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Leadless left bundle branch area pacing (LBBAP) represents the merger of two rapidly
progressing areas in the field of cardiac resynchronisation therapy (CRT). It combines the
attractive concepts of pacing the native conduction system to allow more physiological
activation of the myocardium than conventional biventricular pacing, with the potential
added benefits of avoiding long-term complications associated with transvenous leads via
leadless left ventricular endocardial pacing. This perspective article will first review the
evidence for the efficacy of leadless pacing in CRT. We then summarise the procedural
steps and pilot data for leadless LBBAP, followed by a discussion of the safety and efficacy
of this novel technique. Finally, we will examine how further mechanistic evidence may
shed light to which patients may benefit most from leadless LBBAP, and how
improvements in current experience and technology could promote widespread uptake
and expand current clinical indications.
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INTRODUCTION

Cardiac Resynchronisation Therapy (CRT) is a well-established treatment for symptomatic
dyssynchronous heart failure (Glikson et al., 2021). Conventional CRT involves transvenous
lead-based systems which provide biventricular (BiV) pacing from leads in the right ventricle
(RV), and in the coronary sinus to achieve epicardial left ventricular (LV) stimulation. CRT delivered
in a conventional approach significantly improves symptoms whilst reducing hospitalisations and
mortality in indicated patients (McAlister et al., 2007).

However, despite widespread uptake and success, studies consistently demonstrate that over 30%
of implanted patients fail to derive benefit from conventional CRT (Young, 2003). Several factors
contribute to this limited efficacy. The implant location of the LV lead is restricted to the epicardial
regions encompassed by the patient’s coronary venous system (Wouters et al., 2021), which may
cause difficulty in targeting optimal sites and avoiding transmural LV scar. LV scar is present in up to
40% of CRT candidates, and predicts poor response (Bleeker et al., 2006; Chalil et al., 2007; Leyva
et al., 2011; Wong et al., 2013). In addition, modelling studies demonstrate that conventional CRT
does not replicate physiological stimulation across the endocardium and in some instances may be
pro-arrhythmic (Mendonca Costa et al., 2019). Furthermore, over 4% all CRT candidates are unable
to receive lead-based CRT systems due to: unfavourable coronary venous anatomy preventing initial
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LV lead implant; poor upper limb venous access; or a
prohibitively high infection risk (Gamble et al., 2016). Novel
technologies, including leadless LV endocardial pacing and
conduction system pacing (CSP) have emerged to effectively
treat these challenging patient cohorts. Both therapies have the
potential to overcome the anatomical and physiological
drawbacks of conventional epicardial CRT.

Several studies have reported favourable acute outcomes
with LV endocardial pacing. (Garrigue et al., 2001; Derval
et al., 2010; Ginks et al., 2011; Padeletti et al., 2012; Morgan
et al., 2016). Endocardial stimulation provides more
physiological LV electrical activation compared to epicardial
pacing. (Bordachar et al., 2012). Importantly, endocardial
pacing provides the benefit of unrestricted LV pacing
locations, which can be vital in patients with unfavourable
characteristics such as myocardial scar. However, initial lead-
based systems to deliver LV endocardial pacing were
accompanied by a prohibitively high risk of stroke (Morgan
et al., 2016) and a need for lifelong anticoagulation.

Leadless LV endocardial pacing offers several advantages over
lead-based systems. Complete device endothelialisation subverts
the stroke risk and anticoagulation requirement. (Echt et al., 2010;
Okabe et al., 2022). These devices can be implanted in patients
where venous access or infection issues prohibit both
conventional and lead-based endocardial CRT (Gamble et al.,
2016). In addition, leadless pacing can overcome the numerous
long-term complications associated with transvenous leads
including: fracture (1–4%); tricuspid regurgitation (5%);
venous obstruction (8–21%); and infection (1–2%) (Bernard,
2016) which often result in the need for high risk lead
extraction procedures. The WiSE-CRT system (EBR Systems
Inc., Sunnyvale CA) is a leadless LV pacing system which is
commercially available in the European Economic Area, and has
been granted Breakthrough Device Designation by the US Food
and Drug Administration (FDA) (Auricchio et al., 2014). The
system consists of a battery connected to an ultrasound
transmitter, which is implanted subcutaneously at the fourth,
fifth or sixth intercostal place, and the receiver electrode, which is
implanted in the LV cavity via aortic or trans-septal access
(Supplementary Appendix Figure S1). The system requires
the patient to have a “co-implant” in-situ capable of producing
continuous right ventricular (RV) pacing, which can be either a
conventional device, such as a pacemaker or implantable
cardioverter defibrillator (ICD), or a leadless RV pacing device
such as MICRATM (Medtronic, Minneapolis MN). The
transmitter and battery detect an RV pacing pulse emitted by
the co-implant. Within 10 ms of detection of the RV pacing
stimulus, the transmitter emits a number of ultrasound pulses to
locate the receiver electrode. Once the transmitter is electronically
optimally aligned, a longer ultrasound wave is emitted, which is
detected and converted to a pacing stimulus by the receiver
electrode. This results in LV pacing, and thereby BiV pacing.
Observational (Auricchio et al., 2014; Reddy et al., 2017; Carabelli
et al., 2021; Okabe et al., 2022) and registry studies (Sieniewicz
et al., 2020) have demonstrated the effectiveness of leadless
endocardial pacing in complex real-world patients with poor
cardiac function and multiple co-morbidities, and the

international multicentre SOLVE-CRT trial is ongoing (Okabe
et al., 2022).

One area of ongoing research is identifying the optimal site for
leadless LV endocardial pacing. Unlike conventional CRT,
leadless technology allows pacing from any location within the
LV cavity. There can be substantial individual variation reported
in optimal endocardial pacing sites (Sohal et al., 2014; Behar et al.,
2016). due to factors such as scar and underlying conduction
disease. Studies have investigated whether pre-procedural
imaging or intra-procedural electroanatomical mapping can be
used to guide the optimal LV pacing location for leadless CRT
(Sieniewicz et al., 2018a; Sieniewicz et al., 2018b; Sidhu et al.,
2020). These guidance techniques were all developed on the basis
of targeting the areas of latest LV myocardial activation, which
tended to be in the posterior or lateral walls. Interestingly
however, Salden et al. (2020) reported that temporary LV
endocardial septal pacing consistently gave superior
improvement in LV activation times (LVAT) compared to
other endocardial locations and postulated that this was
through capture of the native conduction system rather than
septal myocardium alone. It is therefore possible that traditional
parameters which guide optimal LV pacing location such as scar
and late activation, may not apply in the context of CSP.

In this perspective article, we first describe the procedure for
leadless CSP. We then examine the safety and efficacy of this
novel technology. Finally, we discuss the limitations, unanswered
questions, and potential future directions of leadless CSP in the
context of all available CRT modalities.

FEASIBILITY OF LEFT VENTRICULAR
ENDOCARDIAL SEPTAL PACING

Histological studies have demonstrated that the left sided His-
Purkinje system runs in close proximity to the LV septal
endocardial surface (Padala et al., 2021). The majority of
patients display three branches: a long left anterior fascicle, a
shorter posterior fascicle, and an intermediate branch which
forms a fan-like structure. Electroanatomical mapping (EAM)
studies have validated histological findings in both structurally
normal hearts (Long et al., 2013), and in patients with left bundle
branch block (LBBB) (Upadhyay et al., 2019), who comprise the
majority of the CRT population. The extensive nature of the left
bundle branch network is postulated to be the reason why lead-
based left bundle branch area pacing (LBBAP) (Huang et al.,
2019) results in larger R waves and lower thresholds than His-
Bundle pacing (HBP) (Hua et al., 2020), as the network forms a
much larger target area than the penetrating His Bundle for lead
deployment and electrical capture.

Data from these EAM studies have also suggested that CSP is
able to effectively correct LBBB (Upadhyay et al., 2019).
performed EAM in 72 patients with LBBB to identify the
pattern of conduction tissue disease. They reported that in
64% of patients, the conduction disease phenotype was that of
proximal His-Purkinje block. The remaining patients displayed
intact Purkinje activation, with electrical dyssynchrony
presumably caused by intramural conduction delay. HBP
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corrected the QRS duration in 85% of patients with proximal
conduction disease block, and in 0% of patients with intact
Purkinje activation. They hypothesized that CSP was therefore
likely to correct electrical dyssynchrony in the majority of
patients with LBBB. There has been significant uptake of CSP,
with transvenous LBBAP in particular garnering interest in view
of high reported success rates from observational studies (Padala
and Ellenbogen, 2020). In the last year, there have been significant
developments in the field of leadless LV endocardial pacing which
has seen the emergence of leadless LBBAP.

Whilst theoretically the WiSE-CRT receiver electrode can be
implanted anywhere within the LV cavity, until recently, all
implants were targeted to the basal lateral/posterior walls
(Auricchio et al., 2014; Reddy et al., 2017; Sieniewicz et al.,
2020). In these initial observational studies, the vast majority
of implants were performed using a retrograde aortic approach
via femoral artery access. With this approach and the
unidirectional delivery sheath, stable targets can only be
feasibly achieved on the lateral LV walls, thus limiting implant
locations. It has only been with the recent emergence of a trans-
septal technique (Sieniewicz et al., 2017) for receiver electrode
deployment that the operator is able to target the LV septal wall,
thus performing LBBAP with the aim of capturing the native
conduction system.

To date, there has been one published case report of LV septal
pacing (Elliott et al., 2021). Elliott et al. report the case of a patient
with ischaemic cardiomyopathy, with an existing dual chamber
pacemaker implanted via a persistent left superior vena cava. A
tunnelled LV lead was placed via the right subclavian vein (RSV)
which subsequently failed. After failure of the original RV lead, a
new one was placed via the RSV. A new LV lead implant was also
attempted, but was unsuccessful due to coronary sinus
thrombosis. A WiSE-CRT procedure was therefore performed.
No suitable thresholds for endocardial electrode implantation
were found on the LV lateral wall. The decision was therefore
made to implant septally (Supplementary Appendix Figure S2).

The procedure for LV endocardial septal pacing involves
mapping the LV septum using a decapolar catheter, in order
to identify a left bundle potential (LBP). In the presence of LBBB
or complete heart block, high output temporary HBP from the
right side may generate a LBP. If this fails, RV pacing can be used
to map a retrograde LBP. A steerable sheath, such as the
Medtronic FlexCath AdvanceTM is then used to target the
receiver electrode to the desired location where it is deployed.
Whilst this case report demonstrated the feasibility of leadless
LBBAP, (Elliott et al., 2021), key questions are yet to be addressed
prior to expansion of this technique with regards to safety and
efficacy.

CAN LEADLESS LBBAP BE PERFORMED
SAFELY?

WiSE-CRT implantation is an invasive procedure which
is performed in a co-morbid population with very few
alternative treatment options, and carries an increased risk
profile compared to standard CRT implantation. A systematic

review and meta-analysis of studies to date (Wijesuriya et al.,
2022) reported a procedure/device related complication rate of
23.8% with a procedure related mortality of 2.8%, and a
procedure success rate of 91%. It should be noted that early
feasibility lead-based CRT studies reported a similar complication
rates ranging from 23 to 28% (van Rees et al., 2011). Following
initially high rates of pericardial effusion in the WiSE-CRT study,
(Auricchio et al., 2014), the delivery mechanism was updated,
reducing the risk of tamponade to 1.2%. Whilst still significant,
this rate is comparable to other commonly-performed invasive
procedures such as radiofrequency ablation (Bollmann et al.,
2018). Improved operator experience will likely also improve the
overall risk profile. In the WiSE Registry (Sieniewicz et al., 2020),
76% of complications occurred within a centre’s first 10 cases,
suggesting a learning curve. The most recent data released from
the roll-in phase of the ongoing SOLVE-CRT (Okabe et al., 2022)
trial showed a procedure related complication rate of 9.7% with
no mortalities, which would suggest that updated techniques and
technologies have improved the procedural safety profile.

With regards to safety, an area which is particularly pertinent
to leadless LBBAP is the transition from a retrograde aortic
technique to a trans-septal technique. A meta-analysis of 181
patients revealed a femoral arterial vascular access complication
rate of 5% (Wijesuriya et al., 2022). The trans-septal technique is
likely to result in a considerably lower rate of vascular
complications compared to the retrograde aortic technique,
especially as the operators in this field of cardiology tend to
have significantly more experience in trans-septal procedures.

ASSESSING THE POTENTIAL EFFICACYOF
LEADLESS LBBAP

The efficacy of leadless CRT using the WiSE-CRT system has
been reported in several observational studies (Auricchio et al.,
2014; Reddy et al., 2017; Sieniewicz et al., 2020; Carabelli et al.,
2021; Okabe et al., 2022). A meta-analysis of these studies reports
a pooled echocardiographic response rate [increase in LV ejection
fraction (LVEF) of >5%] of 54%, and a mean increase in LVEF of
6.3%. Patients in these studies represented a difficult to treat
population, with 22% being non-responders to standard CRT
(Wijesuriya et al., 2022). Notably, all patients in these studies
received LV lateral wall electrode implants. Evidence for the
efficacy of LV endocardial LBBAP is, to date, from in-silico
computer simulation studies, case series, small observational
studies and mechanistic cohort studies.

The technique for leadless LV septal endocardial pacing
targeting the LBBA was first described by Elliott et al. (Elliott
et al., 2021) The authors report a case where temporary pacing at
the site of the LBP showed greater electrical resynchronization
(QRS duration 106 ms) compared to pacing at the mid-lateral LV
wall (QRS 132 ms) and baseline RV pacing (172 ms). In addition,
LBBAP resulted in an equivalent acute haemodynamic response
compared to BiV pacing from various lateral wall endocardial
locations. This was consistent with an earlier observation study by
Salden et al. (2020), where temporary LV septal endocardial
pacing was performed in 27 patients undergoing CRT
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implantation, and acute improvement measured through QRSd,
QRS area using vectorcardiography, standard deviation of
activation times (SDAT) using multi-electrode body surface
mapping, and haemodynamic response (LV dP/dt). They
reported that LV septal pacing resulted in a larger reduction
in QRS area (to 73 ± 22 μVs) and SDAT (to 26 ± 7 ms) than BiV
pacing (to 93 ± 26 μVs and 31±7 ms; both p < 0.05).

Whilst leadless septal pacing targeting a LBP has been
performed using the WiSE-CRT system (Elliott et al., 2021),
whether this results in CSP is yet to be determined. The WISE-
CRT electrode was not specifically designed to ensure sufficient
LV endocardial penetration of the 3.6 mm tines to capture septal
Purkinje tissue. However, whilst LBBAP from an RV approach
requires approximately 11–18 mm of septal penetration, it is
likely that only superficial penetration is needed from an LV
approach, given the close proximity of the LBB to the endocardial
surface (Vijayaraman et al., 2019; Elliott et al., 2020; Elliott et al.,
2021). demonstrated using electrocardiographic imaging (ECGi)
that temporary LV endocardial pacing at the LBP site resulted in
improved dyssynchrony metrics compared to conventional CRT,
and similar results to HBP and BiV endocardial pacing from the
RV and lateral LV. Epicardial EAMs revealed that both HBP and
LBBAP result in early septal activation followed by rapid LV
activation, consistent with His-Purkinje network recruitment.
These EAM studies will need to be replicated following
permanent leadless LV pacing targeting the LBP, along with
acute haemodynamic testing and follow-up data, in order to
determine the efficacy of this technique.

DISCUSSION: LIMITATIONS,
UNANSWERED QUESTIONS AND FUTURE
DIRECTIONS OF LEADLESS LBBAP
Leadless LBBAP is an exciting new technology which combines
the fields of CSP and leadless CRT to provide treatment for a
challenging and high-risk group of patients with heart failure. In
the short term, improved operator experience will promote more
widespread uptake. Refinements to this novel implantation
technique will improve safety, success rate, streamline
workflow, and reduce parameters such as procedure duration
and fluoroscopy time.

Questions remain regarding several areas of leadless
LBBAP related to efficacy and patient selection, which will
determine its eventual utility amongst all available CRT
modalities. Initially, EAM studies are needed to determine
whether LV septal WiSE-CRT implantation targeting the LBP
achieves conduction system capture, as is postulated by
current limited data (Elliott et al., 2020; Elliott et al.,
2021). Such studies would also address pertinent questions
in the field of CSP regarding potential dyssynchrony. Several
small studies and case series report dyssynchrony with lead-
based CSP, although the cause of this remains unclear
(Arnold et al., 2021). performed ECGi on 20 patients with
conventional HBP devices. They reported that “non-
selective” HBP, that is, capture of both Purkinje tissue and
the surrounding myocardium, caused basal RV pre-excitation

compared to “selective” HBP, that is, pure conduction system
capture. However, there was no significant difference in
LVAT between selective and non-selective HBP capture.
Interestingly, other studies have reported that selective-
LBBAP causes dyssynchrony due to delayed RV activation,
rather than RV pre-excitation (Strocchi et al., 2020). studied
ventricular activation on 24 four-chamber heart meshes in
the presence of simulated proximal LBBB, using various
pacing modalities. They reported that whilst LVAT was
reduced with LBBAP compared to BiV pacing,
interventricular dyssynchrony was not, as LBBAP resulted
in increased RV activation time. Dyssynchrony improved
when the atrioventricular delay (AVD) was optimised to
allow native RV conduction. These results are consistent
with current in vivo data, where acute haemodynamic
improvements have been noted with AVD optimisation in
both lead-based HBP (Padeletti et al., 2016) and LBBAP
(Huang et al., 2020) to allow fusion between the LV paced
wavefront and intrinsic RV conduction. Further in vivo
mechanistic studies are needed to clarify the biventricular
activation pattern achieved with leadless LBBAP, whether
there is significant dyssynchrony, and whether there are
adequate programming algorithms to overcome this
effectively in the WiSE-CRT setting.

Another area of interest is which patients are most likely to
benefit from leadless LBBAP. The CRT population is
heterogenous, comprising various conduction disease
phenotypes and cardiomyopathy aetiologies, often with
complex left-sided electrical activation patterns. How LBBAP
performs in the presence of these factors, both in the lead-based
and leadless settings, remains unclear.

It is well established from studies of conventional CRT that
pacing in areas of scar is predictive of poor response (Bleeker
et al., 2006; Chalil et al., 2007; Leyva et al., 2011; Wong et al.,
2013). This phenomenon is also seen during LV endocardial
pacing (Behar et al., 2016). With regards to the effect of scar on
LBBAP, simulated data from four-chamber heart meshes has
suggested that in the presence of septal scar, standard BiV
pacing is superior to CSP, whilst in the presence of lateral LV
scar, CSP outperforms BiV pacing (Strocchi et al., 2021a). As
yet, this has not been tested in vivo. In part, this is because the
presence of septal scar creates technical difficulty in placing a
pacing lead to the LBBA with the standard technique of deep
interventricular septal deployment (Ali et al., 2021). Leadless
LBBAP overcomes this issue, and studies are warranted to
determine the performance of LV endocardial CSP in the
presence of various scar patterns, especially as studies thus
far have only examined myocardial pacing, rather than His-
Purkinje capture.

A related area is the effect of His-Purkinje and myocardial
conduction velocity on outcomes of CSP. Upadhyay et al. (2019)
reported that in patients with LBBB caused by proximal His-
Purkinje block, HBP effectively overcomes this, resulting in a
narrowing of QRSd in 85% of such patients. However, in their
study, patients with “intact Purkinje activation”, that is, where
dyssynchrony is caused by distal Purkinje slow conduction
velocity or intramyocardial myocardial conduction delay,
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exhibited no improvement with HBP. These results are consistent
with in-silico findings, which showed that normal His-Purkinje
velocity favoured HBP, whereas slow velocity favoured standard
BiV pacing (Supplementary Appendix Figure S3) (Strocchi
et al., 2021b). Conduction velocity is a metric which is
generally not measured in routine clinical practice, however,
this can be easily incorporated into the workflow of an LV
endocardial septal implant, where a decapolar
electrophysiology catheter is used to locate Purkinje potentials
as the target site for electrode deployment. If in vivo studies
corroborate the in-silico data, it is possible that measurement of
conduction velocity could be used peri-procedurally within
standard WiSE-CRT implantation workflow to guide a
decision on whether a LBBAP or lateral wall implant is
performed.

With regards to long-term directions for leadless LBBAP, its
place in the field of CRT will ultimately be determined by
future clinical trials testing its safety and efficacy compared to
conventional CRT and lateral wall endocardial pacing. Further
improvements in the leadless technology, such as longer
battery life and the ability to LV pace without an associated
co-implant, are also in progress. If these developments come to
fruition, there is potential for the expansion of indications for
leadless LBBAP to become a first-line CRTmodality in selected
patients.
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