Food and Drug Administration–approved oral drug commonly used
for the treatment of fungal infections. Previous investigations have
demonstrated the satisfying safety profile and relatively few adverse
drug–drug interactions of terbinafine59. Hence, terbinafine could be a
promising immunotherapy adjuvant, and further clinical trials are
required to validate the synergistic effect of combining terbinafine and
immune checkpoint blockade in HCC treatment.

Although this study identified three functional archetypes of HCC
cancer cells, the drivers of these archetypes were not thoroughly
explored. We posit that the formation of distinct cancer cell arche-
types is primarily attributable to specific genomic alternation char-
acteristics, which requires further investigation. In addition, the HCC
neoadjuvant cohort for single-cell sequencing was small. Only scRNA-
seq was used in the HCC neoadjuvant cohort, so the number of cap-
tured cancer cells was limited. Further studies using combined single-
cell/single-nucleus sequencing to demonstrate the evolution of cancer
cell heterogeneity in response to therapy will be meaningful.

In summary, our study underscores an oxLDL-mediated interplay
between HCC cancer cells of the metabolism archetype and
TREM2+TAMs, leading to an immunosuppressive reprogramming of
theTME.We show that targeting either TREM2or SQLE candisrupt this
metabolic crosstalk between cancer cells of themetabolism archetype
and TREM2+TAMs, thereby reinforcing anti-tumor immunity. Our
findings thus shed light on the intricate interplay between HCC cancer
cells and TREM2+TAMs in the TME, offering a promising therapeutic
avenue for HCC immunotherapies (Supplementary Fig. S12).

Methods
Human samples
This study is approved by the Institutional Review Board (IRB) of
ZhongshanHospital, Fudan University (Reference number: B2021-611).
All patients gave informed consent for the collection of clinical infor-
mation, tissue collection, and research testing.

A total of 33 patients who were pathologically diagnosed with
HCC at Zhongshan Hospital, Fudan University, were enrolled in this
study. Fresh tumor and adjacent normal tissue samples used for
scRNA-seq were collected from 7 treatment-naïve primary HCC
patients. Frozen tumor samples used for snRNA-seq and spatial tran-
scriptomics were collected from 16 treatment-naïve HCC patients.
Detailed clinical and pathological information, including age, gender
(self-reported), and tumor size of these 23 patients, was shown in
Supplementary Data 1.

For the establishment of the HCC neoadjuvant cohort, 10
treatment-naïve primary HCC patients at Zhongshan Hospital, Fudan
University, were enrolled. These patients received anti-PD1 mAb
monotherapy before surgical resection. The collection of fresh tumor
samples before the start of immunotherapy, fresh tumor samples after
immunotherapy, and fresh adjacent normal tissue samples after
immunotherapy was successfully performed in four patients.
Formalin-fixed paraffin-embedded (FFPE) tissue blocks of tumor and
adjacent normal tissue samples after immunotherapy were obtained
from all 10 patients. The clinical responses were assessed according to

Fig. 6 | TargetingSQLEenzymeenhancesanti-tumor immunityby actingonthe
oxLDL-TREM2+TAM axis. A Venn diagram shows the overlapping metabolism
genes that are upregulated in the tumor and the metabolism archetype (left).
Heatmap depicts prognostic significance of top genes in five primary HCC cohorts
using an univariate Cox regressionmodel (right).BCorrelationbetween cancer cell
SQLE expression and TREM2+TAM signatures of TAMs in snRNA-seq (n = 12, left)
and public scRNA-seq dataset (n = 10, right). C Representative images showing the
expression of SQLE, oxLDL, TREM2, SPP1, and CD68 in SQLE-positive and SQLE-
negative tissue spots fromHCCTMA.Representative cells that denote the presence
of TREM2+SPP1+TAMs are indicated by arrowheads. Scale bar, 50 μm (left). Com-
position of oxLDL-high or oxLDL-low spots in SQLE-positive (n = 110) and SQLE-
negative (n = 126) spots. Quantification of TREM2+SPP1+TAMs in SQLE-positive and
SQLE-negative spots (right). D Violinplot shows SQLE expression in normal/
malignant hepatocytes from indicated groups, with two-tailed Wilcoxon-test sta-
tistics. E Representative images showing SQLE expression in ICB-NR and ICB-R
tumors. Scale bar, 100μm (left). Quantification of SQLE fluorescence in the tumor
region of ICB-NR (n = 6) and ICB-R (n = 4) tumors (right). F, G NADP+/NADPH ratio,
ROS (F), lipid peroxidation levels (G) of shNC or shSqle cancer cells.H Supernatant
oxLDL levels of shNC or shSqle cancer cells cultured with DMEM plus 10% mouse

serum for 48h. I Flow cytometry shows Dil-oxLDL uptake in shNC or shSqle cancer
cells ± SSO (100μM). J Schematic of the orthotopic models. K Tumor volume of
shNC or shSqle tumors (n = 6 mice). L Concentration of oxLDL in TIF isolated from
shNC or shSqle tumors (n = 6 mice). M, N Flow cytometry of TREM2, SPP1 expres-
sion in TAMs (M) and IFNγ expression in tumor-infiltrating CD8+T cells (N) (n = 6
mice). O Schematic of the orthotopic models and treatment. P Tumor volume of
shNC or shSqle tumors treated with isotype or anti-PD1 (n = 6 mice). Q, R Flow
cytometry of TREM2, SPP1 expression in TAMs (Q) and GZMB, IFNγ expression in
tumor-infiltrating CD8+T cells (R) (n = 6 mice). S Schematic of experimental treat-
ment in spontaneous HCCmodel. T Tumor burden in mice treated with isotype or
anti-PD-1 and Terbinafine or DMSO (n = 6 mice). U, V Flow cytometry of TREM2,
SPP1 expression inTAMs (U) andGZMBexpression in tumor-infiltratingCD8+T cells
(V) (n = 6 mice). Data represent the mean± SD, n = 3 biological replicates in
(F right),H, I, n = 5 biological replicates in (F left), n = 6 biological replicates in (G).
Statistical significance was determined by two-tailed Wald test (A), two-tailed Wil-
coxon signed rank test (D), two-tailed Fisher’s exact test (C middle), two-tailed
unpaired t test (C right, E–I, K–N, P–R, T–V), and two-tailed one-sample t test (B).
Schematics in J, O, and S were created in BioRender. Chu, T. (2025) https://
BioRender.com/r2v4jgs. Source data is provided as a Source Data file.
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modified Response Evaluation Criteria In Solid Tumors (mRICIST) by
an independent expert. Based on this criterion, patients with pro-
gressive or stable diseasewere classified as “non-responders”, whereas
patients with partial or complete response were classified as
“responders”. Detailed clinical, pathological information, including
age, gender (self-reported), tumor size, prognosis, and detailed time-
line for neoadjuvant treatment of these 10 patients, was shown in
Supplementary Data 2. Most patients underwent surgical resection
3–4 weeks after receiving immunotherapy, except for neoP5 and
neoP6, who underwent surgical resection 6–7 weeks after
immunotherapy.

Cells
Hepa1-6, HEK-293T, Hep3B, and AML12 cell lines were purchased from
ProCell (Wuhan, China). MHCC97H (highlymetastatic humanHCC cell
lines) were established at our institute. Hepa53.4 and Hepalclc7 cell
lines were purchased from Zhong Qiao Xin Zhou Biotechnology
(Shanghai, China). RIL-175 cell line was purchased from Yaji Bio-
technology (Shanghai, China). Cells were cultured at 37 °C in an
atmosphere containing 5% CO2 and in Dulbecco’s modified Eagle’s
medium (Invitrogen) supplemented with 10% fetal bovine serum,
unless otherwise stated.

For the culture of AML12 hepatocytes, cells were cultured in
DMEM-F12 media (Invitrogen), supplemented with 10% fetal bovine
serum, 1% penicillin/streptomycin, 0.5% Insulin-Transferrin-Selenium
solution (ProCell, Wuhan, China), and 40ng/mL Dex-
amethasone (Sigma).

To generate BMDMs, primary mouse bone marrow cells were
flushed from tibias and femurs with ice-cold DMEM and cultured in
DMEM supplemented with 10% heat-inactivated FBS, 1% penicillin/
streptomycin, and 5 ng/ml mouse macrophage colony-stimulating
factor (PeproTech) for 6 days.

To generate human primary macrophages, human peripheral
bloodmononuclear cells (PBMCs)werefirst isolated fromwhole blood
obtained from healthy volunteers using SepMate isolation tubes
(#85450, Stemcell). Monocytes were then isolated from PBMCs using
the EasySep human monocyte isolation kit (#19059, Stemcell) and
were differentiated to primary macrophages by culturing with
ImmunoCult-SF macrophage medium (#10961, Stemcell) plus 50 ng/
mL human macrophage colony-stimulating factor (PeproTech)
for 6 days.

Mice
All animal experiment protocols were approved by the Ethics Review
Committee of Animal Experimentation at Zhongshan Hospital, Fudan
University. Our Ethics Review Committee permitted a maximal tumor
size of 20mm,whichwas not exceeded inour study. Allmicewere kept
in a controlled, specific pathogen-free environment at room tem-
perature with humidity maintained at 40–60% and a 24-h night-day
cycle. All mice received humane care according to the animal welfare
guidelines throughout the study. Trem2−/− mice were generated by
CRISPR Cas9 gene editing fromCyagen Biosciences (Shanghai, China).
Male NOD-SCID Il2rγ−/− (NSG)mice at the age of 6weeks were obtained
from Cyagen Biosciences. For subcutaneous injections, 6-week-old
C57BL/6 or NSG mice were inoculated with hepa1–6 cells with the
indicated treatment. The tumor size was measured two times a week
using calipers in twodimensions to generate a tumor volume using the
formula: 0.5 × (length ×width2). For the establishment of a sponta-
neous HCCmodel, 6-week-oldwildtype or Trem2−/−C57B/L6mice were
injected with 2ml PBS containing Ctnnb1-N90/sgTp53 plasmid and
sleeping beauty transposon (10μg per mouse) by hydrodynamic tail
vein injection (HDTVi). After 3–4 weeks, mice were euthanized with
pentobarbital sodium (40mg/kg), and the body weight, liver weight,
and liver tumor burden were measured. For orthotopic injection, 6-
week-old C57BL/6 mice were injected with hepa1–6 cells or mouse

spontaneous HCC-derived organoid mixed with or without TREM2+/
TREM2− TAMs or in vitro-induced TAMs with indicated treatment.
After 3–4 weeks, mice were euthanized with pentobarbital sodium
(40mg/kg), and the liver tumor size was measured in two dimensions
to generate a tumor volume using the formula: 0.5 × (length ×width2).
Experiential details are described below.

Mouse hydrodynamic tail vein injection (HDTVi)
Vectors forHDTViwere prepared using the EndoFreeMaxi Kit (#12362,
QIAGEN) and resuspended in a sterile 0.9% NaCl solution/plasmid mix
containing 10μg of pX330-p53 (Addgene #59910) or pT3-N90-beta-
catenin (Addgene #31785), and 10μg of CMV-SB13 Transposase.
CRISPR-Cas9 vector system carrying sgRNAs targeting Trp53, together
with the Sleeping Beauty Transposon system overexpressing CTNNB1-
N90 vector in sterile saline, constituted a total volume of 10% of the
mouse body weight and were injected into the lateral tail vein of 6-
week-old C57BL/6 J mice in 6–8 s as previously described18,60. HDTVi-
induced tumors were harvested 3–4 weeks after HDTVi.

Subcutaneous, orthotopic, co-injection, and spontaneous
HCC model
For the subcutaneous HCCmodel, 5 × 106 shNC or shSqleHepa1-6 cells
were implanted into the subcutaneous tissues. For the orthotopic HCC
model, 1 × 106 shNC or shSqleHepa1–6 cells were resuspended in 20μl
serum-free DMEM medium and injected into the liver of anesthetized
6-week-oldmaleC57BL/6 JmiceormaleNSGmice. For the co-injection
HCC model using Hepa1–6 cells, 1 × 106 Hepa1–6 were 1:1 mixed with
isolated TREM2+/TREM2− TAMs or in vitro-induced TAMs with indi-
cated treatment using serum-free DMEM medium. Eight days before
the co-injection experiments, 6-week-old male C57BL/6 J mice were
first i.p. injected with Clodronate Liposomes (10mg/kg; FormuMax)
every 2 days for 3 times. Themixed cancer cells andmacrophageswere
then injected into the liver of the anesthetized mice. To establish the
HCC spontaneous model, we injected 2ml PBS containing CTNNB1-
N90/sgTrp53 plasmid and sleeping beauty transposon (10 µg per
mouse) into mice by HDTVi as described above. For the treatment
regime, anti-PD-1 (10mg/kg for spontaneous HCC model, 5mg/kg for
orthotopic HCC model; BioXCell), anti-SPP1 (10mg/kg; BioXCell) or
mouse IgG2a isotype control (10mg/kg; BioXCell) was i.p. injected
every 3 days, and Terbinafine (80mg/kg, Targetmol) was i.g. admi-
nistered every day. All treatments started from day 7 after cancer cell
implantation or plasmid injection. At the endpoint, the mice were
euthanized with pentobarbital sodium (40mg/kg), and the tumors
were fixed in formalin and embedded inparaffin for IHC and IF analysis
or were soaked in tissue preservation solution (Miltenyi Biotec) for
flow cytometry analysis.

Generation of organoids andorganoid-based orthotopicmodels
Mouse HCC organoid was isolated from Ctnnb1-N90/
sgTrp53 spontaneous HCC tumors using the mouse organoid isola-
tion kit (#abs9552, Absin) according to the manufacturer’s protocol.
Briefly, fresh tumor tissues were minced into 1–2mm2 pieces and
enzymatically digested on a heat shaker (37 °C) for 30min. Then, the
digested cell suspension was filtered through a 100 μm filter, fol-
lowed by treatment with red cell lysis buffer (Thermo Fisher) and
resuspended with organoid culture medium. The dissociated cells
were thenmixedwithMatrigel at a ratio of 1:1.5 and seeded onto a 24-
well plate. After Matrigel solidified, 500 μL of organoid culture
medium was added to the culture plate. The culture medium was
replaced every 2 days.

For the generation of organoid-based orthotopic models, mouse
HCC organoid was first digested to a single-cell suspension using the
digestive solution from the kit. Then, cells were washed with PBS, and
5 × 105 organoid-derived single cells were 1:1 mixed with in vitro-
induced TAMs with indicated treatment using PBS. Eight days before
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the co-injection experiments, 6-week-old male C57BL/6 J mice were
first i.p. injected with Clodronate Liposomes (10mg/kg; FormuMax)
every 2 days for 3 times. The mixed organoid-derived cells and mac-
rophages were then injected into the liver of the anesthetized mice.

Single-cell RNA sequencing
Human and mouse HCC tissues were dissociated for single-cell RNA
sequencing using the human tumor dissociation kit (130-095-929,
Miltenyi Biotec) and the mouse tumor dissociation kit (130-096-730,
Miltenyi Biotec), according to themanufacturer’s protocol. Briefly, the
tissue was placed in a petri dish on ice and cut into small pieces of
2–4mm. The pieces were infused with the RPMI/enzymemix (Miltenyi
Biotec), transferred to a gentleMACS C tube containing RPMI/enzyme
mix, attached to the sleeve of the gentleMACS Octo Dissociator, and
run the program. After termination of the program, the suspension
was passed through a 70μm strainer and spun down at 300×g for
10min at 4 °C, resuspended in PBS containing 0.04% BSA. Red blood
cellswere lysedwith redblood cell lysis solution (130-094-183,Miltenyi
Biotec) at 4 °C for 10min, the resulting suspension was centrifuged at
300×g for 10min and resuspended in PBS containing 0.04% BSA.
Viabilitywas assessed tobe>85%usingCountStar. Viability enrichment
was performed using the Dead Cell Removal Kit (130-090-101, Miltenyi
Biotec), according to the manufacturer’s protocol. Dissociated cells
were resuspended in a final solution of PBS containing0.04%BSAprior
to loading on the 10× Chromium platform. The scRNA-seq libraries
were generated using the 10× Genomics Chromium Controller
Instrument and Chromium Single Cell 3’ V3 Reagent Kits (10× Geno-
mics, Pleasanton, CA), according to the manufacturer’s recommen-
dations. The experiments were performed by Berry Genomics
Corporation (Beijing, China).

Single-nucleus RNA sequencing
To isolate single nuclei from human HCC samples, tissues were dis-
sected and placed in 2mL PBCmedium in a 5mL tube on ice. The PBC
medium was removed to a 15mL conical and kept on ice. Two micro-
liters of chilled lysis buffer (10mMTris-HCl, 10mMNaCl, 3mMMgCl2,
and0.1%Nonidet™ P40Substitute inNuclease-FreeWater)were added
to the tissue, and the tissues were homogenized 10 times through a
tissue grinder. After homogenization, the tissue was lysed on ice for
15min, swirling 2–3 times during this incubation period. The reserved
chilled HEB media was then returned to the lysed tissue solution, and
the tissue was further triturated with 5–7 passes through a 1mL pip-
ette. A 30 µm cell strainer (130-110-915, Miltenyi Biotec) was washed
with 1mL of PBS, and the lysed tissue solution was filtered through the
strainer to remove debris and clumps. Filtered nuclei were centrifuged
at 500×g for 5min at 4 °C. The supernatant was removed, and nuclei
were washed in 1mL of Nuclei Wash and Resuspension Buffer (1× PBS
with 1.0% BSA and 0.2 U/µl RNase Inhibitor). Nuclei were manually
counted by Trypan blue and AO-PI after each centrifugation (400×g,
10min, 4 °C) and resuspended. Single nuclei were processed using
Chromium Controller (10× Genomics), according to the manu-
facturer’s protocol. The experiments were performed by Shanghai
Biochip Corporation (Shanghai, China).

Spatial transcriptomic sequencing
Human HCC tissues were embedded in OCT. The RNA quality of the
OCTOCT-embedded tissue blockwas assessed by calculating the RNA
Integrity Number (RIN) of RNA extracted from tissue sections. Only
tissue blocks with RIN≥ 4 were used for spatial transcriptomic
sequencing. The tissues were sectioned into 10μm sections. The sec-
tions were fixed with chilled Meathol at −20 °C and proceeded to H&E
Staining. Sections were then imaged, destained, and transferred to a
Visium CytAssist Spatial Gene Expression slide. The probe extension
and library construction steps follow the standard Visium CytAssist
Spatial Gene Expression workflow outside of the instrument. Libraries

were sequenced on the Illumina NovaSeq6000 platform with PE150
mode. The experiments were performed by Berry Genomics Cor-
poration (Beijing, China).

Flow cytometry
For flow cytometry analysis of mouse HCC tumors, tumor tissues were
digested at 37 °C for 30minwith 1mg/ml Collagenase D and0.1mg/ml
DNase I (Roche). Digestion was stopped by EDTA, and cells were fil-
tered through 70mm cell strainers and washed twice with PBS con-
taining 1mM EDTA and 2% FBS (staining buffer). Cells were
resuspended in the staining buffer and first stained with mouse
TruStain FcX (Biolegend, 1:200) on ice for 10min. Then, cells were
stained with the following antibodies on ice for 30min: CD45 (Clone
30-F11, Biolegend, 1:200), CD3 (Clone 145-2C11, Biolegend, 1:200), CD8
(Clone 53-6.7, Biolegend, 1:200), CD11b (Clone M1/70, Biolegend,
1:200), F4/80 (Clone BM8, Biolegend, 1:200) and TREM2 (Clone
#237920, R&D Systems, 1:200). For intracellular staining, cells were
fixed with fixation buffer (Biolegend) on ice for 15min, and then
washed twice with Intracellular Staining Permeabilization Wash Buffer
(Biolegend). Antibodies against IFNγ (Clone XMG1.2, Biolegend,
1:200), Granzyme B (Clone QA16A02, Biolegend, 1:200), and SPP1
(#IC808P, R&D Systems, 1:200) were added and incubated for 1 h on
ice. Cells were resuspended in the staining buffer again and then
analyzed on Fortessa (BD Biosciences). The flow cytometry data were
analyzed by FlowJo v10 (BD Biosciences).

For flow cytometry analysis of human HCC tumors, fresh tumor
tissues were digested, and single-cell suspension was prepared as
described above. Cells were stained with human TruStain FcX (Biole-
gend, 1:200) and then stained with the following antibodies: CD45
(Clone HI30, BioLegend, 1:200), CD11b (Clone M1/70, BD Biosciences,
1:200), CD14 (Clone MφP9, BD Biosciences, 1:200), TREM2 (Clone
#237920, R&D Systems, 1:200) and SPP1 (Clone 2F10, Invitrogen,
1:200). All surface staining, intracellular staining anddata analysis were
performed as described above.

For flow cytometry analysis of in vitro cultured cells, human or
mouse macrophages or CD8+T cells with indicated treatment were
harvested and washed twice with the staining buffer. Macrophages
were first stained with human or mouse TruStain FcX (Biolegend,
1:200) before incubating with the primary antibodies. The following
antibodieswereused for staining of in vitro cultured cells: anti-human/
mouse TREM2 (Clone #237920, R&D Systems, 1:200), anti-mouse SPP1
(#IC808P, R&D Systems, 1:200), anti-human SPP1 (Clone 2F10, Invi-
trogen, 1:200), anti-mouse IFNγ (Clone XMG1.2, Biolegend, 1:200),
anti-human IFNγ (Clone 25723.11, BD Biosciences, 1:200) and anti-
human/mouse phospho-SYK (Clone F.724.5, Invitrogen, 1:200). All
surface staining, intracellular staining and data analysis were per-
formed as described above. Gating strategies for in vitro and in vivo
flow cytometry experiments were reported in Supplementary Fig. S13.

Isolation of primary macrophages
Human and mouse HCC tumors were digested, and single-cell sus-
pensions were prepared as described above. After being filtered
through 70mm cell strainers, red cell lysis was performed, and single
cell suspensions were stained with the indicated antibodies in
staining buffer. The following antibodies were used to isolate
TREM2+ or TREM2− TAMs from human HCC tissues: CD45 (Clone
HI30, BioLegend, 1:200), CD11b (Clone M1/70, BD Bioscience, 1:200),
TREM2 (Clone #237920, R&D Systems, 1:200). The following anti-
bodies were used to isolate TREM2+ or TREM2- TAMs from mouse
HCC tissues: CD45 (Clone 30-F11, Biolegend, 1:200), CD11b (Clone
M1/70, Biolegend, 1:200), F4/80 (Clone BM8, Biolegend, 1:200),
TREM2 (Clone #237920, R&D Systems, 1:200). Staining with anti-
bodies was performed for 30min on ice. Human TREM2+TAMs
(CD45+CD11b+TREM2+), human TREM2-TAMs (CD45+CD11b+TREM2-),
mouse TREM2+TAMs (CD45+CD11b+F4/80+TREM2+), and mouse
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TREM2-TAMs (CD45+CD11b+F4/80+TREM2−) were acquired by flow
cytometric cell sorting (BD FACS AriaIII). Isolated TAMs were cul-
tured in 10% FBS DMEM, and the culturemediumwas changed once a
day. Gating strategies for TREM2+/TREM2− TAM identification were
reported in Supplementary Fig. S13.

Tumor conditioned medium collection and in vitro induction
of TAMs
To collect tumor conditioned medium, after reaching 80% confluence
in 75 cm2 BD Falcon flasks, cancer cells were passed into 3 new 75 cm2

flasks with fresh DMEM supplemented with 10% heat-inactivated FBS
and 1%penicillin/streptomycin. Supernatantswere collected after 48 h.
The conditioned medium was transferred to a 15-ml Falcon tube and
centrifuged at 250×g for 8min. The supernatant was sterile-filtered
using a 0.22-mm filter (Millex-GP) with a 10-ml syringe barrel.

To generate in vitro-induced TAMs, BMDMs were cultured with
freshly collected tumor-conditioned medium mixed with 10% FBS
DMEM medium at a ratio of 1:1, and cells were cultured for 48 to 72 h
before further functional analysis or in vivo co-injection experiments.

Generation of stable cells with Sqle depletion
Todeplete Sqle inHep1–6 cells, 3mgPLKO.1 plasmidof shNCor shSqle
(Sigma), 1mg pCMV packaging vector, and 1.5mg PVSV-G enveloped
vector were co-transfected into HEK293T cells in 60mm cell culture
dishes (NEST). After 48 and 72 h, virus-containing supernatant was
collected and filtered through a 0.45mm PES Syringe Filter (Sigma),
and then was used to infect cancer cells in the presence of 8mg/ml
Polybrene (Sigma). Afterward, 4μg/ml puromycin (Beyotime) was
added to select the positive infected cells for 5 days, and stable cell
lines were further maintained under puromycin.

Generation of macrophages with Cebpa depletion
Lentivirus-induced Cebpa knockdown was conducted in BMDMs
according to previously described protocols61. Briefly, a virus con-
taining the shNCor shCebpaplasmidwasprepared as described above.
Bone marrow cells were isolated and cultured with differentiation
medium for 3 days, as described above. At day 4, 50M.O.I. of virus was
used to infect bonemarrow cells in the presence of 6mg/ml Polybrene
(Sigma). The bonemarrow cells were incubatedwith the virus for 48 h.
Then, the virus-containing medium was replaced by differentiation
medium to allow for the completion of the differentiation process at
day 7. The transduction efficiency was estimated by analyzing the
mRNAandprotein levels of target genes. The shRNAsequences used in
this study were listed in Supplementary Table 1.

Cell viability and proliferation analysis
Cell viability was determined using the 3D CellTiter-Glo (G9681, Pro-
mega) kit, according to the manufacturer’s protocol, by adding 80μl
of CellTiter-Glo 3D Reagent to each well of the 96-well plate. The plate
was incubated at room temperature for 30min before recording the
luminescence using the plate reader.

Conditionedmedium from in vitro-induced or isolated TAMswith
indicated treatment was obtained by culturing cells for 24 h. Then,
1 × 104 cancer cells were seeded on the 96-well plate and cultured with
the indicated conditioned medium. Cell proliferation analysis was
performed with Cell Counting Kit 8 (C0037, Beyotime), according to
the manufacturer’s protocol.

Western blot
The antibodies used for western blotting were purchased commer-
cially, including β-tubulin (#2128, Cell Signaling Technology), GAPDH
(60004-1-Ig, Proteintech), CEBPA (#8178, Cell Signaling Technology),
SYK (PA5788, Abmart), phospho-SYK (TA3314, Abmart), DNMT3A
(#49768, Cell Signaling Technology), CD36 (T55796, Abmart), or SQLE
(PA5-54265, Thermo Fisher Scientific).

Intracellular proteins of cells or tumor tissues were extracted
using RIPA lysis buffer (Beyotime) plus protease inhibitor cocktail
(MCE) on ice. The collected protein samples were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto PVDF membranes (Millipore). Subsequently, mem-
branes were blocked for 1 h with nonfat dry milk solution (5% in TBS)
containing 0.1% Tween-20. The blots were subsequently probed with
the indicated primary antibodies and the corresponding secondary
antibodies. Immunoreactive bands were visualized by enhanced che-
miluminescence (Millipore).

Quantitative real-time PCR (qPCR)
Total RNA from cells was extracted using TRIzol reagent, and cDNA
was synthesized using EasyScript One Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen). Quantitative PCR was performed
using TransStart Top Green qPCR SuperMix (TransGen) on the Ste-
pOnePlus system (ABI). The qPCR conditions were 94 °C for 30 s, fol-
lowed by 40 cycles of 94 °C for 5 s and 60 °C for 31 s. Amplification of
specific transcripts was confirmed bymelting curve profiles generated
at the end of the PCR program. Expression levels of target genes were
normalized to the expression of the Actb or GAPDH gene and were
calculated based on the comparative cycle threshold method (2−ΔΔCt).
Specific primers for qPCR were listed in Supplementary Table 1.

Isolation and activation of CD8+ T cells
Mouse CD8+T cells were isolated from the spleens of C57/BL6 mice
using the EasySep mouse CD8+T cell isolation kit (#19853, Stemcell).
Human CD8+T cells were isolated from fresh peripheral blood mono-
nuclear cells obtained from healthy donors using the EasySep human
CD8+T cell isolation kit (#17953, Stemcell). For CD8+T cell activation,
1mg/ml anti-human/mouse CD3 and anti-human/mouse CD28 (Biole-
gend) were coated to the culture dish and incubated at 4 °C overnight.
Then, purified CD8+T cells were added to the antibody-coated culture
dish and cultured with RPMI 1640 containing 50U/mL IL-2 (Pepro-
Tech), 10% FBS, 10mM HEPES, 100mM NEAA, and 50mM β-
Mercaptoethanol (Gibco) for 24 h.

Co-culture experiments
Co-culture experiments were performed by seeding in vitro-induced
or in vivo-isolated TAMs with indicated treatment in the lower cham-
ber and cancer cells or activated CD8+T cells in the upper chamber of a
6-well or 24-well transwell apparatus with 0.4μm pore size (Corning
Incorporated).

Isolation of primary cancer cells from mouse HCC tumors
The isolation of primary cancer cells in TREM2+TAM/TREM2-TAM co-
injection tumors was performed with a cancer cell isolation kit (130-
110-187, Miltenyi Biotec). Briefly, the resected tumors were dissociated
with the tumor dissociation kit (Miltenyi Biotec) as described above.
Then, primary cancer cells were negatively selected by magnetic
separation. The purity of the obtained cancer cells was determined by
flowcytometry analysis of AFP expression (anHCCcancer cellmarker).

Transwell migration and invasion assay
The 24-well transwell chamber with 8 μm pore size (Corning Incor-
porated) was employed for migration and invasion assay. Briefly,
cancer cells were allowed to reach 80% confluence and starved for
24 h. The cellswere then resuspended in serum-freeDMEManddiluted
to 2 × 105/mL. The upper chamber was added with 100μL cancer cells,
and the lower chamber was added with 600μL DMEM containing 10%
serum. The lower chamber also contains pre-seeded TAMs with indi-
cated treatment. The cells were cultured for 48 h, and the cells in the
upper chamber were cleaned. After that, the chamber was rinsed with
PBS and immersed in precooled 4% paraformaldehyde for 30min.
Cells transferred to the lower chamber were fixed and stained with
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0.1% crystal violet (Biosharp) for 10min. Five random fields were
selected, and the migrated cells were counted using ImageJ software.
The cell invasion assay was carried out using Matrigel (Corning
Incorporated). The Matrigel was melted at 4 °C and then diluted with
serum-free DMEM at a ratio of 1:8. Other operations were the same as
the cell-migration procedures.

Immunofluorescence staining
The antibodies used for immunostaining and IHC were purchased
commercially, including SPP1 (ab214050, Abcam, 1:1500), TREM2
(MAB17291, R&D Systems, 1:1500), Ki-67 (ab15580, Abcam, 1:2000),
CD68 (ab955, Abcam, 1:3000), SQLE (PA5-54265, Thermo Fisher Sci-
entific, 1:500), F4/80 (ab300421, Abcam, 1:5000), oxLDL (ab14519,
Abcam, 1:1000), APOE(#13366, Cell Signaling Technology, 1:1000),
CD44 (ab189524, Abcam, 1:4000) and SAA1 + SAA2 (ab207445,
Abcam, 1:1000).

Tissue paraffin embedding was performed using a standard pro-
tocol. Paraffin-embedded tissues were cut into 7mm sections and
stored at room temperature. Frozen tissues were cut into 8mm sec-
tions and stored in a −30 °C freezer before staining. Sectionswere then
blocked with 5% goat serum (ZSGB BIO) for 1 h and incubated with
primary antibodies at 4 °C overnight in the dark. The slides were
washed 3 times with PBS. 1mg/ml DAPI (Life Technology) was added
and incubated for 5min. After afinalwash step, sectionsweremounted
using the Fluoromount-G (SouthernBiotech 0100-01). Immuno-
fluorescence was visualized utilizing a confocal microscope (ZEISS
LSM880).

ELISA
The concentration of SPP1 in cell culture supernatant was determined
with the mouse SPP1 ELISA kit (U96-1583E, Yobibio) or human SPP1
ELISA kit (U96-1582E, Yobibio). The oxLDL levels in mouse TIF and
serum were determined with a mouse oxLDL ELISA kit (U96-3617E,
Yobibio). The oxLDL, VLDL, HDL, and LDL levels in human TIF and
serum were determined with a human oxLDL ELISA kit (JL12154, Jian-
glai), a human VLDL ELISA kit (JL14806, Jianglai), a human HDL ELISA
kit (JL10023, Jianglai), and a human LDL ELISA kit (JL10816, Jianglai). All
ELISA experimental procedures were performed according to the
manufacturer’s instructions.

Lipid treatment of TAMs
To investigate the effect of different types of lipids on TREM2 and SPP1
expressions in TAMs, we performed in vitro induction of TAMs as
described above. The TAMswere then treatedwith the following lipids
for 48 h: Palmitic acid (100μM, MCE), Stearic acid (90μM, MCE), Pal-
mitoleic acid (100μM, MCE), Oleic acid (100μM, MCE), Cholesterol
esters (Cholesteryl behenate, 10μg/mL, MCE), Cholesterol (10μg/mL,
MCE), Ceramides mixture (20μg/mL, MCE), L-carnitine (60μg/mL,
MCE), oxLDL (50μg/mL, Invitrogen), LDL (50μg/mL, Invitrogen) and
HDL (50μg/mL, Invitrogen). After the lipid challenge, TAMs were
harvested, and the TREM2 and SPP1 expressions were analyzed by flow
cytometry. Culture supernatants were also collected for the mea-
surement of SPP1 concentration by ELISA.

Isolation of tumor interstitial fluid and plasma
The isolationof tumor interstitialfluid (TIF) andplasmawasperformed
as described previously62. Briefly, fresh human or mouse HCC tumor
tissues were harvested, rinsed with 1× PBS, and blotted on filter paper
(VWR, 28298-020) to remove the surface liquid. Then, the tumorswere
put onto 20 µm nylon filters (Millipore) affixed atop 50mL tubes, and
centrifuged for 10min at 4 °C, 106×g. The TIF was then collected from
the conical tube, frozen in liquid nitrogen, and stored at −80 °C until
further analysis. For culturing cells with TIF, the TIF was filtered
through a 0.22μm filter (Millex-GP) and mixed with 10% FBS DMEM
medium at a ratio of 1:10. For isolation of plasma, human or mouse

blood was first centrifuged for 10min at 4 °C, 845×g to separate
plasma. The isolatedplasmawas frozen in liquid nitrogen and stored at
−80 °C until further analysis.

Removal of lipids and lactic acid in tumor interstitial fluid
For the removal of lipids in tumor interstitial fluid, we used the Clea-
nascite Lipid Removal Reagent (#X2555-10, Biotech Support Group),
according to themanufacturer’s protocol. Briefly, the tumor interstitial
fluidwasmixedwithCleanascite Lipid RemovalReagent at a ratioof 2:1
by gently shaking periodically for 10min. Then, the mixture was cen-
trifuged at 16,000×g for 1min, and the supernatant was decanted into
new tubes for downstream analysis.

For the removal of lactic acid in tumor interstitial fluid, we used
0.5M Na2CO3 solution (#S885117, Macklin, Shanghai, China) to neu-
tralize lactic acid. PANPEHA Whatman paper (Sigma) was used to
confirm pH 7.0-7.5 after neutralization.

Examination of oxLDL production by cultured cells
For the examination of oxLDL production by cultured cells, the fetal
bovine serum in the culture medium was replaced with mouse serum
(#abs937, Absin) or human serum (#H6914, Sigma) to avoid the
induction of different-species lipoproteins, while the other compo-
nents remained unchanged. Briefly, 1 × 105 cells were seeded onto a 24-
well plate and cultured for 48 h. Then, the supernatant was collected,
centrifuged at 250×g for 5min, and used for oxLDL ELISA
measurement.

Chromatin immunoprecipitation-qPCR (ChIP-qPCR) assays
The ChIP-qPCR assays were performed using the ChIP kit (#53040,
Active Motif). The procedure was according to the kit instruction
manual provided by the manufacturer. Briefly, 1 × 107 BMDMs with
indicated treatment were fixed by 1% formaldehyde, fragmented
by sonication to shear the chromatin to 200–1000 bp. The sheared
crosslinked chromatin was incubated with IgG and anti-CEBPα
(#8178, Cell Signaling Technology) overnight, followed by Protein
A/G conjugated agarose beads incubation. The precipitated DNA
was amplified by primers and quantified by the StepOnePlus sys-
tem (ABI). ChIP primer sequences were listed in Supplementary
Table 1.

Immunoprecipitation (IP) assays
For IP assays, cells were lysed and washed in RIPA lysis buffer
(Beyotime) supplemented with protease inhibitor cocktail (MCE).
Cell lysates were incubated overnight at 4 °C with the indicated pri-
mary antibody and protein A/G agarose beads (MCE). Beads were
centrifuged at 1000×g for 5min at 4 °C to remove the supernatant,
washed 4 times with the IP buffer, and boiled in SDS-loading buffer
for 5min at 95 °C. Samples were then analyzed by Western blot as
described above.

Generation and viability assessment of patient-derived
organoids
The generation of patient-derived organoids was performed using
the human liver cancer organoid kit (KOG02-HC, Orgenbiotech)
according to themanufacturer’s protocol. Briefly, fresh HCC samples
were minced into 1–2mm2 pieces and digested on a heat shaker
(37 °C) for 1 h. Then, the digested cell suspension was filtered
through a 100μm filter, followed by treatment with red cell lysis
buffer, and resuspended with organoid culture medium. The dis-
sociated cells were then mixed with Matrigel at a ratio of 1:1.5 and
seeded onto a 24-well plate. After Matrigel solidified, 500 μL of
organoid culturemediumwas added to the culture plate. The culture
medium was replaced every 2 days.

For the viability assessment of HCC organoids, cells were first
seeded onto a 24-well plate and incubated for 24 h in organoid culture
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medium with Matrigel. Then, TNF (100ng/mL) + IFNγ (100 ng/mL)
(TNF/IFNγ), TNF/IFNγ plus SPP1 (50ng/mL) or a combination of TNF/
IFNγ, SPP1, and integrin inhibitor TFA (HY-100445A, MCE, 50μM) was
added to the culture medium. Organoids were treated for 12 days in
total with inhibitors/cytokines refreshed every 4 days. On day 12, via-
bility assessment was performed using the 3D CellTiter-Glo (G9681,
Promega) kit according to the manufacturer’s protocol.

DNA extraction and bisulfite (BS)-PCR
Briefly, 500 ng of genomic DNA was extracted from the indicated cells
using a commercial DNA extraction kit (#69504, QIAGEN). The
extracted DNA was then Bisulfite converted using DNA Bisulfite Con-
version Kit (#D0068S, Beyotime) and PCR amplified. The target DNA
productswere inserted into aT vector, and 10clones fromeach sample
were randomly picked for sequencing. Primer sequences are listed in
Supplementary Table 1.

DNMT activity analysis
DNMT activity in the nuclear extracts was quantified using an EpiQuik
DNMT Activity/Inhibition Assay Ultra Kit (#P-3009-48, Epigentek),
following the instructions of the manufacturer.

SiRNA and transfection
The siRNA sequences were designed by Genecfps (Jiangsu, China). All
siRNA sequences were listed in Supplementary Table 1. For siRNA
transfection, cells were transfected with siRNA (10μM) using
Advanced DNA RNA Transfection Reagent (Zeta Life) according to the
manufacturer’s instructions.

Liquid chromatography–mass spectrometry (LC–MS) analysis
The 5mC levels of genomic DNA were determined by LC–MS analysis.
The Quantification of 5mC DNA contents was performed by MetWare
(Shanghai, China) based on the AB Sciex QTRAP 6500 LC–MS/MS
platform.

Dual-Luciferase reporter assay
Wild-type and mutant 3′UTR sequences of Trem2 and Spp1 were syn-
thesized and inserted into the pGL3 promoter vector by Genomedi-
tech (Shanghai, China). Cells were co-transfected with the 3′-UTR
wildtype or mutant plasmid and Cebpa overexpression or negative
control plasmid using Lipofectamine 3000 (Invitrogen). Forty-eight
hourspost-transfection, relative luciferase activitywasmeasuredusing
the Dual-Luciferase® Reporter Assay System (Promega) according to
the manufacturer’s instructions. Firefly luciferase activity was nor-
malized to Renilla luciferase activity.

Measurement of lipid peroxidation, NADP+/NADPH ratio,
and ROS
The lipid peroxidation levels were determined using Image-iT Lipid
Peroxidation Kit (#C10445, Invitrogen) according to the manu-
facturer’s protocol. Briefly, 10μM of Image-iT Lipid Peroxidation
Sensor was added to cultured cells and incubated for 30min at 37 °C.
Then, the fluorescence at 581/591 nm (reduced dye) and 488/510 nm
(oxidized dye) wasmeasured with a SpectraMaxM3microplate reader
(Molecular Devices). The NADP+/NADPH ratiowasmeasured using the
NADP+/NADPHAssay Kit withWST-8 (#S0179, Beyotime) according to
themanufacturer’s protocol. IntracellularROSwasmeasured using the
ROS Assay Kit (#S0033S, Beyotime) according to the manufacturer’s
protocol. The ROS levels were normalized with total protein levels
measured by the BCA assay (#P0010S, Beyotime).

Alignment and quantification of single-cell and single-
nucleus data
For single-cell and single-nucleus data, the raw reads were mapped to
the human reference genome (refdata-gex-GRCh38-2020-A) or mouse

referencegenome (refdata-gex-mm10-2020-A) usingCellRanger count
(v6.0.0, 10× Genomics) with default parameters. The “raw_feature_-
bc_matrix.h5” file outputted by the CellRanger count pipelinewas used
for downstream background noise removal.

Removal of background noise in gene expression matrices
We used the remove-background function of CellBender v0.2.0 to
remove ambient-RNA and empty droplets from raw gene expression
matrices63. The parameter “expected-cells” was estimated by CellRan-
ger, and the parameter “total-droplets-included” was set to a value
between 15,000–50,000, representing a point within the plateau of
the barcode rank plot. All other training parameters were set to
default.

Quality control and filtering
The “output_filtered.h5” file produced by CellBender was used for
quality control and filtering. We excluded genes expressed by fewer
than 10 cells and excluded cells expressing fewer than 400 genes or
more than 10%mitochondrial content (20% content inmouse).We also
detected potential doublets using Scrublet and DoubletFinder on a
per-library basis. The predicted doublets were filtered from the data-
sets. After the above quality control process, we only kept the protein-
coding genes for downstream analysis, as described previously64.

Integration of single-cell data across different batches
For the integration of human single-cell and single-nucleus sequencing
data, i.e., single-cell data across different sequencing techniques, we
utilized scANVI21 for data integration according to their recommended
practices. Briefly, the scRNA-seq data and snRNA-seq data were
merged and normalized using the log-normalization method (Scanpy
v1.8.3). We identified highly variable genes (n = 2000) using Seurat v3
flavor on the raw counts, which were used to train the initial integra-
tion model using single-cell variational inference (scVI) v.0.6.8. We
corrected for sequencing technique, sample source, and origin of the
data in the scVI integration process. Then, we initialized the scANVI
model based on the pre-trained scVI model, using pre-assigned cell
labels to get more accurate integration. The pre-assigned cell labels
were obtained by analyzing single-cell and single-nucleus data sepa-
rately using the workflow described below. The resulting latent
representation of each cell was used for clustering, cell type annota-
tion, and uniform manifold approximation and projection (UMAP)
visualization.

For the integration of human or mouse single-cell data from
the same sequencing technique, we used the Harmony
algorithm65 for batch correction. Briefly, the scRNA-seq or snRNA-
seq data were log-normalized, subset to 2000 highly variable
genes, and scaled using Seurat v4.0.3. Then, principal component
analysis (PCA) was performed, and the top 50 principal compo-
nents were used as input for Harmony, which removed the bias
resulting from sample source and data set origin. Subsequently,
the top 30 Harmony dimensions were selected for clustering, cell
type annotation, and UMAP visualization.

Clustering and annotation of cell types
We used the Leiden clustering method (Scanpy v1.8.3) to find different
cell clusters based on the latent representation obtained from scANVI or
Harmony integration. The resolution parameter was set to 1.2 for major
cell type identification and0.8 for subtype characterization ofmajor cell
types. For cell type annotation, the main cell types were identified by
manual annotation of differentially expressed genes between clusters
based on knownmarkers and signatures66. The initial labeling identified
endothelial, hepatocytes, stromal, granulocytes, monocyte/macro-
phages, proliferating, T, NK, B, and plasma cell populations. Next, we
split the data into subsets of the main labels and reran scaling, PCA,
UMAP dimension reduction, clustering, and DE analysis on each subset

Article https://doi.org/10.1038/s41467-025-62132-y

Nature Communications |         (2025) 16:6770 19

www.nature.com/naturecommunications


as described above. The resulting clusters weremanually annotated and
used as cell subtype labels for each major cell population.

Tissue enrichment of cell types
To quantify the enrichment of cell clusters across tissue types, we
calculated the odds ratio (OR) to indicate tissue preference as descri-
bed previously67. Briefly, for each combination of cell cluster i and
tissue j, a 2 by 2 contingency table was constructed, which contained
thenumber of cells of cluster i in tissue j, the number of cells of cluster i
in other tissues, the number of cells of non-i clusters in tissue j, the
number of cells of non-i clusters in other tissues. Then Fisher’s exact
test was applied to this contingency table, thus OR and the corre-
sponding p-value could be obtained. P-values were adjusted using the
“BHmethod” implemented in the R function p.adjust. Consistent with
previous observation67, we found that all ORs > 1.5 or ORs <0.5 had
adjusted p-values < 1e−10. Hence, a higher OR with a value > 1.5 indi-
cated that cell cluster i wasmore preferred to distribute in tissue j, and
a lower OR with a value < 0.5 indicated that cell cluster i was preferred
not to distribute in tissue j.

Non-negative matrix factorization
For cancer cells in each snRNA-seq sample, we applied non-negative
matrix factorization (R NMF package, v0.26, with algorithm set to
“nndsvd” and number of factors set to 10) to the scaled and centered
expression data (Seurat SCTransform function), after converting all
negative values to zero. The selection of factor number 10 was based
on previously published studies68–70. For each of the resulting 10
factors, 50 genes with the highest NMF scores were defined as a
signature. To identify coherent expression programs across cancer
cells of different samples, we aggregated 120 signatures from
12 samples and did hierarchical clustering using the Pearson corre-
lation coefficient. This revealed the 8metaprograms described in this
study. Then, for each metaprogram, we calculated the expression
score using genes in the metaprogram and ranked all the genes by
their correlation with the expression score. Each meta-program was
redefined using the top 50 correlated genes. The top 50 genes for
obtained human snRNA-seq meta-programs were listed in Supple-
mentary Data 3. To infer the co-occurrence of metaprograms, Pear-
son correlation coefficients were calculated between the signature
scores of NMF programs of all malignant hepatocytes in snRNA-seq
data. After the determination of NMF metaprograms, i.e., cancer cell
functional archetypes, we assigned each cancer cell in snRNA-seq
data to one of these archetypes based on the metaprogram that has
the maximum NMF coefficient in this cell. The same procedure was
performed on human scRNA-seq data and mouse scRNA-seq data,
and the top 50 genes for corresponding meta-programs were listed
in Supplementary Data 3.

Annotation of NMF metaprograms and cancer cell archetypes
The annotation of the obtained NMF metaprograms was performed
based on the top 50genes ranked byNMFscores.MetaprogramP1was
classified as a lipoprotein metabolism program, characterized by
genes of apolipoprotein (e.g., APOC1, APOE, CLU). Metaprogram P2
was enriched for genes associated with xenobiotic metabolism (e.g.,
ABCB11, ACSM2B, CYP2A7). Metaprogram P3 was annotated as lipid
metabolism programs, encompassing genes of fatty acid metabolism
(e.g., MFSD2A, PLIN5, PPARA) and cholesterol metabolism (e.g., FDPS,
HMGCS1, SQLE). Metaprogram P4 was enriched by markers of DNA
replication (e.g., DTL, RRM2) and G2/M phases (e.g., ASPM, CENPE,
TOP2A), andwas classified as a proliferation program.MetaprogramP5
represented acute-phase response, such as (e.g., A2M, CRP, SAA1), and
was enriched for complement regulation markers (e.g., C5, CFH,
CFHR3). Metaprogram P6 encompassed epithelial-to-mesenchymal
transition (EMT) genes (e.g., AKT3, ANXA4, FYN). Metaprogram P7 was
characterized by protein folding (e.g., HSP90AB1, HSPD1, TRAP1) and

translation markers (e.g., BOP1, EIF3A, EIF3B). The final metaprogram
P8 was defined by cancer stemness-related genes (e.g., CD44,
BIRC3, SOX4).

The determination of functional archetypes was performed via
the calculation of Pearson’s correlation between NMF metapro-
grams. P1 (lipoprotein metabolism) was positively correlated with P2
(xenobiotic metabolism) and P3 (cholesterol/fatty acid metabolism),
while it followed a strong co-exclusion pattern with P6 (EMT), P7
(protein folding/translation), and P8 (cancer stemness). Further-
more, there was a significant correlation between P6, P7, and P8, and
concomitant mutual exclusivity with P1, P2, and P3. Additionally, P4
(acute phase/complement response) was negatively correlated with
P1/P2/P3 and P6/P7/P8. Therefore, this correlation analysis revealed
that there are three single-cell archetypes that co-existed in HCC
cancer cells: one high in lipoprotein, xenobiotic and cholesterol/fatty
acid metabolism (P1, P2, P3), denoted as metabolism archetype; one
high in acute-phase response and complement regulation, denoted
as inflammation archetype; and the other high in EMT, protein
folding/translation and cancer stemness program, denoted as
stemness archetype.

Among the identified top genes of NMFmetaprograms, APOEwas
reported as a key gene involved in the lipid transport and metabolism
function of cancer cells71; SAA1/2 is an acute-phase response protein
that was primarily derived from hepatocytes and upregulated during
hepatic inflammation72; andCD44 is awell-established cancer stem cell
(CSC) marker that was validated in multiple cancer types73. We there-
fore chose APOE, SAA1/2, and CD44 as markers of metabolism,
inflammation, and stemness archetype cancer cells to validate their
spatial co-exclusion pattern at the protein level, since they were
representative of the lipid metabolism, acute-phase response, and
stemness features that correspond to the metabolism, inflammation,
and stemness archetype cancer cells.

Cross-species comparison of cell types using Support Vector
Machine
To compare the transcriptional signatures of cell types in human
single-cell data with their mouse counterparts, we trained a
Support Vector Machine (SVM) classifier on the human single-cell
dataset and projected the cell type annotations onto the mouse
scRNA-seq data as previously described74. The SVM-predicted
annotations were compared to the manual annotations of cell
clusters based on marker genes. Briefly, human data sets were
first downsampled to the clusters with the lowest cell number to
obtain a balanced dataset. Seventy-five percent of the data was
used for model training, and 25% of the data was used for model
testing. Raw expression matrices were log-normalized and subset
to the 300 most highly variable genes, which were used as fea-
tures for model training. Then, we trained an SVM classifier on the
human training data using sklearn v1.2.2, with kernel set to “rbf”,
gamma set to 0.001, and probability set to True, which enables
probability estimates by 5-fold cross validation. The performance
of the model was checked based on the precision, recall, and F1-
score per cell type label. After that, the gene identifiers in mouse
scRNA-seq data were converted to human genes using the bio-
maRt R package v2.56.0. The trained model was then used to
project the human cell type labels onto the gene-harmonized
mouse datasets. The SVM-predicted probability of each cell in the
mouse datasets corresponding to every given human cell type
was obtained. The estimated probabilities between human and
mouse matching cell types were summarized and used as a
similarity score.

SCENIC analysis
We utilized SCENIC v0.12.1 to predict transcription factor (TF) activ-
ities in single-cell data. Briefly, co-expression modules between TFs
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and target genes were inferred using GRNBoost based on correlations
between the expression of genes across snRNA-seq-derived cancer
cells. RcisTarget then refined the selection ofmodules by keeping only
modules with a significantly enriched TF binding motif. Subsequently,
AUCell scored the activity of each regulon in each cell.

Copy number variation analysis
For each snRNA-seq sample and neoadjuvant cohort sample in our
dataset, we used the inferCNV algorithm (infercnvpy v0.4.0) to infer
the copy number variation (CNV) of each hepatocyte-linage cell, using
the average patterns of non-tumor immune cells as a reference for the
CNV estimation. Malignant hepatocytes were further distinguished
fromnon-malignant hepatocytesby the large-scaleCNVsof eachcell as
described previously69.

Differential expression and gene set enrichment
For single-cell and spatial transcriptomic data, differential expression
(DE) analysis was performed using the Seurat FindMarkers function on
log-normalized data to identify overexpressed genes of indicated cell
clusters or spatial regions. TheMAST algorithmwas used inDE analysis
with log-fold change set to 0.25 and the “min.pct” parameter set to 0.1.
For bulk RNA sequencing data, DE analysis was performed using
DESeq2 v1.40.2 according to the recommended workflow. The upre-
gulated genes were defined as log-fold change > 1 and adjus-
ted p <0.05.

For the calculation of gene set enrichment, indicated gene sets
were derived from the MSigDB database, and the gene set over-
representationwasdetermined using the hypergeometric testwith the
ClusterProfiler v4.9.0 R package.

GSEA analysis
The indicated GO or KEGG signatures were derived from the
MSigDB database, and the upregulated gene sets of oxLDL-treated
TAMs or Trem2−/− TAMs from bulk RNA sequencing were obtained
byDESeq2 analysis asdescribed above. GSEAof signature geneswas
performed on the genes ranked by log-fold change between the
indicated TAM subset and other TAMs, using ClusterProfiler v4.9.0.
Gene signatures with FDR < 0.05 were considered significantly
enriched.

Label transfer using a reference
To investigate the association between cancer cell archetypes and
immunotherapy response, we transferred the archetype labels of
cancer cells from the snRNA-seq dataset to the cancer cells in our
neoadjuvant cohort. Briefly, cancer cells from ICB-R and ICB-NR HCC
samples were first identified from hepatocyte-linage cells using
inferCNV as described above. Then, transfer of cancer cell archetype
labelswasperformedusing the FindTransferAnchors andTransferData
functions in Seurat v4.0.3, setting the archetype annotation generated
from our snRNA-seq dataset as a reference. Expressions of cancer cell
archetype-related markers were used to verify the accuracy of the
transferred labels.

Alignment, quantification, and quality control of spatial
transcriptomic data
For 10× Genomics Visium sequencing data, the raw reads were
mapped to the human reference genome (refdata-gex-GRCh38-
2020-A) using SpaceRanger software (v1.2.1, 10× Genomics).
Briefly, Space Ranger showed the capture area of the organization
in the chip by image processing algorithm and aligned reads of
each spot according to the Spatial barcode information in Clean
Data. Spot numbers, reads in spot, detected genes, and UMIs were
counted. All spots detected by Space Ranger were included in the
downstream analysis.

Identification of tumor and stromal regions in spatial
transcriptomic data
To identify tumor and stromal regions in spatial transcriptomic data,
we first clustered tissue spots following the recommended Seurat
workflow. Briefly, gene expression matrices of tissue spots were nor-
malized and scaled using the Seurat SCTransform function, followed
by PCA analysis, neighborhood graph building, and clustering with the
Louvain algorithm (resolution =0.8). DE analysis was then performed
using the Seurat FindAllMarkers function to findmarker genes of each
spatial cluster. The assignment of tumor and stromal regionwas based
on the gene signatures and location of each spatial cluster: clusters
that located in the cancer cells on H&E staining and upregulated
hepatocyte-linage markers (ALB, TTR, ALDH1A1 etc.) were defined as
tumor regions, while clusters that located in the stromal cells on H&E
staining and upregulated stromal-related markers (COL1A1, COL1A2,
TAGLN, etc.) were defined as stromal regions.

Mapping single-cell data onto spatial sections
To spatially locate the cell types on the spatial transcriptomics sec-
tions, we utilized the anchor-based integration method in Seurat
v4.0.3. Briefly, scRNA-seq or snRNA-seq data from HCC tumor sam-
ples were used as reference. We utilized the annotation labels
obtained from subtype characterization of main cell linages, as
shown in Fig. 2A. The reference scRNA-seq or snRNA-seq data were
first normalized and scaled using the Seurat SCTransform function.
Then, integration of spatial and single-cell data was performed using
Seurat FindTransferAnchors and TransferData functions with default
parameters. Each Visium section was analyzed separately. Results
were visualized by the Seurat SpatialFeaturePlot function, and the
plots represent estimated abundance for indicated cell types. To
identify the co-localization pattern of TME cell types, Pearson cor-
relation coefficients were calculated between the cell type compo-
sitions of all spots in the tumor region. To validate the spatial
localization pattern revealed by the Seurat integration method, we
used cell2location v0.1.4, a deep learning-based spatial deconvolu-
tion method, according to the recommended workflow25, with all
parameters set to default.

Estimation of metabolic flux and metabolites
We used FLUXestimator38 to evaluate the metabolic flux activity and
metabolite abundance on our spatial transcriptomic data according to
the recommended workflow. The estimated metabolic flux and meta-
bolite levels were visualized using the Seurat SpatialFeaturePlot
function.

Histology quantifications
Thequantifications of TREM2+SPP1+ TAMs in humanprimaryHCC, ICB-
NR HCC, ICB-R HCC, or HCC TMA were performed using the inForm
software package (Akoya Biosciences) as previously described53.
Briefly, the images were first segmented into tumor and stroma tissue
areas based on the staining pattern of DAPI. Individual cells were then
segmented, and quantification of positive/negative cells was per-
formed using the inForm active learning phenotyping algorithm by
assigning different cell phenotypes across several fields that were
representative of the whole scan. This quantification process was
applied to the whole section to quantify all different cell types.

For the quantification of SQLE immunofluorescence intensity in
ICB-NR or ICB-R HCC samples, 6 random fields were selected in each
ICB-NR or ICB-R section. In each field, tumor and stromal regions were
manually segmented, and the SQLE immunofluorescence intensity was
measured using ImageJ software (National Institutes of Health). The
mean fluorescence intensity of 6 fields was calculated as the intensity
of the corresponding section. Then, the intensity of different sections
was compared.
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Bulk RNA sequencing analysis
RNA was isolated using TRIzol reagent. A total of 3 µg RNA per
sample was used as input for the sequencing library preparations,
which were then sequenced on an Illumina Novaseq6000 platform
with 150 bp paired-end reads generated. The experimental proce-
dures were performed by Jiayin Biotechnology Ltd. (Shanghai,
China). Each sample group contained at least 2 biological replicates.
The alignment and quantification of raw reads were performed by
STAR v2.7.10 and HTSeq v0.6.0. Then, we applied the DESeq2 algo-
rithm for normalization of expression matrices and DE analysis as
described above.

Scoring signatures on single-cell or bulk RNA-seq data
For scoring TAM signatures on single-cell data, the Seurat AddModu-
leScore function was used, and the top 50 genes ranked by log-fold
change were considered as the signatures of the corresponding TAM
subsets. For scoring gene signatures on bulk RNA-seq data, we utilized
the GSVA algorithmwith the parameter “kcdf” set to “Poisson” if it was
scoring on raw counts, andwith the parameter “kcdf” set to “Gaussian”
if it was scoring on normalized matrices. All TAM subset signatures,
lipid peroxidation signatures, cholesterol metabolism signatures, and
Scissor+ signatures that were generated in this study were listed in
Supplementary Data 3.

Cell type deconvolution of TCGA-LIHC samples
To estimate the indicated cell type proportion in TCGA-LIHC samples,
we used BayesPrism v2.0 to deconvolute cell fractions using our
annotated scRNA-seq or snRNA-seq data as reference. TCGA-LIHC
expression data were downloaded from the GDC data portal.

Prediction of single-cell myeloid populations associated with
survival
We used Scissor v2.0.0 to identify myeloid cell subpopulations in our
human single-cell data that are significantly associated with worse
patient survival (Scissor+ cells) or better patient survival (Scissor− cells).
Briefly, TCGA-LIHC survival and expression data were downloaded
from the GDC data portal. Then, Scissor was used to construct a
logistic regression model using the binary outcome of deceased vs.
censored/alive, with the alpha parameter set to 0.01 and all other
parameters set to default.

Survival analysis
We performed survival analyses to examine the clinical relevance of
the expression of TREM2 and SPP1, the expression of 73 metabolism
archetype-specific genes, or the BayesPrism-inferred fraction of
TREM2+TAM and metabolism archetype cancer cells. Briefly, decon-
volution of cell types was performed as described above, and gene
expressions were normalized using the TCGAanalyze_Normalization
function from the TCGAbiolinks R package (v 2.34.0). Next, the sam-
ples were stratified into groups based on the optimal cut points pre-
dicted by the surv_cutpoint function (survminer v0.4.9) for the
grouping signatures. Survival curves of the indicated groups of
patients were estimated by the Kaplan–Meier method, with statistical
significance calculated with log log-rank test. For the survival analysis
of 73 metabolism archetype-specific genes, a univariate Cox propor-
tional hazard model was constructed to calculate the hazard ratio for
each gene.

We used the multivariate Cox proportional hazard model to
examine theassociationofpatient survivalwithclinical featuresand
signatures of myeloid subclusters. Briefly, the top 50 genes ranked
by log-fold change were considered as the signatures of the corre-
sponding myeloid clusters (excluding cycling cells), and scoring of
signatures was performed as described above. Then, patient
pathological stage, sex, age, and myeloid cluster signatures were
included to construct the multivariate Cox survival model

(Pathological Stage: Stage I = 1, Stage II = 2, Stage III = 3; Sex:
‘Male’ = 1, ‘Female’ = 2; Age at diagnosis; Signature scores: below
lower quantile = =1, between lower and upper quantile = 2, above
upper quantile = 3). The Kaplan–Meier estimator, log-rank test, and
Cox proportional hazard models were calculated by the survival R
package (v3.5-5).

Statistical analysis
For all comparisons between two groups of independent datasets, a
two-tailed unpaired t-test or Wilcoxon rank-sum test was performed,
and the p-value and standard deviation of the mean (SD) were calcu-
lated. For all comparisons among more than two groups, one-way or
two-way ANOVA followed by multiple comparisons was performed.
The PFS, DFS, or OR were univariately analyzed by the Kaplan-Meier
method, and statistical testing was performed using log log-rank test.
The hazard ratio (HR) and confidence interval (95%CI) were computed
using theunivariate ormultivariateCoxproportional hazardmodel. All
statistical analysis was conducted either using GraphPad Prism v9.4.1
(GraphPad Software) or R v4.3.0 (R project). All the in vitro experi-
ments were independently repeated at least three times (with at least
three biological repeats in total), and the in vivo experiments included
at least six biological repeats with a similar time course and treatment.
Representative data from experiments performed at least in triplicate
are shown.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed human scRNA-seq data generated in this study
have been deposited in the National Center for Biotechnology Infor-
mation’s Gene Expression Omnibus (GEO) database repository under
accession number SRP374575 and GSE202642. The raw and processed
human snRNA-seq, spatial transcriptomic sequencing and bulk RNA-seq
data generated in this study have been deposited in the Genome
Sequence Archive (GSA) database under accession code HRA011756,
HRA011834, HRA011807 (raw), and OMIX010442, OMIX010476,
OMIX010473 (processed). The raw and processed mouse scRNA-seq
and bulk RNA-seq data have been deposited in the GSA database under
the accession number CRA026592, CRA026515 (raw) and OMIX010443,
OMIX010473 (processed). The human snRNA-seq and spatial tran-
scriptomic sequencing data are available under restricted access
because of data privacy and supervision. Researchers could send data
requests for scientific purposes via thewebsite [https://ngdc.cncb.ac.cn/
gsa-human/] after registration. Data access requests will be processed
within one month by following the guidelines for Genome Sequence
Archive for noncommercial use. Once access has been approved, the
data will be available for one month. Previously published data used in
this study are available under accession codes: GSE149614 [GEO: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149614], GSE14520
[GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14520],
GSE124751 [GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE124751], GSE97098 [GEO: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE97098], GSE151710 [GEO: https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE151710], GSE224411 [GEO: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224411], GSE235863 [GEO:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235863],
TCGA-LIHC [TCGA database: https://www.cancer.gov/tcga], LIRI-JP
[ICGC database: https://dcc.icgc.org/], OPE000321 [biosino NODE
database: https://www.biosino.org/node/project/detail/OEP000321]
and skrx2fz79n [Mendeley database: https://data.mendeley.com/
datasets/skrx2fz79n/1]. The remaining data are available within the
Article, Supplementary Information Source Data file or from the corre-
sponding author on request. Source data are provided with this paper.
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Code availability
The bioinformatic analysis code has been uploaded into the github
(https://github.com/Cthfudan/hcc). The codes used in this study have
been uploaded to Zenodo and are freely available at: https://doi.org/
10.5281/zenodo.1561883175.
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