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Introduction

Sickle cell anemia (SCA) is characterized by vaso-occlusion and chronic intravascular hemolysis, which
lead to acute and chronic organ damage and early mortality. Chronic kidney disease occurs in up to half
of adults with SCA1 and contributes to approximately 16% to 18% of deaths.2,3 The underlying mecha-
nisms for the development of kidney disease are myriad and include ischemia, oxidative stress, hyperfiltra-
tion, and glomerular hypertension.4 Therapies directly targeting the pathophysiology of SCA-related
kidney damage are needed.

Hemoglobin (Hb) S polymerization causes red blood cells to sickle, which leads to vaso-occlusion and
hemolysis. Vaso-occlusion can promote inflammatory changes, ischemia–reperfusion injury, and vascular
endothelial damage to the kidney.4 Approximately 30% of the hemolysis in SCA occurs intravascularly.5

Intravascular hemolysis results in the release of cell-free Hb, which then rapidly dissociates into dimers
and is freely filtered through the glomerulus.6 Furthermore, cell-free Hb is rapidly converted to methemo-
globin with the release of free heme.7 When haptoglobin and hemopexin are depleted, as occurs in
SCA, cell-free Hb and heme can cause direct oxidative injury and upregulation of inflammatory, immune
response, and fibrogenic pathways.7,8 The kidneys are the primary route for clearance of nonscavenged
cell-free Hb and heme and are particularly susceptible to these deleterious pathways.9

Voxelotor is a small molecule allosteric Hb modulator that binds and maintains sickle Hb in the oxygen-
ated state, thereby preventing Hb S polymerization and red blood cell sickling. In a phase 3 study of
patients with SCA, voxelotor improved the degree of hemolysis, as reflected by a rise in Hb concentra-
tion and a reduction in indirect bilirubin and reticulocyte percentage.10 The benefits of reducing Hb
S polymerization and hemolytic anemia with voxelotor on kidney function are unknown.

Transgenic mice harboring the Hb S mutation have been developed to investigate the pathophysiology
of SCA-related complications and potential therapies to ameliorate these complications. Consistent with
what has been observed in humans, sickle mice have higher concentrations of albuminuria and protein-
uria compared with Hb AA mice.11,12 The transgenic sickle mice also demonstrate similar histopathologic
changes with patients with SCA in the glomeruli (eg, glomerulosclerosis and membranoproliferative
glomerulonephritis-like lesions), mesangium (eg, mesangial expansion and inflammatory cell infiltration),
and proximal tubules (eg, increased iron deposition, atrophy, and increased basement membrane thicken-
ing).12-16 We investigated whether GBT1118, an analog of voxelotor designed to achieve similar phar-
macokinetic properties in transgenic sickle mice,17 would improve biomarkers of kidney damage and
kidney function in SCA.
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Key Points

� A reduction in
hemolysis with voxelotor
analog, GBT1118,
reduced hemoglobinuria
and kidney injury
biomarkers in
transgenic sickle mice.

� Improved chronic
hemolysis preserved
kidney function and
histopathologic and
ultrastructural changes
in transgenic sickle
mice.
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Methods

Animal procedures were conducted under protocols approved by
the Institutional Animal Care and Use Committee at the University of
Illinois at Chicago (UIC). Transgenic sickle cell mice (Townes model,
Jackson Laboratory; Bar Harbor, ME) were bred and housed in the
UIC Biologic Resources Laboratory. Studies were conducted in
age- and sex-matched Hb AA and SS mice (5 males and 5 females
per group). Hb SS mice were treated with either GBT1118 chow
or control chow, both provided by Global Blood Therapeutics
(South San Francisco, CA), from 12 to 24 weeks of age and sacri-
ficed after treatment.

Mice were placed in standard metabolic cages and allowed to
adapt for 1 day before obtaining 24-hour urine samples at baseline
and 3-week intervals for measuring cell-free Hb and biomarkers of
reactive oxygen species damage (thiobarbituric acid reactive sub-
stances [TBARS]), kidney injury (KIM-1 [kidney injury molecule-1]
and nephrin), and kidney dysfunction (urine albumin and protein).
Blood (#60 mL) was collected via retro-orbital bleeding into sodium
EDTA tubes under isoflurane anesthesia at baseline, 6 weeks, and
12 weeks of treatment to determine GBT1118-Hb occupancy, Hb
concentration, absolute reticulocyte counts, and serum cystatin C,
blood urea nitrogen (BUN), and creatinine concentrations.

Excised renal cortical tissue was fixed in formalin or dissected into
1-mm sections and fixed in Trump’s fixative (EMS; Hatfield, PA), fol-
lowed by processing by the UIC Research Histology Core and UIC
Electron Microscopy Core, respectively. Histopathology was evalu-
ated by a renal pathologist and an experienced researcher blinded
to the treatment groups.

RNA was extracted and processed from glomeruli (isolated using
the sieving method)18,19 and cortical tissue by the UIC, Core Geno-
mics Facility. Illumina NovaSeq6000 was employed for the gene
expression studies. Detection of differentially expressed genes and
gene enrichment pathway analysis were performed as previously
described.12

Variables were compared by treatment status with the Mann-
Whitney test or ANOVA, adjusting for sex, using Systat 13 (Systat
Software Corporation; Chicago, IL).

Additional methods are described in the supplemental Material.

Results and discussion

Baseline characteristics were similar between the treated vs control
(untreated) sickle mice at 12 weeks of age (supplemental Table 1).
Hb occupancy of GBT1118 after 6 weeks (33% 6 2%) and
12 weeks (28% 6 2%) of therapy was similar to Hb occupancy of
voxelotor in the phase 3 SCA clinical study (27%).10 Also, consis-
tent with the clinical data, sickle mice treated with GBT1118 dem-
onstrated a reduction in hemolysis, as reflected by increases in Hb
concentrations and reductions in absolute reticulocyte counts com-
pared with control sickle mice (Figure 1A-B).

There were also reductions in hemoglobinuria (Figure 1C) and urine
concentrations of TBARS, a biomarker of oxidative injury (Figure 1D).
Furthermore, urine biomarkers of glomerular (nephrin) and proximal
tubular (KIM-1) injury were improved in the GBT1118-treated vs con-
trol sickle mice (Figure 1E-F). Albuminuria and proteinuria stabilized in
treated sickle mice but progressively increased in control sickle mice

(Figure 1G-H). At the end of treatment, 24-week-old GBT1118-
treated mice had serum cystatin C, creatinine, and BUN concentra-
tions that were similar to 12-week-old sickle mice before treatment
and to 24-week-old Hb AA mice; 24-week-old control sickle mice
had significantly higher serum cystatin C, creatinine, and BUN con-
centrations (Figure 1I; supplemental Figure 1).

Immunofluorescence microscopy demonstrated that glomerular
nephrin retention, interstitial macrophage infiltration, and collagen
type IV deposition were similar between the 24-week-old
GBT1118-treated and 12-week-old sickle mice (Figure 2A; supple-
mental Figure 2). In contrast, the 24-week-old control sickle mice
had a further reduction of nephrin from the glomerulus and
increased interstitial macrophage infiltration and collagen type IV
deposition.

The degrees of hemosiderin deposition and interstitial fibrosis were
stable in the cortex of the 24-week-old treated sickle mice but
increased in 24-week-old control sickle mice compared with 12-
week-old sickle mice (Figure 2B-C). Hemosiderin deposition
became evident in the Bowman’s capsule of 24-week-old control
sickle mice.

Transmission electron microscopy of the sickle mice demonstrated
segmental foot process effacement, segmental basement mem-
brane reduplication, and subendothelial electron-lucent widening
(Figure 2D). Twelve- and 24-week-old GBT1118-treated sickle mice
had predominantly intact foot processes, while 24-week-old control
mice had approximately 30% podocyte foot process effacement as
well as segmental areas of lobular changes with mesangial interpo-
sition interspersed by new basement membrane formation.

Three genes were differentially expressed in the glomeruli, and
32 genes in the kidney cortex of GBT1118-treated vs control
sickle mice (false discovery rate ,0.05) (Figure 2E; supplemen-
tal Table 2). The upregulation of Pou4f2 and Capn11 in the glo-
meruli of GBT1118-treated sickle mice may lead to enhanced
podocyte health. Pou4f2 is coexpressed with Wt1, and its func-
tions include maintaining podocytes in their differentiated epithe-
lial state.20 The calpain system, including Capn11, encodes
cysteine proteases that inhibit autophagy under inflammatory
stimuli.21 Capn11 also facilitates the degradation of extracellular
matrix and cytoskeletal remodeling and has been recently identi-
fied as a target gene located in the chronic kidney disease-
associated susceptibility region of the variant, rs881858, in
chromosome 6.22

In the kidney cortex, gene enrichment analysis demonstrated
downregulation of several genes involved in cell cycle and mito-
sis, cytoskeleton, and microtubule formation in GBT1118-treated
vs control sickle mice (supplemental Table 3). Genes of particu-
lar interest that were differentially expressed include upregulation
of genes involved in protection against complement activation
(Cfi) and angiotensin-activated signaling (Rgs2) and downregula-
tion of genes activated under oxidative stress (Cox6a2) in the
treated vs untreated sickle mice. Complement factor inhibitor
(Cfi) inactivates C3b, thereby preventing overactivation of the
complement alternative pathway. Impaired Cfi function has been
implicated in other glomerulopathies, such as atypical hemolytic
uremic syndrome and C3 glomerulonephritis.23 Dysregulated
complement activation may also promote kidney damage in SCA.
Increased C3 expression and C3 deposition have been
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described in the kidneys of sickle vs nonsickle mice12 and in
patients with SCA with vs without kidney disease,24 respectively.
Angiotensin II upregulates proinflammatory and fibrotic signaling
pathways and has been linked to SCA and non–SCA-related kid-
ney damage.25 Upregulation of Rgs2 in human embryonic kidney
cells inhibits angiotensin II-induced profibrotic ERK activation
and proinflammatory CXCR4 production.26 Furthermore, Rgs2-
deficient mice demonstrate increased collagen deposition and
macrophage infiltration compared with wild-type mice after unilat-
eral ureteral obstruction.26 The upregulation of Cfi and Rgs2 in
the GBT1118-treated vs untreated sickle mice may highlight

protective mechanisms against complement- and angiotensin-
2–mediated damage in SCA and should be explored in future
studies.

Hypoxia hallmark genes were predominantly downregulated in the
glomeruli (Slc2a1 and Stc1) and kidney cortex (Csrp2, Bnip3l,
Sdc3, Hexa, and Stc1) of the treated vs control sickle mice
(P # .01) (supplemental Table 4).

In conclusion, we demonstrate that reducing the degree of hemoly-
sis with GBT1118, an analog of voxelotor, stabilizes kidney function
in sickle mice. In patients with SCA, the presence of hemoglobinuria
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Figure 1. Changes in markers of hemolysis based on Hb concentration (A) and absolute reticulocyte counts in the blood (B), and cell-free Hb (C) in the urine of GBT1118

treated vs control (untreated) sickle mice. Urine biomarkers of reactive oxygen species (TBARS) (D), glomerular (nephrin) (E), and tubular injury (KIM-1) (F) in GBT1118-treated

control sickle and Hb AA mice. Measures of kidney dysfunction as assessed by 24-hour urine albumin (G), 24-hour urine protein concentration (H), and serum cystatin C

(I) in GBT1118-treated sickle, control sickle, and Hb AA mice. Each group contained 10 mice. *P , .05 and **P , .01 for differences between the GBT1118-treated vs

control sickle mice.
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is associated with increased concentrations of urinary biomarkers of
kidney injury (KIM-1), albuminuria, and progression of kidney dis-
ease.27,28 In this study, the GBT1118-treated sickle mice had
improvements in markers of hemolysis that led to a reduction in
urine Hb concentration and glomerular (nephrin) and tubular (KIM-1)
injury biomarkers. This was followed by stabilization in the degree of
hemosiderin deposition, inflammatory cell infiltration, interstitial fibro-
sis, and podocyte health, as well as preserved kidney function as
assessed by urine albumin and protein concentration and by serum
cystatin C in the GBT1118-treated vs control sickle mice. Limita-
tions of our study include the use of TBARS, a nonspecific bio-
marker of lipid peroxidation, and the need to evaluate the effects of
reduced hemolysis on vascular endothelial health, both of which we
will plan to investigate in future studies. Subsequent studies should
also examine the effects of GBT-1118 and improved hemolysis on
preserving urine-concentrating ability and treating more advanced
kidney disease in younger and older sickle mice, respectively.

Developing strategies to mitigate hemolysis in patients with SCA
has potential as a targeted treatment approach to improve sickle
cell nephropathy.
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Figure 2. (A) Fluorescence intensity of nephrin retained in the glomerulus, interstitial macrophage infiltration (defined by F4/F80-positive cells), and collagen IV deposition

in the transgenic sickle and Hb AA mice. Representative images at 2003 of hemosiderin deposition by Prussian blue stain (B) and interstitial fibrosis by Masson

trichrome stain (C) in the transgenic sickle and Hb AA mice. (D) Representative images of ultrastructural changes by transmission electron microscopy. Yellow arrows

represent foot process effacement, green arrows represent segmental basement membrane reduplication and subendothelial electron-lucent widening, and orange

asterisks represent segmental mesangial interposition with new basement membrane formation. (E) Heat map of genes differentially expressed in isolated glomeruli and

kidney cortices of GBT1118-treated sickle, control sickle, and Hb AA mice (false discovery rate ,0.05). **P , .01 for differences between the GBT1118-treated vs

control sickle mice.
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