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Abstract

Natural hybrid zones offer a powerful framework for understanding the genetic basis of speciation in progress because
ongoing hybridization continually creates unfavorable gene combinations. Evidence indicates that postzygotic reproduc-
tive isolation is often caused by epistatic interactions between mutations in different genes that evolved independently of
one another (hybrid incompatibilities). We examined the potential to detect epistatic selection against incompatibilities
from genome sequence data using the site frequency spectrum (SFS) of polymorphisms by conducting individual-based
simulations in SLiM. We found that the genome-wide SFS in hybrid populations assumes a diagnostic shape, with the
continual input of fixed differences between source populations via migration inducing a mass at intermediate allele
frequency. Epistatic selection locally distorts the SFS as non-incompatibility alleles rise in frequency in a manner anal-
ogous to a selective sweep. Building on these results, we present a statistical method to identify genomic regions
containing incompatibility loci that locates departures in the local SFS compared with the genome-wide SFS. Cross-
validation studies demonstrate that our method detects recessive and codominant incompatibilities across a range of
scenarios varying in the strength of epistatic selection, migration rate, and hybrid zone age. Our approach takes advan-
tage of whole genome sequence data, does not require knowledge of demographic history, and can be applied to any pair

of nascent species that forms a hybrid zone.
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Introduction

Under the biological species concept, species formation
results from the accumulation of reproductive barriers be-
tween lineages (Dobzhansky 1937; Mayr 1942). Reproductive
isolation can be mediated by the environment (extrinsic iso-
lation) or by genetic factors (intrinsic isolation). Modes of
intrinsic isolation can be broadly categorized as involving pro-
cesses that precede zygote formation (prezygotic) or involv-
ing processes that affect the development of the organism
(postzygotic).

A popular explanation for postzygotic isolation is the
Bateson—Dobzhansky—Muller (BDM) model (Bateson
1909; Dobzhansky 1936; Muller 1942). The model postulates
that reproductive isolation arises when geographically sepa-
rate populations fix incompatible mutations in genes that
normally interact. Hybrids carrying incompatible combina-
tions (referred to as Dobzhansky—Muller incompatibilities
or hybrid incompatibilities) suffer reduced viability, reduced
fertility, or both. Theoretical examination of the BDM model
has produced important insights into speciation, including
the extent to which incompatibilities inhibit gene flow be-
tween populations (Bank et al. 2012; Blanckaert and
Hermisson 2018; Blanckaert et al. 2020) and the rate at which
incompatibilities accumulate over time (Orr 1995; Turelli and
Orr 2000; Orr and Turelli 2001).

The genes that form hybrid incompatibilities can provide
glimpses into the genetic mechanisms responsible for post-
zygotic isolation (Presgraves 2010; Maheshwari and Barbash
2011). An incompatibility between two genes required to
repress transcription of transposable elements and satellite
DNA (Satyaki et al. 2014), Hmr and Lhr, kills hybrids between
Drosophila simulans and D. melanogaster (Brideau et al. 2006).
Dysfunctional interactions between Xmrk and (likely) Rab3d
cause lethal melanomas in hybrids between Xiphophorus
maculatus and X. hellerii (Lu et al. 2020). Xmrk also forms a
potential incompatibility with a different gene, Cd97, in a
cross between two other species of swordtail fish (X. malinche
and X. brichmanni) (Powell et al. 2020). Two genes, Sgs1 and
Msh2, have recently been shown to largely contribute to the
genetic barrier between Saccharomyces cerevisiae and S. para-
doxus (Bozdag et al. 2021), by preventing the formation of
crossovers between diverged sequences. Finally, Prmd9, a
gene that regulates recombination hotspots, causes male ste-
rility in hybrid mice (Mihola et al. 2009).

Although mapping and characterization of hybrid incom-
patibilities in the laboratory remains the best way to discover
mechanisms of postzygotic isolation, the necessary experi-
ments require substantial time. This framework also focuses
on single hybrid phenotypes that are visible and relatively
simple, whereas nascent species are often separated by a
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multitude of complex reproductive barriers. In one example,
Martin and Wainwright (2013) demonstrated the existence of
postzygotic isolation in Cyprinodon pupfishes and identified
phenotypes affected by incompatibilities. However, given the
complexity of the phenotypes, as well as the extrinsic nature
of the interactions, the underlying genetic interactions were
not investigated.

The examination of patterns of gene flow in natural hybrid
populations is a compelling alternative to genetic dissection
of reproductive barrier phenotypes in the lab. This framework
features the advantages of focusing on fitness effects of hy-
bridization in the wild, applying to many nascent species pairs
that cannot be crossed in captivity, avoiding assumptions
about the phenotypic basis of isolation, and considering hy-
brid individuals after many generations of admixture. In ad-
dition, genes identified using natural hybrid populations are
likely involved in speciation, whereas incompatible genes
identified between species that no longer naturally hybridize
might have diverged after speciation was complete.

Several statistical methods have been developed with the
goal of characterizing natural selection against hybrids (
reviewed by Payseur 2010; Payseur and Rieseberg 2016). A
strategy based on geographic clines (Porter et al. 1997) builds
on theory that equates changes in allele frequency across
transects of a hybrid zone to a balance between selection
and migration (Barton and Hewitt 1985; Szymura and
Barton 1986). A framework based on genomic clines searches
for loci that show collections of genotypes that depart from
genome-wide hybrid indices (Rieseberg et al. 1999; Gompert
and Buerkle 2009, 2011). Building on empirical studies that
identified unlinked pairs of loci showing strong associations
between conspecific alleles in collections of hybrids (Payseur
and Hoekstra 2005; Teeter et al. 2008; Schumer et al. 2014;
Pool 2015), another approach looks for loci displaying stron-
ger admixture disequilibrium than the remainder of the ge-
nome (Schumer and Brandvain 2016). Collectively, these
analytical strategies for identifying loci that experience selec-
tion against hybrids face challenges. Although methods that
focus on geographic clines or genomic clines have found loci
that likely reduce fitness in hybrids, these methods were not
designed for application to whole genome sequences. Despite
the intuitive appeal of using admixture disequilibrium to de-
tect epistatic selection, simulations suggest this approach is
unreliable, even when population structure is accounted for
(Schumer and Brandvain 2016). As genomic data from hybrid
populations continue to accumulate, new methods that lo-
cate hybrid incompatibilities using genome sequences would
accelerate progress toward deciphering the genetics of
speciation.

A potentially general signature of selection against incom-
patibilities comes from consideration of the effects of epistatic
selection in hybrid populations. When a heterospecific com-
bination of alleles at two loci decreases hybrid fitness, selec-
tion reduces the number of individuals with this genotype. As
a result, the population frequencies of the compatible alleles
increase. Neutral mutations linked to each compatible allele
should also spread through the population in a manner partly
analogous to a selective sweep (Maynard Smith and Haigh

1974). Therefore, we might expect the site frequency spec-
trum (SFS) of polymorphisms in genomic regions containing
hybrid incompatibilities to depart from the genome-wide SFS
(Braverman et al. 1995; Simonsen et al. 1995).

In this paper, we present a method to locate hybrid in-
compatibilities using the SFS. Following the logic of successful
approaches developed to detect selective sweeps in nonhy-
brid populations (Nielsen 2005; Williamson et al. 2007), we
deploy the full SFS (rather than summarizing it) and we use
the genomic spectrum as a null model (bypassing the need to
specify a demographic model). Simulations of hybrid popu-
lations demonstrate that our method finds incompatibilities
across a range of scenarios involving epistatic selection, mi-
gration, and genetic drift.

New Approaches

We developed a new method to detect epistatic selection in
natural hybrid populations by exploiting information con-
tained in the SFS. We computed the local unfolded SFS along
the genome over regions of 500 kb and calculated the prob-
ability of observing the local SFS given the global one using a
multinomial distribution. Through bootstrapping, we estab-
lished the distribution of windows of the chromosome that
are found within the 1% lower tail of the probability of ob-
serving the local SFS given the global SFS. A region was de-
fined as an outlier if it fulfills the two following conditions: The
window itself appears often enough in the 1% tail of the
distribution and this window and its neighbors appear on
average often enough in the 1% tail of the distribution.

Materials and Methods

Simulations

We modeled a hybrid zone consisting of one hybrid popula-
tion and two parental populations, using SLiM v3.4 (Haller
and Messer 2019). Initially, the hybrid population was absent.
The two parental populations, each of size N, = 5,000, began
with the same genome except for a fixed difference at each of
two loci (derived alleles A and B), and diverged in allopatry for
n = 50,000 generations (burn-in phase). New mutations arose
at rate £t = 102 and were assumed to be neutral. After this
initial phase, the hybrid population, of size N = 10,000, was
formed in a single generation as a 50:50 combination of the
two parental populations (without depleting them).

The hybrid population received migrants at rate m = 0.005
from each parental population (for a total of 2m = 0.01).
There was no migration from the hybrid population to the
parental populations. The hybrid population (a sink) formed
a barrier to gene flow between the parental populations
(sources), which could reflect restrictions on migration im-
posed by the environment or reduced fitness in hybrids
(Barton and Bengtsson 1986).

Individuals were diploid with genomes composed of one
chromosome of length L = 500 Mb. Recombination occurred
during meiosis at a uniform rate of r = 5 x 10~ per base
pair. Loci A and B were situated at positions 175 and 325 Mb,
respectively, and their derived alleles interacted epistatically
to reduce fitness by ¢ = —0.1. To model incompatibility
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Table 1. Scenarios and Parameter Values Examined.

Parameters Name Codominant Case Name Recessive Case
€= —-0.1 s = m = 0.005 Default Default rec.

e = —0.02 s=0 m = 0.005 Low ep. Low ep. rec
€e=—0.5 s=0 m = 0.005 High ep. High ep. rec.
€= —-0.1 s=0 m = 0.0005 Low mig. Low mig. rec
€e=—0.1 s = m = 0.05 High mig. High mig. rec.
€e=-05 s=0 m = 0.05 High mig. high ep. High mig. high ep. rec.
e=0 s=0 m = 0.005 Neu. NA

€e=0 s = —0.02 m = 0.005 SL-sel. NA

€e=0 s=—0.1 m = 0.005 High SL-sel. NA

€= -0.1 s = —0.02 m = 0.05 SL-sel. and ep. SL sel. and ep. rec.

associated with local adaptation, we also considered fitness
disadvantages s, and s, for the two ancestral alleles (default s,
=5, = 0). Fitness effects were multiplicative, with the fitness
of an individual given by

w=(1+5) (1 455) (1 + hyux ). (1)

In this equation, X, and Xp indicate the number of derived
alleles (0, 1, or 2) at locus A and B, respectively. Here hx, .x,
represents the dominance coefficient for the epistatic inter-
action. The recessive and codominant cases only differ for the
double heterozygote individual AaBb: h; = 0 if the incom-
patibility is recessive and h; = 1, if the incompatibility is co-
dominant. For all other cases (k € 0,2,4), h, = 1 for both
recessive and codominant cases. Fitness was equal to the
probability that an individual survived to adulthood. All sur-
viving individuals contributed equally to the next generation.

We sampled 50 individuals without replacement from the
hybrid population at generations 100, 1,000, 5,000, and 10,000
(with the counter beginning at 0 when the hybrid population
was formed). Sampled individuals were not removed from
the population.

We used two approaches to make the simulations com-
putationally feasible. We scaled up recombination rates and
mutation rates by a factor of 10 to represent a larger chro-
mosome (Lr and L u were kept constant). In addition, we used
a single burn-in in the parental populations for all simulations
that assumed the same genomic architecture. The range of
parameter values used for simulations is provided in table 1;
values given in the paragraphs above were treated as defaults.
Our source code is available on zenodo (doi:10.5281/
zen0do.4614847).

SFS and Outlier Detection

To detect incompatibilities, we computed the unfolded SFS in
non-overlapping 500 kb windows (for a total of 1,000 win-
dows in the genome) for samples of 50 diploid individuals. We
also tabulated the genome-wide SFS. Single nucleotide poly-
morphisms (SNPs) with more than two alleles were ignored.
For each window, we calculated the probability of observing
the local SFS using a multinomial distribution with parame-
ters estimated from the genome-wide SFS. This probability
was estimated n, = 1,000 times by bootstrap resampling of
the 100 sampled sequences. For each bootstrap replicate, we
recorded the first percentile of the probability distribution of

4618

the local SFS given the genome-wide SFS. Then, we con-
structed the distribution across bootstrap replicates of the
position of the first percentile along the chromosome. We
counted the number of times each window appeared in the
first percentile of the distribution (k). If k¥ was larger than a
threshold value (thr,, k > thr;), the window was identified as
a potential outlier. To further reduce false positives, we re-
quired that windows adjacent to a potential outlier also
appeared in the first percentile, reasoning that the distortion
generated by selection was likely to extend beyond 500 kb.
Therefore, for each candidate outlier, we calculated %, the
average number of times a window in the [i — d,i + d] re-
gion was found in the first percentile of the distribution. A
candidate outlier was classified as a true outlier if rc,; was larger
than a second threshold (thr,, k4 > thr;). Given that the
initial filter was done on each window independently
(¢ > thry), we considered as false positive any outlier that
did not include incompatibility loci A or Bin the [i — d, i + d]
region of detection. Therefore, there were 4 * d 4 2 windows
that were considered true positives and 1,000 — 4 * d — 2
considered false positives. Due to dependence on d of the
numbers of true positives and false positives, larger values of d
will perform better. Due to the bootstrap step, there were at
most 10, 000/thr, possible candidate outliers (ranging from
25 if thr; = 400 to 10 if thr; = 1,000). Therefore, we used
this value (10, 000/thr,) in Bonferroni corrections for multi-
ple testing.

Evaluation of Method Performance

For each simulated scenario, we initially calculated the power
of the method, the false positive rate and the proportion of
false positives among the outliers for combinations of
{thry, thr,,d} using all available simulations, with thr; any
value in {400, 450, ..., 1000}, thr, any value in
{0,120, ..., 300} and 5 < d < 19. We determined which
{thry, thr,,d} provided the highest power for each scenario.
As mentioned in the previous section, d determines the num-
ber of true positive regions in the genome, and therefore
larger d will always have higher power. To compensate for
this effect, we also determined the best {thr,, thr,, d}, using
two additional optimizing metrics, power/(2 xd + 1) and
power/(2 * d + 1) and introducing a penalty for larger val-
ues of d. If the optimizing metrics were identical, we used
resolution (lower is better), then proportion of false positives
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in outliers (smaller is better), and finally thr, (larger is better)
to determine the best combination of {thry, thr,,d}.

Based on these results, we examined further those scenar-
ios for which our method showed at least 50% power, a false
positive rate below 5 x thr;/10,000%, and a proportion of
false positives among outliers below 5%. For these scenarios,
we preserved only combinations of {thry,thr,,d} that
passed the criteria described above (a false positive rate below
5 % thry/10,000% and a proportion of false positives among
outliers below 5%) and determined the best combination by
averaging the optimizing metric over the selected scenarios.

To further evaluate the method, we performed cross-
validation. Using a randomly chosen subset of the simulations
(25%) from the restricted group described above, we deter-
mined which combination {thr,, thr,,d} provided the best
results. We then measured performance on the remaining
data set using the values of thr, thr,, and d estimated in
the previous step, providing cross-validation of our approach.
We repeated this step 100 times with power and power /(2
d + 1) as optimizing metrics. For each optimizing metric, the
mode of the distribution of best {thr, thr,,d} was consid-
ered to be the best value to detect incompatibilities. In addi-
tion to choosing the best combination {thry,thr,,d} for
each iteration, we also considered keeping any combination
of {thry,thr,,d} that performed almost as well (with the
optimizing metric being within 5% of the best one). This
approach allowed us to capture the possible existence of a
plateau in the {thr,,thr,,d} space, therefore obtaining a
more robust estimate of an effective {thry, thr,,d} combi-
nation, at the slight cost of power.

Results

Characterization of the SFS in a Hybrid Population

Populations in a hybrid zone display a SFS that departs from
what is expected in classical Wright—Fisher populations
(where the relative proportion of SNPs with a frequency f is
proportional to 1/f [Wright 1938]), as illustrated in figure 1A.
Indeed, when initially formed, the hybrid population pos-
sesses a unique SFS (fig. 1B), characterized by a large propor-
tion of SNPs at frequency 0.5; this proportion depends on the
level of divergence between the two parental populations.
These SNPs correspond to fixed mutations, private to each
parental population (since the hybrid population is formed
by a symmetric contribution of the two parental popula-
tions). The constant influx of fixed differences between pa-
rental populations into the hybrid zone via migration helps to
maintain the proportion of SNPs with frequency 0.5, whereas
drift spreads the distribution around 0.5 (fig. 1D). In the ab-
sence of selection, the SFS of a (sink) hybrid population can be
decomposed into three components: One part resulting from
mutation-drift balance and the initial composition of the
hybrid population, and two parts inherited from the parental
populations via migration (here, these two parts are indistin-
guishable due to the symmetric contribution of the parental
populations to the hybrid population). In the absence of mi-
gration, only the first component remains: The SFS of the
initial hybrid population slowly converges toward the SFS of

a Wright—Fisher population under drift. After 1,000 genera-
tions, the isolated hybrid population still displays an excess of
alleles at intermediate frequency (fig. 1C), though this effect is
far more diffuse than in the presence of migration and almost
vanishes after 10,000 generations (supplementary fig. S1,
Supplementary Material online). In addition, it is worth not-
ing that although the SFS in the parental populations does
not change, the part of the SFS in the hybrid population
generated by migration (equivalent to fig. 1B) changes as
the parental populations continue to diverge and accumulate
fixed differences.

Epistatic selection against hybrid genotypes shifts the SFS
in the vicinity of incompatibility loci (fig. 2A for the default
scenario; see supplementary figs. S2—S17, Supplementary
Material online for other scenarios). The distortion is spatially
broad, extending approximately 10 — 20 Mb around incom-
patibility loci (fig. 2A). With epistatic selection against incom-
patible alleles A and B, genetic backgrounds containing the
ancestral a allele or the ancestral b allele have a marginal
fitness advantage. As a result, derived alleles at neutral SNPs
linked to a or b increase in frequency away from 0.5, creating a
detectable, local signature in the SFS. A similar distortion of
the SFS is generated by single-locus selection but this distor-
tion is stronger (assuming s = ¢) because single-locus selec-
tion acts independently of the genetic background
(supplementary fig. S3, Supplementary Material online) and
therefore is always present.

Finding Genomic Regions with Distortions in the SFS
Generated by Epistatic Selection

To quantify the distortion of the SFS near incompatibility loci,
we used the multinomial distribution to compute the prob-
ability of observing the local SFS (over a 500 kb window) given
the global SFS calculated for the entire chromosome. Due to
the resulting high dimensionality, the probability of observing
a particular SFS was always extremely low (fig. 2B). For refer-
ence, the probability of observing exactly once each number
between 1 and 100 when drawing 100 numbers at random
(all having the same probability of being chosen) is 9.33 x
10~ . Nevertheless, the probability of observing an SFS near
an incompatibility locus is many orders of magnitude lower
than the probability of observing one that is similar to the
global SFS (fig. 2B). Most of the windows with the lowest
probabilities of observing the local SFS are found near incom-
patibility loci, A and B. However, due to chance, some regions
of the chromosome may have a local SFS that differs from the
rest of the chromosome (e.g, in fig. 2B to the left of locus A,
around position 125 Mb).

To distinguish SFS signatures due to epistatic selection
from those due to chance, we ran a bootstrap analysis to
identify outliers. We designated as outliers those regions
with probabilities that consistently fell within the lowest 1%
of the distribution of probability of observing the local SFS
based on the global SFS along the chromosome. Figure 3
illustrates the outcome of the bootstrap analysis for the
case of epistatic selection (with ¢ = —0.1). Most of the
regions that are detected as outliers more than 50% of the
time map near the incompatibility loci (windows 350 and
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Fic. 1. Neutral SFS in a hybrid zone. The neutral expectation of an
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650; fig. 3A). The effects of epistatic selection extend beyond
windows containing the incompatibility loci. The bootstrap
analysis effectively removes some windows with extreme
probabilities while retaining windows adjacent to incompat-
ibility loci. Figure 2 displays an example in which a local SFS in
a neutral region around 125 Mb has a very low probability of
being observed. After bootstrap analysis, the signal partially
vanishes: First this region appears in the 1% tail about 40% of
the time; second, the signal is isolated.

The probability of observing a given data set under a mul-
tinomial distribution depends on the number of observations
as well as how they are partitioned. Just as the binomial
probability of observing exactly n “heads” with 2n coin flips
decreases as n increases, the multinomial probability of ob-
serving a particular SFS decreases as the number of SNPs
grows. Although we recover such a relationship between
the number of SNPs and the (log) probability of the local
SFS, windows with the lowest probabilities are not those with
the most SNPs, whether they evolve under neutrality (sup-
plementary fig. S19A, Supplementary Material online), single-
locus selection (supplementary fig. S19B, Supplementary
Material online), or epistatic selection (supplementary fig.
$19C and D, Supplementary Material online).

Method Performance

For each scenario, we calculated the power, false positive rate
and proportion of false positives in outliers for our method,
considering diverse combinations of {d, thry, thr, }. Table 2
shows the combination of {d, thrq,thr,} that generates a
false positive rate below 5 * thr;/10,000% (Bonferroni cor-
rection), a proportion of false positive in outliers below 5%,
and the highest power. As mentioned in the Methods, since
power increases with the size of the region considered as
“true,” 2 % d + 1, and therefore with d, we also considered
two additional optimization metrics: 1) power corrected by
the number of windows around the true location considered
as “true” positive power/(2 * d + 1) or 2) the square of this
value power/(2 * d + 1)°.

When we ignore the effect of d on power, we obtain rel-
atively high power across multiple scenarios, finding the in-
compatibility loci more than 90% of the time, for both
recessive and codominant incompatibilities. The incompati-
bility loci are found in regions ranging in size from 15.5 Mb
(under weak epistatic selection with codominance) to
19.5 Mb (low migration). Reducing the size of the region is
possible, at the cost of power. By penalizing for the size of the
window of detection, we can narrow the position of the in-
compatibility loci to less than 10 Mb for multiple scenarios. It
can be further narrowed but at a large cost of power. For
example, in the default scenario, the window can be reduced
by approximately two-thirds to 6.5Mb with an associated
decrease by half in power from 0.958 to 0.486. Therefore, using
power/(2 % d + 1) as the optimization metric offers a good
compromise between power and resolution.

When migration is high (10% of the hybrid population is
replaced by individuals from the parental sources each gen-
eration), we fail to detect the incompatibility loci. In this case,
the SFS reflects mainly the genome-wide effects of migration,
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FiG. 2. (A) Local SFS calculated over regions of 500 kb. The X-axis corresponds to the position along the chromosome, the Y-axis shows SNP allele
frequency. The density is indicated by color, with yellow denoting a lack of SNPs with the corresponding frequency and black denoting an
abundance of SNPs with that frequency. (B) Probability of observing the local SFS conditional on the global SFS. Results are shown for simulations

with s = 0,e = —0.1, m = 0.005, gen. = 1, 000.

rather than the balance between migration and selection
(supplementary fig. S12, Supplementary Material online).
Even when selection against hybrids is extremely strong (F1
hybrid fitness is reduced by 50% in the codominant case, and
by 94% for the double homozygote AABB), incompatibility
loci are detected only 40% of the time and with a rather low
resolution (in a 16.5Mb region). In that case, due to the
presence of perpetual strong migration and selection, both
incompatible alleles remain at intermediate frequencies
(=0.30 for all 4 time points). There is not enough time for
the parental haplotype to fully break down and therefore the
distortion of the SFS extends over a rather large region (more
than 50 Mb, see supplementary fig. S14, Supplementary
Material online), making it a challenge to pinpoint the incom-
patibilities themselves. When migration is not too strong (1%
of the hybrid population is replaced per generation), weakly
selected incompatibility loci (¢ = —0.02) can be potentially

detected (/243% within a 18.5 Mb region or ~225% within a
7.5 Mb).

When there is both single-locus selection against alleles a
and b and epistatic selection against alleles A and B, power is
reduced by about 40% compared with epistatic selection
alone (from 0.958 to 0.548 for the codominant case and
from 0.910 to 0.575 for the recessive one, when power is
the optimizing metric). This is also true with power/(2 * d +
1) as the optimization metric (table 2).

Finally, we emphasize that although we obtain a variety
of best combinations {d, thry, thr,} for the diverse scenar-
ios, we still find a common combination of {d, thry, thr,}
where the method performs close to its best across
scenarios.

To further evaluate the method, we performed a cross-
validation analysis, using 25% of the simulations (randomly
chosen) from scenarios with epistatic selection in which the
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Fic. 3. Outcome of bootstrap analysis and definition of thresholds. (A) Number of times each window was in the lower 1% tail for the probability of
the local SFS being observed given the global SFS in the analysis with 1,000 bootstrap replicates. The red dotted line indicates the first threshold,
thr. In this example, there are five windows that satisfy this first criterion. (B) Zoom-in on the two outlier windows detected close to locus A. The
blue dashed line indicates the second threshold thr, and the black line indicates the average number of times a window appears in the lower 1% tail.
Both the blue line and the black line are drawn only over the windows of interest, that is, including d = 5 windows to the left and five windows to
the right of the focal window. (C, D) Zoom-in on two outlier windows detected close to locus B. The bootstrap analysis depicted in this figure used

the same set of data presented in figure 2.

incompatibility loci were detectable (see Materials and
Methods). We report which combination of {d, thr,, thr,}
was the best for each of the 100 iterations with power /(2
d + 1) (table 3) as the optimizing metric (see supplementary
table S1, Supplementary Material online for results using
power as the optimization metric). The mode of the distri-
bution  corresponds to the best combination
{d = 9, thr; = 900, thr, = 60}, translating into a resolution
of 95Mb. The second most common combination,
{d = 9,thr; = 900, thr, = 80}, is really similar, therefore
confirming our result. When we did not penalize for the
size of the window d, the best combination was observed
in 61 out of 100 iterations and given by
{d = 16, thr, = 400, thr, = 40} (supplementary table S1,
Supplementary Material online).

Since the proportion of false positives in outliers is one
of the criteria we consider, the effects of thr; and thr, are
not straightforward. Indeed, although the false positive rate
will decrease (or remain unchanged in the worst-case sce-
nario) when the filters become more stringent, the propor-
tion of false positives among outliers may increase, due to
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the possible exclusion of true positive outliers. Therefore,
despite being really similar, we cannot merge the cases
where {d = 9,thr; =900, thr, = 60} and
{d = 9,thr; = 900, thr, = 80} by simply choosing the
more stringent option. Therefore, we considered combina-
tions that provided not only the best optimization metrics,
but also combinations found within 5% of this value (i.e., a
list of better choices, instead of simply best choices). Under
these conditions, the {d = 9, thr; = 900, thr, = 80} com-
bination, that is the second best option, is found as the
better option in 81 out of 100 iterations (table 3). We
therefore present in table 4 the power, false positive rate
and proportion of false positives calculated for the remain-
ing simulations (see Materials and Methods) and averaged
for the 81 cases where {d = 9, thr; = 900, thr, = 80} was
the best set of criteria. Similarly, when using power as the
optimizing metric, the better option corresponds to
{d = 16, thr; = 450, thr, = 40}.

As displayed in table 4, using the common set of criteria
determined above, we can detect incompatibility loci over a
broad range of scenarios with a resolution of 9.5 Mb. As long
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Table 2. Best Combination of {d, thry, thr, } and Power for the Different Scenarios.

Optimizing Metric: Power

Power __Power _

24d+1 (2+d+1)?

Scenario {d, thry,thr,} Power {d, thry,thr,} Power {d, thry,thr,} Power
Default 16, 400,20 0.958 9,800, 40 0.763 6,950, 80 0.486
Default rec. 15, 400, 40 0.910 9,700, 80 0.722 5,950,100 0.293
Low epis. 18, 400, 60 0.431 7,750,100 0.254 5,850,120 0.16

Low epis. rec. 19,500, 60 0.261 7,750,120 0.153 5,800, 160 0.111
High epis. 18,500, 20 0.948 9,950, 60 0.611 9,950, 60 0.611
High epis. rec. 16,400, 20 0.986 9,800,100 0.770 6,950, 80 0.481
Low mig. 19,450, 20 0.915 6,950,120 0.669 6,950,120 0.669
Low mig. rec. 18, 650, 40 0.836 6,950,100 0.579 6,950,100 0.579
High mig. 16,400, 100 0.099 16,400,100 0.099 5,800, 160 0.024
High mig. rec. 16,400, 100 0.07 5,800, 100 0.03 5,800,100 0.03

High mig. high epis. 16,400, 100 0.406 16,400, 100 0.406 5,950,100 0.068
High mig. high epis. rec. 18, 400, 80 0.353 18,400, 80 0.353 5,900,120 0.055
SL-sel. and epis. 16,550, 60 0.548 13,750, 160 0.466 7,950,300 0.154
SL-sel. and epis. rec. 16, 400, 60 0.575 9,700,100 0.405 5,850,200 0.205

Note.—We consider here three different optimization metrics: power (left columns), power/(2 d + 1) (central columns) and power/(2 * d + 1)2 (right columns).
Combinations of {d, thry, thr, } leading to a false positive rate above 5 x* thr; /10,000% or a proportion of false positive in the outliers above 5% were excluded.

Table 3. Distribution of Combination of {d,thr,thr,} Using
(power/(2 % d 4 1)) as the Optimizing Metric.

d thr, thr, Count (best) Count (top5%)
9 900 60 43 56
92 900 80 28 81
9 900 40 9 10
9 900 100 8 32
92 850 100 4 5
9 950 40 2 4
9 900 0 0 10
9 900 20 0 10

Note.—Fourth column corresponds to the number of a time a combination is the
best one, the fifth one to the number of times a combination is within 5% of the best
combination. Only combinations that appeared twice as the best combination, or
five times within 5% of the best combination, were displayed.

as epistatic selection is not too weak, we are able to detect the
loci with power near 50%, whereas maintaining a false positive
rate below 5% (corrected for multiple testing, see Materials
and Methods), for both recessive incompatibilities and co-
dominant incompatibilities. The proportion of false positives
in outliers fluctuates more but remains below 5% in all but
two scenarios: 1) strong codominant epistatic selection and
2) antagonistic single-locus and codominant epistatic selec-
tion (table 4A). For both scenarios, this excess of false positive
in outliers is mainly due to the distortion generated by selec-
tion extending beyond what is defined as “true positive” (sup-
plementary figs. S8 and S16, Supplementary Material online).
This “too large” distortion is either due to the strength of
epistatic selection itself or the antagonist interaction between
single-locus and epistatic selection maintaining one of the
two incompatible allele at high frequency (0.77 after genera-
tion 1,000). Our approach fails to detect the incompatibility
loci when migration is high.

Single-locus selection is similarly detectable (table 4B).
About 65% of loci under strong single-locus selection are
detected, a rate similar to the strong epistatic selection sce-
nario. Weaker single-locus selection is detected only about
35% of the time.

When both epistatic selection and single-locus selection
(antagonistically) affect the two loci, power decreases from
61% to 49% in the codominant case and from 44% to 20% in
the recessive one (table 4A), compared with epistatic selec-
tion acting in isolation. Using a common combination of
{d, thry,thr,} and the power/(2*d -+ 1) optimization
metric does not reduce our ability to detect this scenario in
the codominant case (table 2) but it does for the recessive
case.

When using power as the optimizing metric, the best com-
bination of criteria is {d = 16, thr; = 400, thr, = 40} and
the power achieved is far greater than when using
power/(2 % d + 1) as the optimizing metric, reaching above
95% in some cases (supplementary table S2, Supplementary
Material online). This increase comes at the cost of lower
resolution (16.5 vs. 9.5 Mb). Only the scenarios with strong
migration and default epistatic selection perform poorly. In
the absence of epistatic selection, the focal loci are detected in
3.25% of the cases, which is less than expected assuming the
position of outliers is independently and uniformly distrib-
uted along the chromosome (6.8%). A total of 172 outliers are
found in 130 of the 400 cases, but in 79 of the 100 replicates.
The distribution of outliers detected across the 100 replicates
for each of the time samples can be found in supplementary
figure S20, Supplementary Material online.

To gauge the applicability of our method to hybrid zones
with different ages, we examined performance at the four
time points at which we sampled the hybrid population.
For most scenarios, power is similar across time points (sup-
plementary figs. S21—S24, Supplementary Material online).
This result indicates that our method is robust to variation
in hybrid zone age and it can be applied without assumptions
about this parameter.

Stronger Epistatic Selection Is Detected Further Away
When epistatic selection is strong, the focal outlier is usually
detected further away from the positions of incompatibility
loci (fig. 4A; this is also true for single-locus selection in sup-
plementary fig. S25, Supplementary Material online). In the
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Table 4. Ability to Detect the Focal Loci Using the “Optimal” Combination of Criteria: {d = 9, thr; = 900, thr, = 80}, as Determined by the

Cross-Validation Analysis for the Various Scenarios.

(A) Scenario Prop. False Pos. in Outliers Power False Pos. Rate
Default 0.017 0.613 4.1%X107°
Default rec. 0.018 0.436 3.1X10°°
High ep. 0.062 0.696 1.8x1074
High ep. rec. 0.032 0.633 7.4X107°
Low mig. 0.042 0.734 1.4X1074
Low mig. rec. 0.036 0.659 9.9%107°
SL-sel and ep. 0.145 0.485 4.2%x107%
SL-sel and ep. rec. 0.021 0.202 2.9%10°°
(B) Scenario Prop. False Pos. in Outliers Power False Pos. Rate
Neutral 0.013 0 1.30x107°
SL-sel. 0.11 0.350 1.73%X107°
High SL-sel. 0.178 0.671 3.9x107%
Low ep. 2.50%x1073 0.124 2.60%x10°¢
Low ep. rec. 6.25X1073 0.068 7.80%10°¢
High mig. 0.01 6.25X1073 1.04%x107°
High mig. rec. 2.50%x1073 0.0125 2.60%x10°¢
High mig high sel. 0.087 0.134 1.17%X1074
High mig high sel. rec. 0.033 5.88X1072 3.38X107°

Note.—The correction for multiple testing is a factor 9/100, meaning that the false positive rate should be below 4.5 x 1073. (A) Scenarios used during the cross-validations and
therefore corresponds to the average over the 81 cases where {9, 900, 80} was the best combination or within a 5% distance of it. (B) Other scenarios.

absence of selection, the SFS is bimodal, with one mode
corresponding to rare alleles and the second mode near 0.5
due to fixed differences between the two parental popula-
tions (fig. 1D). Selection distorts the local SFS (fig. 2A; supple-
mentary figs. S3—S17, Supplementary Material online); alleles
with frequencies at or near 0.5 are more strongly affected
because many of them are in tight linkage disequilibrium
with incompatibility alleles. About half of the mutations at
frequency 0.5 originated from population 1 and are in strong
linkage disequilibrium with allele A (or b), whereas the other
half originated from population 2 and are in strong associa-
tion with allele a (or B). Due to epistatic selection, allele A
decreases in frequency, and so do the neutral alleles in linkage
disequilibrium with A. Conversely, allele a and linked neutral
alleles increase in frequency. This dynamic splits in two parts
the mode of the SFS near 0.5. When selection is strong, neu-
tral alleles in linkage disequilibrium with A are pushed to a
lower frequency, making it harder to distinguish the SFS un-
der strong epistatic selection from the baseline SFS. Therefore,
the signal is recovered further away. Put another way, incom-
patibility alleles decrease in frequency at a faster rate com-
pared with recombination when selection is strong. As a
result, linkage disequilibrium between incompatibility alleles
and neutral alleles extends further and so does the distortion
in the SFS.

We recover a similar pattern for migration (fig. 4B). With
stronger migration, the detected outliers are on average fur-
ther away from the positions of incompatibility loci because a
high proportion of incompatibility alleles have been recently
introduced into the hybrid population and linked neutral
alleles have had less time to recombine away. However, mi-
gration and epistatic selection seem to interact nonlinearly.
Indeed, for a migration rate of m = 0.05, incompatibility loci
under strong epistatic selection are detected closer to their
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true positions (supplementary fig. S26, Supplementary
Material online) than are incompatibility loci under weak
epistatic selection. Finally, in the presence of antagonistic
single-locus selection, the detected outliers are on average
further away from the positions of incompatibility loci (sup-
plementary fig. 527, Supplementary Material online).

Discussion

Although hybrid incompatibilities are important contributors
to reproductive isolation and speciation, they remain chal-
lenging to identify. We have shown that epistatic selection
against incompatibility loci produces a localized distortion in
the SFS in hybrid populations. Using this distortion, we can
identify chromosomal regions that contain incompatibility
loci under a variety of scenarios.

Our approach features several advantages. First, the
method is applicable to any pair of nascent species that
form a natural hybrid zone; breeding organisms in the labo-
ratory is not required. Second, our strategy can detect incom-
patibility loci that affect any aspect of hybrid viability or
hybrid fertility without specifying the phenotype of interest
in advance. In addition, the method performs relatively well
across a wide range of epistatic selective strength. Third, using
the genome-wide SFS to predict the local SFS accounts for
effects of demographic history, obviating the need to recon-
struct the history of hybridization (which can be complex).
Fourth, many of the known examples of incompatible genes
involve strongly diverged species (Powell et al. 2020), present-
ing a risk that they arose after the speciation process was
complete. The method we described relies on individuals
from natural hybrid zones. Genetic incompatibilities detected
are therefore likely to be involved in the speciation process.
Finally, our approach incorporates the full SFS and is
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Fic. 4. Distribution of distances between the detected outliers and
the incompatible loci. Outliers were determined using the following
filters {d = 9, thr; = 900, thr, = 80}. For both panels, points found
more than 20 windows away (10 Mb) were removed, as they are
unlikely to reflect selection. Mean distance is given by the red circle,
median by the thick black line and the 95t percentile by the blue
triangle. The purple dashed line corresponds to d =9 and separate
“true positive” from “false positive.” (A) Distance between the
detected outliers and the incompatibility loci for different strengths
of the incompatibility with the default migration rate, m = 0.005. (B)
Distance between the detected outliers and the incompatibility loci
for different migration rate with the default epistasis coefficient,
e=—0.1.

specifically designed for the analysis of genome sequence
data. Below, we discuss the application and limits of the
method.

One of the biggest challenges in the detection of hybrid
incompatibilities is disentangling epistatic selection from
single-locus selection. Although disrupted interactions be-
tween alleles at two loci reducing hybrid fitness and a bene-
ficial allele at a single-locus increasing fitness are biologically
distinct phenomena, they leave similar signatures in the SFS.
Selection against an incompatibility (derived) allele increases
the frequency of the nonincompatibility (ancestral) allele in a
manner that resembles a selective sweep involving a single-
locus. Epistatic selection is less effective than single-locus se-
lection because an incompatibility allele is only disfavored

when it is combined with the incompatibility allele at the
second locus (this difference is strongest when epistatic inter-
actions are fully recessive). As a result, we might expect epi-
static selection to be detected only when it is strong. In
contrast, epistatic selection leading to a fitness reduction of
10% in double heterozygotes is easily detectable using our
method. Cases with even weaker epistatic selection can be
detected with limited power, depending in part on the bal-
ance between resolution and power that is chosen (table 4;
supplementary table S2, Supplementary Material online).
Nevertheless, when applied in isolation, our method is not
able to exclude the possibility that single-locus selection
explains detected outlier loci.

We suggest several potential solutions to the challenge of
distinguishing epistatic selection from single-locus selection.
First, clines in allele frequency or genotype frequency at SNPs
near detected outliers can be examined in a second stage of
analysis. An explicit epistatic model can be fit using genomic
clines (Gompert and Buerkle 2009, 2011). If samples from
additional localities in the hybrid zone can be collected, geo-
graphic clines can be analyzed for evidence of adaptation of
the form that would be predicted under single-locus selection
(Endler 1977). Second, longitudinal data from hybrid zones
have the potential to detect differences in the trajectory of
alleles under epistatic selection and single-locus selection.
Allele trajectories have started to be exploited to detect se-
lection (Foll et al. 2015) and to understand the evolution of
quantitative traits (Franssen et al. 2017). Finally, we emphasize
that we would expect many of the loci identified by our
approach to be incompatibilities, at least when considering
hybrid zones between lineages with reproductive barriers. The
number of hybrid incompatibilities is expected to grow faster
than linearly with divergence time (Orr 1995) and this result
has been recovered in multiple taxa: Including Solanum
(Moyle and Nakazato 2010; Guerrero et al. 2017),
Drosophila (Matute et al. 2010), or Mus musculus (Wang et
al. 2015).

Our approach offers the potential to identify both loci
involved in a hybrid incompatibility. However, because each
genomic region is evaluated independently, the current
method does not reveal whether detected loci interact epis-
tatically. Schumer and Brandvain (2016) demonstrated that
pairs of incompatibility loci tend to be found in the extreme
tail of the distribution of admixture disequilibrium, providing
a possible way forward. Unfortunately, our preliminary inves-
tigation of admixture disequilibrium revealed that this signa-
ture is not maintained in older hybrid zones (supplementary
figs. S3—S17 and S28, Supplementary Material online). We
suspect this disparity reflects our decision to model (BDM)
incompatibilities with asymmetric fitness effects (whereas
Schumer and Brandvain [2016] focused on incompatibilities
with symmetric fitness effects) and to consider scenarios with
weaker selection, in addition to the limited time frame during
which epistatic selection distorts admixture disequilibrium. In
another attempt to detect interactions among selected loci,
Beissinger et al. (2016) computed the D statistic (Ohta
19823, 1982b), a measure that partitions linkage disequilib-
rium between and within populations. Although a certain
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number of candidate genes were identified, the authors
pointed out that single-locus selection could not be excluded
as an alternative explanation since selective sweeps can gen-
erate similar patterns.

The need to include enough SNPs to formulate a reason-
able SFS and the extra steps taken to minimize the detection
of false positives jointly reduce the genomic resolution of our
method. An incompatibility locus can be associated with a
region of about 9 — 15 Mb, depending on whether we opti-
mize for power or resolution. Nevertheless, most outliers are
found much closer to the incompatibility locus itself (fig. 4).
For example, in the default case we examined, outliers were
located within 1.4 Mb of the incompatibility locus on average.
The same genome sequence data required for our method
can be used to further refine the location of incompatibility
loci. We expect incompatibility alleles to be enriched for fixed
differences outside the hybrid zone; scanning parental pop-
ulations for fixed differences or large frequency differences
could be a reasonable filter. Genes with relatively high levels
of nonsynonymous divergence between parental populations
could be prioritized. Searching outlier regions for alleles that
show narrow frequency clines could also localize incompati-
bility loci. Finally, in species with annotated genomes or their
relatives, knowledge of gene function could be used to iden-
tify candidate genes. For example, genes that reduce fertility
when mutated could be good targets for further examination.
Alternatively, our method could be used to suggest new clas-
ses of genes involved in reproductive isolation by searching
for pathways that are enriched across outliers. Confirmation
that a gene participates in an incompatibility will ultimately
require experimental validation (see, e.g, Bozdag et al. 2021),
which is becoming possible for an increasing variety of species
through advances in genome editing.

Several biologically realistic scenarios missing from our
simulation model deserve consideration. In addition to ep-
istatic selection against hybrid incompatibilities, reduced
introgression can result from single-locus selection against
deleterious mutations that accumulate in source popula-
tions with small effective sizes (Harris and Nielsen 2016).
Although our simulations assumed that incompatibility
alleles were fixed in source populations, incompatibilities
are often polymorphic in nature (Cutter 2012). More com-
plex models of migration including structured source pop-
ulations, asymmetrical migration, and migration out of
hybrid populations are likely features of real hybrid zones.
Finally, both hybrid populations and source populations
will routinely depart from mutation-drift equilibrium due
to demographic factors. Examining the extent to which
each of these scenarios produces local distortions in the
SFS of hybrid populations is a logical next step.

Our measurement of method performance also assumed
that sequences could be determined with complete accuracy.
Genotyping error could reduce power and increase the false-
positive rate, especially for low-coverage sequencing, which
can lead to biased reconstructions of the SFS (Han et al. 2014).
We recommend incorporating uncertainty in variant calling
when building the SFS from sequencing reads (Nielsen et al.
2012) before applying our approach.

4626

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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