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Abstract: Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during
neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower
grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining
visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for
assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided
surgery. OCM provides high-resolution information of the inherent tissue scattering and absorption
properties of tissue. We here explore quantitative attenuation coefficients derived from volumetric
OCM intensity data and quantitative high-resolution 5-ALA fluorescence as potential biomarkers for
tissue malignancy including otherwise difficult-to-assess low-grade glioma. We validate our findings
against the gold standard histology and use attenuation and fluorescence intensity measures to
differentiate between tumor core, infiltrative zone and adjacent brain tissue. Using large field-of-view
scans acquired by a near-infrared swept-source optical coherence tomography setup, we provide
initial assessments of tumor heterogeneity. Finally, we use cross-sectional OCM images to train a
convolutional neural network that discriminates tumor from non-tumor tissue with an accuracy of
97%. Collectively, the present hybrid approach offers potential to translate into an in vivo imaging
setup for substantially improved intraoperative guidance of brain tumor surgeries.

Keywords: optical coherence tomography; glioma; metastasis; attenuation

1. Introduction

Although diffuse gliomas comprise less than 1% of all newly diagnosed cancers, they account for
substantial patient morbidity and mortality. Glioblastoma (GB), the most malignant and lethal type
of glioma with a median overall survival of only 15 months, comprises 70–75% of all gliomas [1–3].
In addition to this rare tumor entity, brain metastases (MET) are the most common type of central
nervous system (CNS) tumors, estimated to occur in 9–10% of all cancer diagnoses with lung cancer,
breast cancer and melanoma being the leading causes for brain MET [4]. In most cases, METs result in a
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devastating prognosis with an estimated overall survival of less than a year despite optimal therapeutic
approaches [5].

Maximal safe resection is of utmost importance when operating on intracranial tumors. During
brain tumor surgery, real-time imaging plays a crucial role in the optimal resection of CNS tumors [6,7].
Intraoperative optical microscopy provides enhanced resolution to guide through the procedure
and support the neurosurgeon in the resection of brain tumors. Moreover, magnetic resonance
imaging (MRI)-based neuro-navigation is routinely applied for image guidance during brain tumor
surgeries. However, the discrimination between non-tumor and tumor tissue remains challenging
for the neurosurgeon, as brain shift results in progressive inaccuracy of neuro-navigation during
surgery [8,9]. One potential solution to this problem is visualization of tumor tissue with 5-ALA-induced
protoporphyrin IX (PPIX) fluorescence (FL), first described in the neurosurgical field by Stummer et al.
in 1998 [10], approved by the European Medicines Agency (EMEA) in 2007, and the U.S. Food and
Drug Administration (FDA) ten years later [11]. 5-ALA is orally administered to the patient three to
four hours prior to induction of anesthesia. The malignant brain tumor tissue synthesizes porphyrins
such as PPIX, resulting in the emission of fluorescence at the site of malignant tumor tissue. Thereby,
the intraoperative delineation of tumor tissue and especially tumor margins is facilitated [12–14].
Fluorescence-guided tumor visualization has been shown to provide high sensitivity and specificity
for GB, however its capabilities for the intraoperative detection of lower-grade gliomas (LGG) and/or
secondary brain tumors are limited [13,15,16].

The gold standard for the diagnosis of brain tumors is the integrated morphological and molecular
evaluation of tumor tissue. Although being a highly specific and sensitive method, it is prone to sampling
bias, and is time consuming and cost intense. Just recently, research groups have established first
convolutional neural networks (CNN) and deep learning algorithms for the non-invasive classification
of brain tumors based on MRI [17,18]. Likewise, another group recently reported deep CNNs applied to
intraoperative stimulated Raman histology for brain tumor classification [19]. Despite these promising
approaches, the extensive tumor heterogeneity that underlies many brain tumor types such as diffuse
glioma remains a major diagnostic and therapeutic challenge [20–22]. Hence, a better understanding
of tumor heterogeneity and higher throughput sampling will be key to improving diagnostic accuracy
and refining personalized therapeutic options [23].

Optical coherence tomography (OCT) is a non-destructive and label-free imaging modality, which
was first introduced in the early 1990s [24,25]. The technique is based on the inherent backscattering
of light within different tissues and permits a three-dimensional, tissue-preserving reconstruction
of morphology down to the cellular level [26]. OCT has become a standard diagnostic tool in
ophthalmology and has recently evolved in other fields such as neuroimaging [27]. For instance, OCT
has been used to investigate neurodegenerative diseases such as Alzheimer’s disease [28–31] and also
to visualize brain tumors [32–38]. Most recently, Almasian et al. published a feasibility study on in vivo
intraoperative OCT for glioma surgery based on a cohort of six patients [39]. Another group described
an AI-assisted approach to detect human glioma infiltration in situ with outstanding sensitivity
(near 100%) and specificity (around 85%) [40]. As the evaluation of OCT data is computationally
intense, first CNNs have been established to differentiate between different intracranial tumors
and non-tumor-containing brain tissue based on texture features of OCT images [41]. Yashin et al.
demonstrated cross-polarization OCT for glioma imaging both ex vivo and in vivo and evaluated
signal intensities, homogeneity of intensity, attenuation rates, and uniformity of attenuation [42].
However, OCT imaging based solely on the scattering of light often lacks tissue-specific contrast [27].

In this study, we aimed to combine OCT-based microscopy (OCM) with high resolution FL
imaging for the evaluation of intracranial tumors acquired through 5-ALA fluorescence-guided
surgery. Using a multimodal hybrid OCM-FL prototype [43], we evaluated FL intensities, OCM
attenuation (ATT) coefficients and cell density maps across three different brain tumor entities, namely
LGG (including WHO grade II and III gliomas), GB, and MET. For a deeper understanding of the
intra-tumoral heterogeneity of our samples, we used a swept-source OCT setup at 1060 nm [44] for
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large field-of-view (FOV) scans. All findings were validated against the gold standard histology.
Ultimately, we constructed a CNN to predict the absence or presence of tumor in the tissue samples
based on cross-sectional OCM intensity data, as these may be available in real-time during surgery.

2. Results

2.1. Comparison of In Vivo 5-ALA Readout with Ex Vivo Fluorescence, OCM and Histology

In Figure 1a, a schematic representation provides orientation on the 3D arrangement of FL,
OCM, and histologic imagery. The remaining Figure 1 highlights representative examples for all
tumor entities evaluated in this study grouped according to the intraoperative 5-ALA fluorescence
classification by the neurosurgeon. The pink-to-blue colored strips on top of each panel indicate the
transverse high-resolution 5-ALA fluorescence profile over a range of 3 pixels as measured ex vivo
at the same location of the OCM B-scan image below. At the bottom of each panel corresponding
haematoxylin and eosin (H&E) stained histological sections are provided. In the left column, data from
samples with strong intraoperative 5-ALA fluorescence from a lower-grade glioma (LGG), GB and
lung cancer MET are shown. In Figure 1e,h, CNS tumors with vague fluorescence are displayed.
In the right column, macroscopically 5-ALA negative tumor samples are shown. Even though the
LGG sample was macroscopically classified 5-ALA negative by the neurosurgeon, the combined FL
and OCM signature unravels distinct sub-visual fluorescence heterogeneities and tissue alterations.
These observations suggest the presence of tumor tissue. This is further substantiated by histology
that confirms the presence of malignant tumor cells (Figure 1c) rather than non-neoplastic brain tissue
(Figure 1d). Moreover, high-resolution fluorescence values and cell density were positively correlated
with cell proliferation as quantified by the MIB1 labeling index (LI), where a positive, statistically
significant correlation was found (rs = 0.05, p-value 0.040; rs = 0.15, p-value 0.001).

2.2. Comparison of OCM Attenuation and Quantitative Fluorescence Data

Next, attenuation and fluorescence data were compared for the different tumor entities (see Figure 2,
Tables S2 and S3). For all three tumor entities, attenuation coefficients decreased while fluorescence
signals increased with content of malignant tumor cells. For LGGs, the median attenuation coefficient
in non-neoplastic brain parenchyma was 4.35 ± 1.20 mm−1, as compared to 2.95 ± 0.86 mm−1 and
2.90 ± 0.38 mm−1 in infiltration zone and tumor core, respectively. The relative 5-ALA fluorescence
intensity was measured 0.16 ± 0.10 in non-neoplastic brain parenchyma, 0.25 ± 0.15 in infiltration
zone and 0.26 ± 0.12 in the compact tumor. In the GB cohort, a significant difference between
non-neoplastic brain parenchyma and tumor core of both attenuation coefficient (4.45 ± 0.99 mm−1

in non-neoplastic brain parenchyma, 3.20 ± 0.76 mm−1 in tumor, p = 0.04) and fluorescence intensity
(0.28 ± 0.17 in non-neoplastic brain parenchyma, 0.60 ± 0.23 in tumor, p = 0.02) was found. For the
infiltration/border zone, the attenuation coefficient was intermediate at 4.00 ± 0.71 mm−1 and the
relative 5-ALA fluorescence was 0.49 ± 0.27. In the metastatic cohort, the same trends were observed
for attenuation coefficients (4.13 ± 0.64 mm−1 in non-neoplastic brain parenchyma, 3.90 ± 1.61 mm−1 in
the border zone, 3.03 ± 1.15 mm−1 in tumor) and fluorescence values (0.35 ± 0.28 in brain parenchyma,
0.50 ± 0.12 in border zone and 0.69 ± 0.27 in tumor). The scatter plots on the right-hand side of Figure 2
show attenuation coefficients and fluorescence intensities plotted over cell density independent of
tumor entity. Each data point in the scatter plots corresponds to one data set.
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Figure 1. Cross-sections and digital pathology scans of representative tumor samples for each tumor
entity evaluated in the study. Each panel features a 2.5-µm-thick line of the fluorescence micrograph
and the corresponding OCM (optical coherence microscopy) B-scan image. Corresponding histological
sections are shown below. (a) Schematic 3D representation provides orientation of feature extraction
planes. (b,c) LGGs (lower-grade gliomas) with strong (b) and without (c) 5-ALA (5-aminolevulinic acid)
fluorescence observed during fluorescence-guided surgery (FGS) respectively. (d–f) GB (glioblastoma)
with strong (d), vague (e) and without (f) intraoperative 5-ALA fluorescence respectively. (g–i) Lung CA
MET (lung cancer metastasis) with strong (g), vague (h) and without (i) 5-ALA fluorescence observed
during FGS. Note, infiltration by macrophages in (h) indicated by purple arrows and necrosis in (i)
throughout the tissue. Scale bars correspond to 50 µm.
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Figure 2. Comparison of median attenuation coefficients (mm−1 tissue depth) and normalized
fluorescence intensities across different tumor entities. Scatter plots visualize every sample evaluated,
where the axes represent attenuation coefficient and quantitative 5-ALA fluorescence with respect to cell
density (cells/mm2). The color coding classifies the samples according to the tissue type assessed by an
experienced neuropathologist based on histology. Fluorescence intensity values have been normalized
between 0 and 1 (LGG–lower-grade glioma, GB–glioblastoma, LUNG CA MET–lung cancer metastasis,
TU–tumor, INF–infiltration zone, BP–non-neoplastic brain parenchyma).

2.3. Investigation of Intra-Tumor Heterogeneity Using Wide-Field OCM Imaging

Large FOV images were acquired using the swept-source OCM setup in order to explore the
intra-tumoral heterogeneity in a sub-cohort of six samples. Similar trends were observed in all tissue
samples. A photograph (Figure 3a) and a fluorescence image (Figure 3b) of one sample derived from the
core of an anaplastic astrocytoma, WHO grade III, are shown as a representative case. The intraoperative
5-ALA fluorescence classification was negative, suggesting the absence of highly malignant tissue.
In Figure 3c, the attenuation en-face projection of the whole sample is displayed. Darker red tones
represent lower attenuation coefficients, which seemed to be associated with more heterogeneous cell
densities. Brighter colors ranging from orange to yellow encode a higher attenuation, which appears
to correspond to less pathological tissue. Although the biopsies were all rather small (in the millimeter
range), local variation of attenuation characteristics were observed. Four regions of interest of the size
of 250 × 250 µm2 were chosen. The corresponding regions are highlighted in the cell density map in
Figure 3d, and H&E stainings of the respective regions are shown in panels (d1) to (d4). Note that a
slight tissue deformation was inevitable due to the histopathological workup including dehydration,
embedding, and cutting processes. The mean cell density of the entire biopsy was 4477 cells/µm2,
ranging from 3880 cells/µm2 in (d3) to 8267 cells/µm2 in (d4). Attenuation and cell density did not
correlate with regional cell proliferation (as quantified by the Mindbomb homolog 1 (MIB1) score),
Isocitrate Dehydrogenase 1 (IDH1), p53, or Epidermal Growth Factor Receptor (EGFR) expression.
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Figure 3. Large field-of-view (FOV) scan of a representative astrocytoma, WHO grade III case with
a vaguely fluorescent 5-ALA hotspot. (a) Photograph and (b) fluorescence image of a sample of the
compact tumor immediately after resection. (c) Attenuation en-face projection and (d) whole sample
cell density map with (d1–d4) corresponding regions of interest upon H&E staining.

2.4. CNN for Tumor Classification in OCM Intensity B-Scan Data

A CNN was trained to differentiate tumor from non-tumor affected brain tissue based on
cross-sectional OCM intensity images, independent of fluorescence data. The model performance
in terms of accuracy and loss (using categorical cross-entropy) is shown in Figure 4a,b, respectively.
As a first attempt, the model was trained on tumor vs. non-neoplastic brain parenchyma (n = 204).
When testing the model with an independent test set of 60 B-scans an accuracy of 97% was achieved.
The sensitivity was found to be 93% and the specificity 100%. Representative OCM B-scans of
non-neoplastic brain parenchyma and tumor tissue used for network training are shown in Figure 4c.
Of note, differences in cell density, blood vessels, or axonal structures impact OCT signals. Figure 4d
shows the ROC curve and the corresponding area under the curve (AUC = 0.993) of the CNN.
As a next step, B-scans of samples resected from infiltration zones/tumor edge were included in the
training data set (n = 257). The cross-sections with tumor infiltrative tissue were pooled with the tumor
set. When testing the network using an independent test set of 138 unknown data sets, the accuracy
dropped to 83% and the sensitivity and specificity were calculated to be 84% and 74%, respectively
(see contingency tables in Figure 5). For the nonsense test set of 20 non-cerebral images, results showed
a random group assignment with an accuracy of 50% as expected.
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Figure 4. CNN (convolutional neural network)-based prediction of tumor versus non-neoplastic
brain parenchyma. (a) Accuracy of training and validation processes over 100 iterations. (b) Loss
during training and validation processes over 100 iterations. (c) Examples of OCM cross-sections of
non-neoplastic brain parenchyma (Non-neopl. BP) versus tumor core. (d) ROC curve and area under
the curve (AUC) of the CNN.

Figure 5. Contingency tables for both CNNs trained in this study. (a) Contingency table with positive
predictive values (PPV) and negative predictive values (NPV) for the network trained on tumor (TU)
and non-neoplastic brain parenchyma (BP) tissue B-scans. (b) Contingency table with PPV and NPV
for the network trained on both infiltration zone and tumor (INF + TU) as compared to non-neoplastic
tissue B-scans.
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3. Discussion

In the present study, we investigated the potential of a combined multimodal fluorescence and
optical coherence microscopy (OCM) setup for the characterization of brain tumor samples derived
from 5-ALA fluorescence-guided surgery (FGS). Brain tumors carry a devastating prognosis and
almost all of them either recur at some point or immediately progress to more malignant grades [45].
As more individualized therapeutic approaches are being increasingly incorporated, maximal safe
resection is a major determinant of overall survival [46–50]. Hence, intraoperative guidance to support
the neurosurgeon in performing complete resections has become increasingly relevant over the last
decades. MRI-based neuro-navigation was established in the late 1990s and has since become a standard
diagnostic tool [51]. Still, upon opening of the skull, intracranial pressure changes and resection of tumor
tissue results in brain shift, rendering the images for intraoperative image guidance inaccurate [7–9],
which is a limitation that can be avoided by intraoperative MRI. However, intraoperative MRI is
costly and thus not widely available. 5-ALA-induced emission of PPIX fluorescence has been shown
to be highly sensitive for high-grade gliomas and particularly GB [15,50,52,53]. However, FGS lacks
sensitivity for LGG that mostly do not display visible fluorescence [54–57]. Further, unspecific
fluorescence of erythrocytes and blood vessels might mimic true fluorescence signals, whereas necrotic
tissue in a neoplastic cortex does not emit any fluorescence due to the terminated cell metabolism [58].
Hence, there is room to further develop or adapt novel technologies for intraoperative use such as
OCM, which constitutes one particularly promising technique.

In our approach, we combined OCM with fluorescence imaging to simultaneously analyze
OCM-based attenuation coefficients and quantitative high-resolution fluorescence using ex vivo tumor
samples. For GB and MET, 5-ALA fluorescence, as assessed in vivo by the neurosurgeon as well as ex
vivo by our combined system, was a rather specific predictor of tissue malignancy, well in line with the
literature [9,11,55,59]. Of note, intra-operatively assessed macroscopic 5-ALA fluorescence was strongly
correlated with the high-resolution fluorescence quantified by our prototype. Importantly however,
our prototype showed enhanced sensitivity to detect even low-level sub-visual fluorescence, indicating
that it might be especially useful for tumors with limited 5-ALA uptake or metabolism such as LGGs.
LGGs typically show either no or only focally fluorescing areas, the latter being clinically important
as they usually correspond to focal areas of malignancy [54–57]. Indeed, in our series, only 4 out of
32 regional LGG samples derived from tumor core or infiltration zones showed macroscopically visible
5-ALA fluorescence, a fraction that was substantially improved by our high-resolution fluorescence
approach (12/32 samples). Five out of those 12 samples corresponded to anaplastic foci, thus rendering
the patients candidates for more aggressive adjuvant therapy [60–63]. In contrast, the attenuation
coefficient primarily depends on structural tissue properties or cellular characteristics, which makes it
an especially attractive candidate to complement fluorescence. As a next step, it would be of interest to
evaluate the ability of our prototype to classify those tumors according to their respective grades of
malignancy in a larger study cohort.

Across our series of evaluated brain tumor types, we found that higher fluorescence values
correlated with decreased attenuation values. In particular, attenuation coefficients decreased with
increasing tissue heterogeneity and irregularities such as increased cell density. Of note, similar results
for attenuation values have recently been observed by different research groups in the field [32,36,42].
Even though they used systems operating in the near infrared region, the overall trends were
similar: attenuation coefficients decreased with increasing cell density, mostly corresponding to
tumor malignancy. In our case, this was also true for LGG samples that did not display any visible
5-ALA fluorescence intraoperatively but still had histologically confirmed tumor infiltration, thus
independently reproducing the results of our high-resolution fluorescence experiment.

In order to further tackle different microenvironmental compartments and intra-tumor
heterogeneity in diffuse gliomas, we aimed for large FOV scans for a subgroup of our samples.
In a previous paper we introduced a mosaicking-method using an automated x-y-z stage for large
FOV scans at microscopic resolution [30]. However, this method is rather slow with an acquisition
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time of up to 8.3 seconds per FOV sized 200 × 200 µm2. In contrast, with our swept-source OCM setup
we achieved a field of view of 8 × 8 mm2 in a single acquisition in only 5 seconds. Further, it offered an
extended imaging depth range and an improved roll-off, which did not require manual refocusing for
every tile. Even though the samples we analyzed represented only small parts of the overall tumor,
attenuation coefficients and cell densities strongly varied within a single sample. This indicates that
even within small samples, we face considerable tumor heterogeneity, making not only resection but
also diagnostic assessments challenging.

As the calculation of attenuation coefficients requires computationally intense image processing,
our next step was to evaluate the predictive potential of pre-stage cross-sectional reflectivity images
as these can be obtained in real-time. To this end, we developed a convolutional neural network
to differentiate between non-neoplastic brain parenchyma and tumor tissue based on the inherent
backscattering of light within the sample. We did not differentiate between the individual tumor
entities in our study in order to increase sample size and to evaluate the overall potential of the
network to detect tumors independent of type. Indeed, we were successful in the prediction of the
presence of tumor with high accuracy of 97%, which dropped to fair 83% when adding samples from
the border/infiltration zone. This is to be expected considering the fact that the infiltration zone is a
mixture of normal and tumor tissue. Still, considering the limited training sample size of 204 images
used for this network, accuracies of 97% and 83% are an encouraging preliminary result. In future,
the predictive accuracy might be further increased through the addition of high-resolution fluorescence
images to the input data. Moreover, it will be important to evaluate its diagnostic performance under
real-time frozen section conditions. The implementation of the proposed fluorescence imaging and
optical coherence microscopy (FI-OCM) setup into the surgical theater might constitute a promising
tool to intra-operatively discriminate different tissue types and optimize the extent of resection.

4. Materials and Methods

4.1. Tumor Samples

A total of 78 tissue samples retrieved from 42 patients from the vital tumor core (TU) and
infiltration zone/edge (INF) with a diameter ranging from three to eight millimeters were safely
collected during 5-ALA FGS of brain tumors and the performing neurosurgeon subjectively classified
each sample according to the visible fluorescence level (strong, vague, or no fluorescence). We also
collected samples from non-neoplastic brain parenchyma (BP) adjacent to the brain tumor, particularly
en route to deep-seated tumors. Subsequently, all samples were grouped into three different categories
based on the neuropathological diagnosis following the integrated morphological and molecular
assessment according to the 2016 WHO classification [64]: LGG (n = 34), GB (n = 30), and lung
cancer (CA) MET (n = 14; see Table 1 and Table S1 for demographic patient data). LGGs included
eleven oligodendroglioma specimens (six of WHO grade II and five of WHO grade III) as well as
23 astrocytoma specimens (14 of WHO grade II and nine of WHO grade III). Features of interest
included quantitative 5-ALA FL (normalized between 0 and 1), attenuation (ATT) coefficients (mm−1)
and cell density (cells/mm2). Fresh intraoperative samples were safely collected and imaged within
one hour after resection using the custom-built hybrid OCM and FL imaging setup (see the workflow
scheme in Figure 6). A sub-population of six samples was further imaged with the swept-source
OCM system described below to acquire large FOV scans. The tissue samples were acquired from
FGS performed at the Department of Neurosurgery of the Medical University of Vienna, Austria
(approved by local ethics committee of the Medical University of Vienna, Austria; approval number
EK 419/2008—Amendment 04/2018). The histopathological analyses were conducted at the Division
of Neuropathology and Neurochemistry, Department of Neurology of the Medical University of
Vienna, Austria.
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Table 1. Patient and biopsy cohort with respect to tumor entity (LGG, GB, MET) and histology-derived
tissue type (TU, INF/EDGE, BP).

Tumor Entity Compact Tumor Tissue Infiltration Zone/Edge Non-Neoplastic Tissue
Adjacent to Tumor

Lower-grade glioma 9 patients,
11 biopsies

13 patients,
21 biopsies

2 patients,
2 biopsies

Glioblastoma 14 patients,
15 biopsies

4 patients,
7 biopsies

7 patients,
8 biopsies

Lung cancer metastasis 5 patients,
6 biopsies

2 patients,
2 biopsies

6 patients,
6 biopsies

Figure 6. Workflow for the processing of CNS tumor biopsies. The samples were resected during
5-ALA FGS [13] (a) and immediately transferred to the lab, where FI-OCM imaging was performed (b).
FI data were acquired before bleaching occurred (c), followed by OCM imaging (d). Based on OCM
intensity data, attenuation maps were computed (e). Data post-processing was performed and all OCM
data sets were evaluated using a convolutional neural classifier model (f). Subsequently, the samples
were fixed in 4% formalin and processed for histopathological workup. H&E staining (g) and cell
density maps (h) served as ground truth.

4.2. Optical Coherence Microscopy and Fluorescence Imaging

For the investigation of our study cohort, a custom-built multimodal hybrid OCM and FL imaging
system was utilized. A detailed description of the system can be found elsewhere [43]. In brief,
the same FOV was sequentially imaged with both modalities. A visible supercontinuum laser (NKT
Photonics, SuperK EXTREME EXU-6, Birkerod, Denmark) was used as light source for both OCM
and FI systems. Switching from OCM to FL imaging only required flipping two mirrors in the setup.
Fluorescence images were acquired prior to OCM volumes in order to prevent artifacts due to the
bleaching process. The FL subsystem was based on a confocal laser scanning microscope configuration
employing a filter cube equipped with an excitation filter (Thorlabs, Luebeck, Germany; MF 434-17),
a dichroic mirror (Thorlabs, MD 434), an emission filter (Thorlabs, MF 630-69) and a photomultiplier
tube (Thorlabs, PMMT02). The OCM subsystem used a broad light spectrum in the visible range
(425–685 nm) providing an ultrahigh axial resolution of 0.88 µm in brain tissue. The measured lateral
resolution was 1.8 µm using a 20× objective lens (Olympus, Tokyo, Japan; UPLFLN-20XP). The power
measured at the sample was 0.8 mW for OCM and 0.2 mW for FL imaging.

4.3. Data Acquisition and Post-Processing with the Multimodal OCM Setup

Fluorescence images consisted of 500 (x) × 500 (y) pixels and the processed OCM data sets
comprised 500 (x) × 500 (y) × 4096 (z) pixels, each covering the same 200 × 200 µm2 lateral FOV.
OCM volumes and FL intensities were acquired in 8.3 seconds using custom software (LabVIEW
2015, Version 15.0, 64-bit, National Instruments, Austin, TX, USA). Data were processed as previously
described by Lichtenegger et al. [30]. After image acquisition, surface flattening was performed and
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attenuation maps were computed from OCM reflectivity data [65,66]. Sub-volumes consisting of
100 B-scans were chosen in a manually defined region of interest and average attenuation coefficients
were calculated. Respective fluorescence intensities on the tissue surface were quantified and
normalized linearly between zero and one, with the upper and lower values defined as the minimum
and maximum, respectively, of all data sets. For visualization purposes, Fiji [67] was used to generate
averaged en-face projections and composition images.

4.4. Large Field-Of-View Scans

For a deeper insight into the intra-tumoral heterogeneity of our samples, multisector imaging was
performed for six representative samples. For this purpose, a modified configuration of a swept-source
OCT ophthalmoscope previously introduced by Salas et al. [44] was used. The light source (Insight
Photonic Solutions, Inc., Lafayette, CO, USA) operated at 100 kHz and provided a bandwidth of
73 nm centered at 1060 nm. The measured axial resolution was 5.9 µm in brain tissue. With a FOV of
8 × 8 mm2, a transverse resolution of 38 µm was achieved.

4.5. Histopathological Workup

After OCM and FL imaging, tissue samples were immediately processed for histopathological
workup. The tissue was fixed in 4% formalin for 24 to 48 h depending on the size of the tumor sample,
followed by dehydration steps and paraffin embedding. Next, 2.5-µm-thick sections were cut and
hematoxylin & eosin (H&E; hematoxylin by Merck, Darmstadt, Germany; LOT HX90507449; eosin by
Merck, CAS 17372-87-1) as well as Ki-67 antibody MIB1 (dilution 1:100, by Dako, Jena, Germany; LOT
20062304) staining was performed. Slides were digitized using a Hamamatsu (Hamamatsu City, Japan)
NanoZoomer 2.0 HT slide scanner. Histological sections served as gold standard for correlations to
OCM and FL imaging and were further used for cell density calculations.

4.6. Cell Density Maps and Statistical Correlation

Using a custom-made algorithm implemented in MATLAB (release R2014b, MathWorks, Natick,
MA, USA), cell density calculations were performed and heat maps were created for each sample [68].
Cells were segmented by first performing color deconvolution on H&E stained slides to obtain an 8-bit
grayscale image of the hematoxylin color channel [67,69,70]. Afterwards, automated thresholding
was performed based on Phansalkar’s method [71]. Results were correlated to ATT coefficients and
FL values using one-way ANOVA and Bonferroni corrections. In a next step, Spearman’s rank-order
correlations were performed for MIB1 LI proliferation scores of all samples. Results were considered
significant at the 0.05 level. All statistical evaluations were performed either using SPSS (version 24,
IBM) or MATLAB (R2019b, The MathWorks).

4.7. Convolutional Neural Network

A convolutional neural network (CNN) classifier model was coded in Python (version 3.6) using
Keras libraries (version 2.2.4) and TensorFlow (version 2.0) as a backend. A sequential model was
built using 2D-convolution, max-pooling, dropout and dense blocks. An optimizer was used for
compiling. An overview of the CNN architecture is given in Figure 7. First, a total of 204 reflectivity
B-scans of non-neoplastic brain parenchyma (n = 102 retrieved from 18 patients using five to six B-scans
per patient) and compact tumor tissue (n = 102 retrieved from 18 patients using five to six B-scans
per patient) acquired with our visible light OCM setup were used as data set for training the model.
The tumor samples included all tumor entities incorporated in this study (LGG, GB, MET). Each OCM
B-scan was scaled to 128 × 128 pixels in size. All grayscale values in the OCM B-scans were normalized
between 0 and 1. In order to split the images into training and validation sets, 10-fold cross validation
was performed. Each time before training, the data set was randomly shuffled on a sample-basis in a
way that the same sample could not be used for both training and validation. An Adam optimizer was
applied in addition to a dropout of 0.5 and 100 epochs were trained. After training, prediction analyses
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were performed for an independent test data set of 60 data B-scans (n = 30 for compact tumor core
and n = 30 for non-neoplastic tissue adjacent to the tumor, respectively). The prediction and training
sets were taken from independent patient data. A label matrix (0—non-neoplastic brain parenchyma,
1—tumor core) was predefined based on histological classification. Additionally, 20 randomly selected
OCM B-scan data sets of ex vivo tissue other than human CNS tissue (cornea, mouse brain and
zebrafish larvae tissue) were tested with the neuronal network to test its specificity. Second, all data
sets including infiltrative regions (that are a mixture of brain parenchyma and low-cellular/scant tumor)
were investigated using the same network architecture. The network was trained again with 10-fold
cross validation using 118 and 157 data sets from non-neoplastic brain parenchyma (BP) and tumor
tissue (TU), respectively. The infiltration zone data were added to the tumor data sets for training to test
the extent of sensitivity of the network in terms of tumor margin detection. The network was then tested
on 138 new data sets including B-scans from the tumor core, infiltration zone, and tumor-associated BP.

Figure 7. The architecture of the convolutional neuronal network. MaxPooling2D—2D extraction
of most active (max) value from each cluster of neurons; Dense—dense blocks; T—tumor;
BP—non-neoplastic brain parenchyma.

4.8. Data and Code Availability Statement

All data and code used in this study will made available upon direct request. Clinical data will
be provided fully anonymized. None of the data may be used for commercial purposes. This policy
complies with the requirements of the funding sources.

5. Conclusions

We present a multimodal hybrid FL-OCM setup and assess regional samples across a range of
different brain tumor types derived from 5-ALA FGS. The combined evaluation of high-resolution
fluorescence intensities and OCM-derived attenuation coefficients proves powerful and synergistic for
evaluating challenging samples that do not display visible 5-ALA fluorescence such as lower grade
glioma. Finally, we use standard OCM image data to differentiate between tumor and non-neoplastic
brain tissue using a deep learning-based approach. Altogether, our hybrid imaging prototype and
image analysis algorithm are promising tools for improved intraoperative guidance to achieve the
surgical goal of maximal safe resections of brain tumors.
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