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Abstract. By using a monoclonal antibody we have 
identified a new polypeptide doublet (C4 h and C4 m) of 
Mr ~21 kD and pI 8 and 7, respectively, that is as- 
sociated with and (at the immunofluorescence level) 
uniformly distributed on actin filament bundles in rat, 
mouse, and other vertebrate species. C4 is absent in 
neurones, erythrocytes, and skeletal muscle but the 
epitope is evolutionarily conserved as it is present in 
invertebrates such as molluscs and crustaceans. 

C4 h is not found in cells such as lymphocytes and 
oncogenically transformed mesenchymal cells where 

actin stress fiber bundles are reduced in number or ab- 
sent. C4 m, on the other hand, is always present. C4 h 
expression can also be blocked by switching normal 
nontransformed mesenchymal cells from adherent to 
suspension culture. Reexpression of C4 h occurs 24 h 
after these cells are returned to normal adherent cul- 
ture conditions, but can be blocked by either ac- 
tinomycin D or cycloheximide, suggesting that the ex- 
pression of this epitope is regulated at the 
transcriptional level. 

. "~'N normal mesenchymal cells, grown in dissociated cell 
| culture, actin is often organized into large bundles of 
. L  stress fibers that traverse the cytoplasm (43, 55). Stress 
fibers (10) are associated with anchorage dependence, re- 
duced mobility, and contact inhibition (25, 33). Transforma- 
tion of mesenchymal cells by chemical carcinogens or onco- 
genic nucleic acids causes a loss of stress fiber bundles with 
a concomitant alteration in cell shape, loss of contact inhibi- 
tion, and enhanced tumor-forming potential (1, 7, 19, 27, 31, 
32, 42, 43, 52, 55). Transformation also causes the loss of 
the ~t actin isoform (32), decreased actin and tubulin synthe- 
sis (15), and the production in a fibroblast line of a variant 
actin form (31). Many proteins are associated with and modi- 
fy the physical state of actin in nonmuscle cells, thereby play- 
ing a crucial part in various actin-based cell movements (44, 
45, 56). So far, little is known about the biochemical effects 
of oncogenic transformation on these actin-associated pro- 
teins except that tropomyosin isoforms are modified (38), the 
phosphorylation ofvinculin increased eightfold (47), and the 
cellular level of caldesmon was reduced by two-thirds (41). 
Culture conditions that cause changes in cell shape are also 
known to affect the cytoskeleton (for a review see reference 
3) but of the many actin-associated proteins only the bio- 
chemical expression of vinculin has so far been investigated 
(54). In this study we have used a monoclonal antibody that 
labels actin stress fiber bundles to identify a new actin- 
associated polypeptide doublet (C4 h and C41), the expres- 
sion of which is biochemically modified not only by onco- 
genic transformation with either DNA or RNA tumor 

viruses but also, in a reversible manner, by changes in cell 
shape. C4 is found in all vertebrate species so far exam- 
ined. It is expressed by smooth, but not skeletal muscle 
cells, and a variety of nonmuscle cells apart from neu- 
rones and red blood cells. 

Materials and Methods 

lmmunogen/Hybridoma Production 
The monoclonal antibody used in these studies (anti-C4) was produced by 
a hybridoma from a fusion that has been previously described (28). The 
class of anti-C4 was found to be IgGi by Ouchterlony immunoditfusion 
using rabbit anti-mouse class-specific antisera (Miles Laboratories, Inc., 
Elkhart, IN) to IgA, IgG1, IgG2a, IgG2b, IgG3, and IgM. Ascites were 
raised by injecting nu/nu mice with 1 x 107 cells and harvesting the ascitic 
fluid 10 d later. 

Purification of Monoclonal Antibody 
Supernatant (or ascites) was adjusted to pH 8.6, passed over a Sepharose- 
protein A column (Pharmacia Inc., Piscataway, N J) eluted at pH 5, dialyzed 
into PBS, aliquoted, and used at a concentration of 50 I.tg/ml. 

Polyclonal Antibody against Vimentin 
An IgG fraction of rabbit anti-vimentin (22) was purified on DEAE as de- 
scribed (28) and used at a concentration of 60/ag/ml. 

Adherent Cell Culture 
3T3, SV-40 3T3, and human epithelial cells (Detroit 98) were adjusted to 
'~,104 cells/ml in DME plus 10% heat-inactivated FCS, plated in 1-ml ali- 
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quots on to 13-mm-diam coverslips in 24-well Linbro plates (Flow Labora- 
tories, Hamden, CT) or Falcon Labware flasks (Oxnard, CA), and used for 
immunofluorescence or biochemistry 24-72 h later. Secondary cultures of 
rat embryo fibroblasts (REF) ~ were obtained by trypsinizing the dissected 
limbs of 15-d-old embryos and culturing as above. 

Suspension Cell Culture 
Cells (,x,106/ml REF) were plated on petri dishes (Falcon Labware) that 
had been smeared with a layer of high vacuum grease (Beckman Instru- 
ments, Inc., Palo Alto, CA or Dow Corning Corp., Midland, MI). This was 
nontoxic with 97-100% of cells reattaching and spreading normally after 
72 h in suspension culture. Cycloheximide and actinomycin D (Sigma 
Chemical Co., St. Louis, MO) were used at concentrations of 25 and 2.5 
Bg/ml, respectively (ll, 17). At these concentrations adherent cell viability 
(measured by trypan blue exclusion) was >95% with both reagents. 

I m m u n o f l u o r e s c e n c e  

Cells were permeabilized by (a) formaldehyde fixation (3.5% for 12 min at 
room temperature) followed by cold acetone, (b) cold methanol alone, or 
(c) 0.1% Triton X-100 in buffer A (50 mM KCI, 4 mM MgCI2, 1 mM 
EGTA, 10 mM imidazole pH 7, 1 mM NaN3 [35]) or buffer B (as buffer 
A except for 100 mM KCI) for 5 min at 4°C. Subsequent processing, re- 
agents, and immunofluorescence microscopy were as previously described 
(28, 29) except that an IgG-specific goat anti-mouse rhoclamine (Cappel 
Laboratories, Inc., Cochranville, PA) at a dilution of 1:100 was used to label 
anti-C4. Fluorescein-phalloidin (Molecular Probes, Inc., Junction City, 
OR) was used at a concentration of 3 gM. Cytochalasin D (Sigma Chemical 
Co.) and colchicine (Sigma Chemical Co.) were used as described (28). For 
microinjection, anti-C4 was dialyzed into injection buffer and injected as 
described (24) at a concentration of 20 mg/ml. 

Biochemistry 
SDS-PAGE/Iramunobiotting. 'M06 cells (or the equivalent amount of tis- 
sue) were solubilized, the total lysate run on either 5-15% gradient or 12% 
SDS-PAGE using the method of Laemmli (26), and immunoblotted onto 
nitrocellulose, all as described (28) except that protein A-purified anti-C4 
was used at a concentration of 50 Bg/ml. Dye-coupled molecular mass 
markers (Bethesda Research Laboratories, Gaithersberg, MD) were blotted 
in parallel and then cut off with pinking shears to facilitate realignment after 
drying (28). 1 mM phenylmethylsulfonyl fluoride (PMSF), 0.1 ~g/ml soy 
bean trypsin inhibitor (Sigma Chemical Co.), and 5 mM EDTA were rou- 
tinely added at the lysis stage. Additional proteolysis inhibitors used (all 
from Sigma Chemical Co.) were 10 Bg/ml chymostatin, 2 Bg/ml aprotonin, 
0.1 mM leupeptin, 10 Bg/ml TLCK, and 5 mM iodoacetamide. Sheep aorta 
smooth muscle F actin thin filament preparations, purified F actin filaments, 
and crude aorta (from Dr. S. Marston) (34, 51) were processed as above. 
Bovine brain calmodulin (Sigma Chemical Co.) (9), gizzard light chain my- 
osin (from Dr. J. Kendrick-Jones) (23), chick embryo brain actin-depoly- 
merizing factor (from Dr. J. Bamburg) (2), cofilin (from Dr. E. Nishida) 
(40), and 3T3 cell N-ras P21 (from Dr. C. Marshall) (53) were solubilized 
as above and loaded at concentrations of 5, 5, 2, 2, and 5 gg per slot, respec- 
tively. REF were used as a positive control in each instance. 

Affinity Column Purification of C4. 10 mg of monoclonal anti-C4 were 
coupled to Affigel 10 (Bio-Rad Laboratories, Richmond, CA). Cell samples 
('~5 × l0 s REF) were trypsinized off Falcon Labware flasks, washed in 
PBS, lysed for 25 min at 0°C in 15 ml of 50 mm Tris pH 7, 0.5% Triton 
X-100, 1 lag/ml soybean trypsin inhibitor, 1 mM PMSE 100 !ttM leupeptin, 
2 mM EDTA, 5 mM NAN3, and spun at 20000 g for 30 rain to remove in- 
soluble debris. Supernatants were passed over the column at ~,5 ml/h, the 
bound fraction eluted with 50 mM diethylamine pH 11.5, immediately neu- 
tralized with 1 M Tris pH 7, dialyzed into 50 mM Tris pH 7, and then con- 
centrated to ,'~1 ml in Aquacide 1 (Mr 70 kD; Calbiochem-Behring Corp., 
La Jolla, CA). Sample purity was assayed by SDS-PAGE immunoblotting 
followed by either amido black staining to visualize total protein or anti-C4 
antibody/Rab anti-mlg peroxidase (DAKOPATTS, Copenhagen). 

Two-dimensional Gel Electrophoresis. NEPHGE gels loaded with ~5 
lag of purified C4 were subjected to electrophoresis for 1,600 Vh, then run 
on second dimension 12 % SDS-PAGE, and stained with silver nitrate as de- 

1. Abbreviations used in this paper: buffer A, 50 mM KCI, 4 mM MgCIz, 
1 mM EGTA, 10 mM imidazole pH 7, 1 mM NAN3; REF, rat embryo 
fibroblasts. 

scribed (30). These conditions generated pI gradients between 4.2 and 9.2 
which were measured using blank gels run in parallel. 

Phosphatnse Digestion, REF were solubilized, run on 12 % SDS-PAGE, 
and immunoblotted as above. Nitrocellulose strips were then incubated with 
either 70 U of alkaline phosphatase (type XXXI; Sigma Chemical Co.) in 
0.1 M Tris pH 5, plus 2 mM PMSF or buffer alone for 16 h at 37°C (16). 
Strips were then labeled with anti-C4 as described above or stained with 
amido black to visualize total protein (16). 

In Vivo Metabolic Labeling/Immunoprecipitation/SDS-PAGE. 5 x 
104 REF/ml were plated overnight in Falcon Labware flasks, rinsed in 
DME (minus methionine) plus 2% FCS, and incubated in the same medium 
for 30 min. Fresh medium (3.3 ml) containing 0.5 mCi/ml of [35S]methio- 
nine (SJ 204; Amersham International, Amersham, UK) was added, the 
cells incubated for 4 h, rinsed in DME (minus methionine) for 30 s, and 
either chased for 48 h in complete DME plus 10% FCS or trypsinized im- 
mediately, washed in DME plus 10% FCS, and once in 20 ml of PBS. Cell 
pellets were then lysed by resuspending them for 10 min at 0°C in 100 I.tl 
of lysis buffer (10 mM Tris pH 7.5, 2 mM EDTA, 1 mM PMSF, 0.1 mM 
leupeptin, 1 pg/ml soy bean trypsin inhibitor, and 0.5% Triton X-100), cen- 
trifuged at 10,000 g for 10 rain at 4°C. The supernatant was then removed 
and precleared by adding 10 gg of normal mouse IgG (prepared by DEAE 
fractionation) for 1 h at 4°C followed by 50 I.tg of affinity-purified rabbit 
anti-mouse IgG for 2 h at 4°C, and then centrifuged as above. The pre- 
cleared supernatants were incubated with preformed immune complexes 
overnight at 4°C (immune complexes were formed by cross-linking 10 gg 
of either monoclonal anti-C4 or an IgG monoclonal anti-J3 tubulin [Amer- 
sham International] with 50 Bg of affinity-purified rabbit anti-mouse IgG 
]in a total volume of 45 BI] for 4 h at 4°C, and then washed twice by centrifu- 
gation [as above] in lysis buffer before adding to supernatants). Samples 
were then centrifuged as above and the pellets washed by centrifugation: 
twice in lysis buffer, once in lysis buffer plus 0.5 M NaCI, and once in lysis 
buffer alone. Pellets were solubilized in Laemmli sample buffer and "~3.5 
× 104 counts per slot loaded on to 12-15% gradient gels, which were 
fluorographed with Amplify (Amersham International), dried, and exposed 
to Kodak X-Omat AR film. These experiments were also carried out using 
1 mCi/ml [3H]leucine and [3H]lysine (TRK683 and TRK752; Amersham 
International). The position of the C4 doublet was determined by running 
a parallel track of aftinity-purified C4 h and C4 ~ from REE the gel was then 
lightly stained with Coomassie Blue, dried, and the two bands marked with 
radioactive ink before exposure on film as above. For immunoblotting of 
C4 immune complexes samples were loaded on to 12-15% gradient gels, 
transferred to nitrocellulose, labeled as described in the previous section, 
and the ratio of C4h/C41 was obtained by excising these bands from nitro- 
cellulose and counting the strips in a gamma counter. 

Results 

Immunofluorescence 
Double immunofluorescence studies using fluorescein-cou- 
pied phalloidin together with the monoclonal antibody (anti- 
C4) showed that both uniformly stained linear actin filament 
stress fiber bundles in all cells containing these structures 
that we examined (Fig. 1, a and b). In no instance did we find 
any area of stress fiber bundles labeled with phalloidin but 
not with anti-C4 (Fig. 1, a and b). Neither cell processes nor 
the diffuse actin network which is also present in these cells 
(30) were appreciably stained with anti-C4 (Figs. 1, a and 
g). Additional evidence that anti-C4 stained stress fibers was 
provided by the disruption of the labeled fibers in cytochala- 
sin D-treated cells (Figs. 1, c and d). In colchicine-treated 
cells (Fig. 1 e), where the intermediate filament network has 
collapsed, no such disruption of antibody labeling occurs 
(Fig. 1 f ) .  When cells were microinjected with anti-C4, per- 
meabilized with methanol, and then labeled with rhodamine- 
coupled anti-mouse IgG the labeling pattern was identical to 
that observed in prefixed cells (Fig. 1 a), indicating that the 
distribution of the antigen on stress fibers is the native distri- 
bution of this protein (Fig. 1 g). In contrast, cells where 
stress fibers are reduced in numbers or absent (such as lym- 
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Figure 1. Immunofluorescence localization in REF of C4. Double immunofluorescence showing superposition of anti-C4 (a) and fluores- 
cein-phailoidin (b) in control cells and anti-C4 (c) and fluorescein-phalloidin (d) in cytochalasin D-treated cells. Anti-C4 staining is 
unaffected in colchicine-treated cells (e) where intermediate filaments (labeled with rabbit anti-vimentin) have collapsed around the nucleus 
( f ) .  Note the linear stress fiber distribution of microinjected anti-C4 (g). Noninjected cells are unlabeled (asterisk). Mainly, diffuse non- 
linear cytoplasmic staining is present in epithelial cells (h). C4 is retained in ~50% of cells when they are detergent extracted in buffer 
A plus 20% ethanediol (i) but is lost when ethanediol is removed (j). Bars: (a-g) 20 I.tm; (h-j) 10 lam. 
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Figure 2. Immunoblot analysis of C4 in different cell and tissue 
types. C4 is present as a doublet in all normal mesenchymal cells 
such as rat fibroblasts (a). No variation was found in the relative 
molecular mass of C4 t between different tissue within the same 
species (rat): fibroblasts (a), smooth muscle (b), heart ( f) ,  and 
brain (g). However, 2-3-kD variations in the relative molecular 
mass of C4 ~ were found when the same tissue from different ver- 
tebrate species was compared: rat (b), chicken gizzard (c), fish (d), 
and frog (e). C4 h is absent in heart where an additional band at 79 
kD is present ( f ) ,  in brain (g), and in epithelial cells (in this in- 
stance Detroit 9 8 - a  human cell line) (h). The following tracks 
were run in parallel but on separate gels: b, f, and g; and c-e. 

ence of 2-3  kD in the relative molecular masses of  C4 j be- 
tween vertebrate species when the same tissue (smooth mus- 
cle) was examined (Fig. 2, b, c, d, and e). C4 h (not C4 ~) is 
absent in heart (where an additional band of Mr 79 kD is al- 
ways present; Fig. 2 f ) ,  brain (Fig. 2 g), epithelial cells (Fig. 
2 h), and lymphocytes (not shown). C4 h has not, so far, 
been found in any cell or  tissue type without the concomitant 
expression of  C4L C4 is absent in neurones, erythrocytes, 
and skeletal muscle but is present in invertebrates such as 
molluscs and crustaceans (not shown). Faint staining of 
bands at Mr 180, 39, and 31 kD was observed in some ex- 
periments regardless of  cell type (Figs. 2 c and 5, g-k).  The 
doublet formation of  C4 was unaffected by (a) the presence 
or absence of high concentrations of  reducing agents (20 % 
2-mercaptoethaaol or 100 mM dithiothreitol) and (b) a spec- 
trum of proteolysis inhibitors. 

Biochemical evidence for the association of  C4 with actin 
filaments was obtained by immunoblot analysis of  sheep 
aorta (Fig. 3, a and b) and aortic smooth muscle actin thin 
filaments. These are standard preparations of  isolated F actin 
filaments to which several actin-associaled proteins are bound 
(34-37, 39, 46, 51) and were strongly recognized by anti-C4 
antibody (Fig. 3, c and d) .  In contrast purified F actin fila- 
ments, prepared by removing these associale~l proteins from 
thin filaments (by increasing ionic strength and removing 
ethanediol [34]), were completely unlabeled by anti-C4 (Fig. 
3, e and f ) .  Control tracks of  fibroblasts labeled with anti-C4 

phocytes, dividing or transformed raesenchymal cells, and 
epithelial cells [Fig. 1 hl) were stained diffusely throughout 
their cytoplasm by the monoclonal antibody. Permeabiliza- 
tion of fihrohlasts for 5 min in buffer B (with 100 mM KCl) 
plus 1% Triton X-I00 and 20% ethanediol eliminated most 
antibody labeling at the immun~uorescence level (not shown). 
In contrast, the level of  C4 staining was not appreciably re- 
duced in ~,50% of  cells detergent extracted for 5 rain in 
buffer A (with 50 m M  KCl) plus •1% Triton X-100 and 20% 
ethanediol (34, 36) (Fig. 1 i). Removal of  ethanediol from 
buffer A resulted in the almost total loss of  C4 staining 
(Fig. 1 j ) .  

Biochemis t ry  

SDS-PAGE coupled with immunoblot analysis of  total cell 
proteins show that the monoclonal antibody recognizes a 
closely spaced doublet of  two polypeptides (C4 h and C41) 
with an Mr of 21 kD. These polypeptides are usually present 
in equal amounts in normal fibroblasts (occasionally with 
C4 h in excess of  C4 ~) and are separated by 0.5-1 kD in 
these ceils (Fig. 2 a) and smooth muscle (Fig. 2 b). When 
different tissues within the same species (rat) were run on 
SDS-PAGE and then transferred to nitrocellulose no sig- 
nificant variation was found in the relative molecular mass 
of C4 t (Fig. 2, a ,  b, f ,  and g). However, there is a differ- 

Figure 3. Immunoblot analysis of sheep aorta and actin filament 
fractions. C4 is present as a doublet (with C4 h in excess of C4 t in 
this experiment) when total aorta (a) is transferred to nitrocellulose 
(b). Identical results were found when actin thin filaments (c) 
purified from aorta (these preparations contain F actin filaments to 
which are bound several actin-associated proteins [35]) were trans- 
ferred to nitrocellulose (d). Removal of these associated proteins 
to leave F actin filaments (e) paralleled the complete loss of anti-C4 
label (f) .  Control tracks of 3T3 cells are seen in g and h. Tracks 
a, b, and c-h are from the same gels. 
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showing the presence of a doublet similar to Fig. 3 b and d 
are shown in Fig. 3 g and h. 

By affinity column purification on anti-C4 conjugated to 
Affigel, ~1.5 gg SD 5- 0.7 of C4 was obtained from 106 
REF, with the recovery of C4 h greater than C4 ~ in these ex- 
perimental conditions (Fig. 4, a and b). NEPHGE/SDS- 
PAGE showed that purified C4 h and C4 ~ have 8 and 7 pI, 
respectively (Fig. 4 c). Neither C4 h nor C4 ~ have so far 
been found to be phosphorylated by 32p incorporation, and 
alkaline phosphatase digestion of immunoblots of REF did 
not modify the characteristics of the epitopes (not shown). 
Immunoblot analysis showed that anti-C4 did not recognize 
other proteins of similar molecular mass that are associated 
with actin, namely cofilin (3), actin-depolymerizing factor 
(2), chicken gizzard light chain myosin (23), clamodulin (9), 
and 3T3 cell N-ras P21 (53) (Fig. 5, b and d). In these experi- 
ments also, an REF control was transferred in parallel and 
was always labeled strongly by anti-C4 (Fig. 5, c and e). 

In vivo labeling of REF with either [35S]methionine or 
[3H]leucine and [3H]lysine, followed by Triton X-100 ex- 
traction, and immunoprecipitation with anti-C4 showed that 
two bands at Mr 21 kD were coprecipitated (Fig. 6 b). The 
top band (C4 ~) had a two- to fourfold greater incorporation 
of radioactivity than C4 t after both a 4-h pulse (Fig. 6 b) 
and a 48-h chase (Fig. 6 c). This ratio was also found when 
immunoprecipitates were transferred to nitrocellulose and 
probed with anti-C4/anti-~2q-mlgGt, thus the higher incor- 
poration of label in C4 h compared with C4 j may reflect the 
amount of antigen present in the two bands (not shown). A 
band at 18 kD was found in these experiments (Fig. 6, b and 
c) but not when cell lysates were directly solubilized in SDS 
before immunoblotting (compare Figs. 2 a and 7, a-k with 
Fig. 6, b and c). Neither C4 h nor C4 t were seen (even after 
8-10 d autoradiography at -70°C) when adherent cells, 
pulse labeled for 4 h with [35S]methionine were cultured in 
suspension for 72 h, and then immunoprecipitated with anti- 

Figure 4. Affinity column puri- 
fication of C4 isolated from 
REF followed by SDS-PAGE/ 
immunoblotting. (a) Amido 
black staining of purified C4 
fraction. (b) Anti-C4 label of 
track a. (c) NEPHGE gel of 
purified C4 showing a pI of 8 
for C4 h and 7 for C4 ~. 

Figure 5. (a-c) Coomassie 
Blue-stained tracks of (a) mo- 
lecular mass markers, (b) 5 I.tg 
of 3T3 cell N-ras P21, (c) total 
REF lysate. (d) 5 gg of 3T3 
cell N-ras P21 transferred to 
nitrocellulose and incubated 
with anti-C4. No staining is 
seen in this track. (e) Total 
REF lysate control transferred 
to nitrocellulose and probed 
with anti-C4 showing a doub- 
let at Mr 21 kD. All tracks are 
from the same gel. 

C4 (not shown). Both C4 h and C4 t are, however, present in 
adherent cells after a 72-h chase (not shown). Control ex- 
periments using anti-13 tubulin showed the presence of one 
band at ",~50 kD with no bands visible at 21 kD (Fig. 6 d). 

Effect of Oncogenic Transformation and Cell Shape o n  

C4 Expression 

When fibroblastic cells such as 3T3 or Rat 1 are transformed 
with either DNA (SV-40 [43, 55]) or RNA tumor viruses 
(Rous sarcoma wild type and ts mutant LA 29 [52]) a striking 
and reproducible change occurs in the biochemical expres- 
sion of C4. This is seen as a complete loss of the C4 h (never 
C4 ~ which is always present) band (Fig. 7, a and c). A simi- 
lar effect has been found in transformed human mesenchymal 
cells (not shown [20]). In all instances the nontransformed 
cells expressed both C4 h and C4 t (Fig. 7, b and d). The 
effect of viral transformation on C4 h can be mimicked by 
culturing mesenchymal cells in suspension. These cells, 
when prevented from attaching to the substratum, show a 
progressive and almost total loss of C4 h over a 72-h period 
(compare Fig. 7, e and f ) .  Similar results were obtained 
when cells were scraped rather than trypsinized off culture 
dishes before suspension culture (not shown). Reexpression 
of C4 h did not occur in detectable amounts 8 h after cells 
grown in suspension culture for 72 h (Fig. 7 g) were allowed 
to reattach and spread (Fig. 7 h), but C4 attained its normal 
level after 24 h in adherent culture (Fig. 7 i). However, the 
reexpression of C4 h was blocked in respreading cells incu- 
bated for 24 h with either actinomycin D (Fig. 7 j )  or cyclo- 
heximide (Fig. 7 k) after 72 h in suspension culture. 

To look for any correlation between the expression of C4 h 
and the presence of actin stress fiber bundles, cells from the 
same cultures used for the biochemical experiments above 
were processed for immunofluorescence and labeled with 
anti-C4. While after 8 h of respreading (in the absence of in- 
hibitors) only 13 % of cells had visible stress fibers (Fig. 8 
a, and compare with gel in Fig. 7 h), after 24 h 72 % of cells 
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Figure 6. Autoradiograph 
showing (a) molecular mass 
markers, (b) immunoprecipi- 
rate of C4 from REF, after a 
4-h pulse with [35S]methio- 
nine. Two bands (C4 h and 
C4 ~) at Mr 21 kD are present 
(arrowheads) with the upper 
(C4 h) containing about two to 
four times as much radioactiv- 
ity as C4 ~. (c) Immunopre- 
cipitate of C4 after a 48-h 
chase. Note that there is no 
apparent increase in the amount 
of radioactivity present in C4 ~ 
during this period. A band of 
varying intensity at Mr 18 kD 
was occasionally found in these 
experiments. (d) Control im- 
munoprecipitate of anti-I~ tu- 
bulin with one band present at 
"~50 kD. All tracks are from 
the same gel. 

had large numbers of stress fibers traversing the cytoplasm 
on which the distribution of fluorescent-phalloidin (not 
shown) paralleled that of anti-C4 (Fig. 8 b, and compare with 
gel in Fig. 7 i). In contrast, of the cells respread for 24 h 
in the presence of either cycloheximide or actinomycin D 
(Fig. 8 c, and compare with gel in Fig. 7 j )  only 10 and 13%, 
respectively, had stress fibers and these were vestigial (Fig. 
8 c) compared with control cells (Fig. 8 b). 

Discussion 

Immunofluorescence 
Permeabilization of cells followed by immunofluorescence 
labeling revealed that C4 is continuously distributed along 
linear actin filament stress fber  bundles (10) in a variety of 
cells and tissues in all vertebrate species examined so far (hu- 
man, mouse, rat, chick, frog, and fish). These results were 
reproduced in cells microinjected with anti-C4 antibody, in- 
dicating that the native distribution of these molecules is in 
association with filamentous actin arrays. Areas of cortical 
cytoskeleton that are known to contain actin filaments that 
have a geometrically complex organization (30) were un- 
stained by anti-C4. Similarly, anti-C4 was absent (at the light 
microscope level) from the mesh work of cross-linked actin 
filaments that bridge between actin filament bundles more 
deeply inside the cell (30). Although C4 is absent in skeletal 
muscle we have recently found that these polypeptides are 
expressed in myoblasts but are absent when myoblasts differ- 
entiate and fuse to form myotubes in culture (Lawson, D., 
P. Lowings, and C. Shapland, unpublished observations). In- 
terestingly, the epitope recognized by anti-C4 is present in 
organisms phylogenetically well removed from vertebrates 
such as molluscs and crustaceans but here the relative molec- 
ular masses of the labeled polypeptides are 57 and 18 kD, 
respectively (unpublished observations). The association of 
C4 with actin filaments in these species has not yet been de- 
termined. 

Biochemistry 

SDS-PAGE/immunoblotting shows that anti-C4 recognizes a 
closely spaced doublet (usually found in approximately 
equal amounts but occasionally with C4 h in excess of C4 ~) 
of Mr 21 kD, the presence of which is unaffected by (a) 
rapid solubilization of cells in SDS, (b) high concentrations 
of reducing agents, and (c) a variety of proteolysis inhibitors. 
The formation of this doublet is thus unlikely to be due to 
either nonreduced S-H groups or proteolytic degradation. 
The position of C4 in SDS-PAGE is unchanged in nonreduc- 
ing conditions suggesting that the C4 polypeptides are 
monomers or components of noncovalently linked oligomers 
(21). Detergent extraction of cells with Triton X-100 in a 
buffer containing 100 mM KCI and 20% ethanediol (34, 36) 
removes both polypeptides from actin filament bundles, indi- 
cating that in these conditions the protein dissociates com- 
pletely from stress fibers in fibroblasts and is therefore un- 
likely to be a permanent structural component of actin 
filament bundles in these cells. However, the association of 
C4 with actin filaments in fibroblasts could be maintained in 
many cells, even in the presence of high detergent concentra- 
tions by the addition of 20% ethanediol (34, 36), a finding 
independent of the volume of extraction buffer used. This 
suggests that the association of C4 with actin filaments is sta- 
bilized by both low ionic strength and the presence of eth- 
anediol, as has been found for other actin-binding proteins 
such as caldesmon, tropomyosin, and calmodulin (34-36, 
39, 51). Compelling biochemical evidence for the association 
of C4 with actin filaments was obtained by immunoblotting 
standard preparations of smooth muscle actin thin filaments 

Figure 7. Differential expression of C4 in transformed and shape 
changed cells. C4 h is absent in SV-40-transformed (a) but not nor- 
mal 3T3 cells (b), and RSV ts mutant LA 29 (c) but not normal rat 
1 fibroblasts (d). These virally induced changes in the expression 
of C4 h are mimicked by suspension culturing 3T3 cells for 72 h af- 
ter which time only traces of C4 h remain (e) whereas both C4 h and 
C4 ~ are equally expressed in 3T3 cells cultured normally (f). 
Reexpression of C4 h was not detectable 8 h after cells that had 
been grown in suspension culture for 72 h (g) were allowed to reat- 
tach and spread (h) but had reached normal levels after 24 h (i). 
This reexpression can be blocked by either actinomycin D (j) or 
cycloheximide (k). 
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Figure 8. Immunofluorescence of anti-C4 in cells from the same experiment as lanes g-k in Fig. 7 show that after 8 h reattachment few 
large stress fiber bundles were present (Fig. 8 a and compare with lane h in Fig. 7) many had formed after 24 h in adherent culture (Fig. 
8 b compare with lane i in Fig. 7). However, incubation in either cycloheximide or actinomycin D for the 24-h adherent culture period, 
which after 72 h in suspension culture, inhibited stress fiber formation in the majority of cells (Fig. 8 c and compare with lane j in Fig. 
7). Bars, 10 ~tm. 

(34) that contain F actin, the actin-binding proteins caldes- 
mon, tropomyosin, and several so far unidentified actin- 
associated regulatory proteins (37, 46). The removal of these 
molecules to give F actin filaments parallels the complete 
loss of anti-C4 labeling and reinforces our observations that 
the C4 polypeptides are associated, directly or indirectly, 
with actin filaments. 

By using an anti-C4 antibody affinity column we have iso- 
lated "~1.5 lag of C4 from 106 cells. This (probably lower 
limit) together with the amount of F actin in fibroblasts ('~6 
lxg/lO 6 cells [18]) indicates that the ratio of actin/C4 is of 
the same order of magnitude to that of actin/tropomyosin 
where there are seven actin molecules to one tropomyosin 
molecule (35) and suggests a possibly similar role for C4. 
As the native protein has not yet been extensively studied we 
cannot say if C4 is a complex composed of the two different 
(and noncovalently linked components) or not. We have, 
however, used in vivo metabolic labeling/immunoprecipita- 
tion to study the alternative, that is, whether or not C4 ~ de- 
rives physiologically from C4 h with a precursor/product re- 
lationship. Since methionine residues may have been reduced 
in number or absent in C4 h or C4 ~ we used [3H]leucine and 
[3H]lysine and [35S]methionine in immunoprecipitation ex- 
periments with no detectable difference in our results. These 
showed that after a 4-h pulse C4 h had incorporated two to 
four times as much radioactivity as C4 ~. No reduction in 
this ratio was apparent over a 48-h chase period, suggesting 
that the longer term turnover/degradation of both epitopes is 
equal. Furthermore, the lack of any apparent increase in ra- 
dioactivity present in C4 ~ and concomitant decrease in C4 h 
over the 48-h chase period strongly suggests that there is no 
precursor/product relationship between C4 h and C4 ~. SDS- 

PAGE immunoblotting showed that C4 does not appear to be 
related to other actin-associated molecules of similar molec- 
ular mass; actin-depolymerizing factor (2), calmodulin (9), 
chicken gizzard light chain myosin (23), cofilin (40), and 
3T3 cell N-ras (53). Furthermore, it is known that N-ras (48, 
49) is associated with the cytoplasmic face of the plasma 
membrane (57). Additional support for our observations is 
the lack of any homology at the mRNA level between these 
proteins and C4 (Lowings, P., C. Shapland, and D. Lawson, 
unpublished observations). In our experiments we have con- 
sistently identified a band at 79 kD in heart. However, when 
heart fibroblasts were dissociated and cultured they did not 
express this band, indicating that the 79-kD epitope is 
specific for heart muscle itself. The reasons for this finding 
and the absence of C4 from skeletal muscle, neurons, and 
erythrocytes are presently unknown. 

Effect of  CeU Shape Change and Viral Transformation 
on C4 h Expression 

Cell shape changes whether induced oncogenically or by cul- 
ture conditions cause marked alterations in actin organiza- 
tion including the loss of stress fiber bundles (I, 3, 7, 12, 43, 
54, 55) and a shift in the physical state of actin from F to 
G (19). Biochemically these cell shape changes are associ- 
ated with a decrease in the rate of actin synthesis (3, 14). Un- 
der these conditions, the ct actin isoform gene is known to 
be switched off completely (in this instance after transforma- 
tion) leaving at least 500 other of the most abundant polypep- 
tides unaffected by this process (32). Of the 60 or so proteins 
associated with actin in vertebrate cells (45) immunofluores- 
cence studies have shown that the distribution of myosin, 
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tropomyosin, et actinin, and vinculin are altered by Rous sar- 
coma virus and avian sarcoma virus (7, 12, 50). At the bio- 
chemical level, vinculin is known to be down regulated five- 
fold when fibroblasts are cultured in nonadherent conditions 
(54), several tropomyosins are modified by viral transforma- 
tion (38), and caldesmon is down regulated by two-thirds 
(41). However, in no instance is the expression of these mole- 
cules switched off completely. 

In contrast, we have found that the expression of C44 
(never C4 ~) is blocked both by cell shape change and trans- 
formation (by either DNA or RNA tumor viruses). The fact 
that 72 h in suspension culture are necessary for the loss of 
C4 h is in line with previous studies on the inhibition of pro- 
tein synthesis in suspension-cultured fibroblasts (5, 6, 14). It 
has also been shown that suspension culturing cells that are 
normally adherent blocks them in G1 and that the induction 
of DNA synthesis requires 14 h after replating and peaks af- 
ter 20 h (5, 6). In line with these observations, our finding 
that 24 h after replating is necessary for the reexpression of 
C4 h suggests that, unlike actin where synthesis is maximal 
8 hrs after replating (14) (indicating the presence of untrans- 
lated mRNA [13]), expresssion of the C4 h epitope is likely 
to be regulated at the transcriptional rather than the transla- 
tional or posttranslational level. This was confirmed by in- 
cubating cells in either cycloheximide or actinomycin D dur- 
ing the 24-h respreading period after 72 h in suspension 
culture. These data strongly suggest that the mRNA coding 
for C4 h, or a molecule associated with this mRNA that 
affects its stability (8), is, unlike the majority of mRNA spe- 
cies (3, 13), not stabilized against turnover and/or degrada- 
tion when cells are in suspension culture. Support for this 
observation comes from our metabolic labeling experiments 
that showed that after a 72-h chase in suspension culture no 
labeled C4 was immunoprecipitated (data not shown). 

It is known that only a few cell-substratum attachment 
points and a limited degree of cell spreading are necessary 
for normal protein synthesis to occur after suspension cul- 
ture (4). This suggests that the effect of viral transformation 
or suspension culture on the expression of C4 h is not simply 
related to cell shape change since 8 h after reattachment 
(when cells were well spread) no C4 h expression was de- 
tectable. It is possible, therefore, that the induction of C4 h 
expression is associated with some other cellular event. This 
may well involve the regulation of stress fiber function 
and/or maintenance of actin stress fiber organization, since 
these results have shown the concomitant acquisition of C4 h 
and stress fiber formation in fibroblasts allowed to respread 
for 24 h after suspension culture. Furthermore the absence 
of this polypeptide is associated with (a) the reduction in 
stress fiber numbers that accompany mesenchymal cell trans- 
formation, (b) the acquisition of a rounded morphology and 
concomitant loss of stress fibers in mesenchymal cells that 
normally have a full complement of them, and (c) the ab- 
sence/reduced number of stress fibers in cells such as lym- 
phocytes and epithelial cells. In addition, C4 is absent from 
areas of the cytoskeleton where actin filaments have a non- 
linear, more complex geometric array (30). The function of 
C4 is still unclear but its presence throughout evolution, 
modification in different cell and muscle types, and clear-cut 
alteration during either oncogenesis or cell shape changes 
strongly suggest that it plays an important but so far unde- 
fined cytoskeletal role, the biochemistry and molecular biol- 
ogy of which is currently under investigation. 
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