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Abstract

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recogni-

tion Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons

(IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubi-

quitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its sub-

strate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments,

including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticu-

lum membrane (MAM). However, the regulation of such events remains largely unresolved.

Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly syn-

thesized proteins to the endomembrane system via the Coat Protein complex II (COPII)

transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of

TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA

approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-

terminal IRF3 phosphorylation and dimerization. We further show that the ability of the

TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphory-

late mTOR on serine 2159, a post-translational modification shown to promote mTORC1

signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection

plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratri-

copeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antivi-

ral state. Our study, therefore, identifies TFG as an essential component of the RLR-

dependent type I IFN antiviral response.
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Author summary

Antiviral innate immune response is the first line of defence against the invading viruses

through type I interferon (IFN) signaling. However, viruses have devised ways to target

signaling molecules for aberrant IFN response and worsen the disease outcome. As such,

deciphering the roles of new regulators of innate immunity could transform the antiviral

treatment paradigm by introducing novel panviral therapeutics designed to reinforce anti-

viral host responses. This could be of great use in fighting recent outbreaks of severe acute

respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome

MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. How-

ever, aberrant activation of such pathways can lead to detrimental consequences, includ-

ing autoimmune diseases. Regulation of type I IFN responses is thus of paramount

importance. To prevent an uncontrolled response, signaling events happen in discrete

subcellular compartments, therefore, distinguishing sites involved in recognition of path-

ogens and those permitting downstream signaling. Here, we show TFG as a new regulator

of type I IFN response allowing the efficient organization of signaling molecules. TFG,

thus, further substantiates the importance of the protein trafficking machinery in the reg-

ulation of optimal antiviral responses. Our findings have implications for both antiviral

immunity and autoimmune diseases.

Introduction

The cellular antiviral innate immune response against invading pathogens represents a critical

step in maintaining cell homeostasis and host survival. Thus, understanding molecular deter-

minants governing the optimal organization of the antiviral innate immune response remains

essential to identify novel cellular targets for future antiviral or autoimmune therapies. Gener-

ally, the establishment of such potent antiviral response relies on the detection of viral nucleic

acid by evolutionarily conserved pattern-recognition receptors (PRRs) [1,2]. The recognition

of viral components by PRRs triggers multiple pathways that culminate in the activation of

multiple latent transcription factors, including interferons regulatory factor 3 (IRF3), as well as

nuclear factor κB (NF-κB) [3]. These transcription factors directly enable the expression of

several immunomodulatory genes, including the type I interferons (IFNs-α and IFN-β) and

IFNs-stimulated genes (ISGs) that disrupt viral replication and dissemination, and mobilize

adaptive immunity [4]. Interestingly, only a subset of PRRs can lead to the synthesis of type I

IFNs and subsequent expression of ISGs. These receptors include the endosome localized Toll-

like receptors (TLRs) TLR3, TLR7, TLR8, TLR9, the cytosolic cyclic GMP-AMP synthase

(cGAS) as well as retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), RIG-I, and

melanoma differentiation-associated gene 5 (MDA5) [5–8]. Yet, even if these TLRs are

involved in the detection of extracellular viral nucleic acids of key immune cells, most other

cell types, such as epithelial cells and fibroblasts, rely mainly on cytosolic RLRs to sense RNA

replication intermediates [9–11].

RIG-I and MDA-5 are closely related proteins that belong to the DExD/H Box helicase fam-

ily and represent the most important cytoplasmic sensors for viral RNA [6]. Specifically, RIG-I

is a sensor for 5’-triphosphate-containing short double-stranded (ds)RNA structures from var-

ious single-stranded (ss)RNA viruses including Sendai virus (SeV), hepatitis C virus (HCV),

vesicular stomatitis virus (VSV) and influenza virus [12]. On the other hand, whereas MDA5

shares certain ligands with RIG-I, such as the synthetic polyinosinic:polycytidylic acid (poly(I:

C)), it also detects long dsRNA molecules from different families of viruses such as
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Picornaviridae, Caliciviridae, Coronaviridae [13,14]. Upon binding to viral RNA, RIG-I and

MDA-5 are recruited to the adaptor protein known as mitochondrial antiviral signaling

(MAVS) through homotypic interactions between their caspase recruitment domains

(CARDs) [15]. RIG-I-MAVS interaction leads to the recruitment of different signaling effec-

tors, thus creating a macromolecular signalosome complex that eventually culminates in the

activation of IRF3 [15–19]. Notably, tumor necrosis factor receptor (TNFR)-associated factors

(TRAF) family member TRAF3 has been identified as a major effector of the MAVS down-

stream signaling pathways which activates TANK-binding kinase 1 (TBK1) [20–30]. In this

context, TRAF3 is believed to induce the transautophosphorylation of TBK1 on Ser172 [31,

32], followed by the phosphorylation of IRF3, its dimerization and nuclear translocation

where it rapidly induces the transcription of type I IFN genes and a subset of ISGs [33–36]. In

summary, much has been learned about the effectors of RLR pathways. However, much less is

known regarding how such effectors are functionally recruited to one another to initiate rapid

and efficient signalling following RLR engagement. This could help to understand the way

antiviral networks are incorporated into cellular substructures and stimulate new paradigms

in the field of innate immunity.

Recent studies support the role of subcellular synapses, consisting of physical contact sites

between organelles, in establishing scaffolds for signal transduction in antiviral immunity. The

first evidence that cytosolic RLR signaling may propagate from such interrelated organelles

came from studies of MAVS, a transmembrane adaptor with diverse subcellular localization

including mitochondria, peroxisomes and mitochondrial-associated ER membrane (MAM), an

interface between mitochondria and the ER [37–39]. Depending on its subcellular localization,

it has been proposed that MAVS could sustain multiple signaling pathways [39]. Moreover, the

discovery of new MAVS-interacting type I IFNs mediators, such as STING, suggested a role for

the ER-to-Golgi transport system in innate immunity. Indeed, STING was shown to translocate

from the ER to the ERGIC/Golgi apparatus to eventually associate with TBK1 [40–44]. Interest-

ingly, STING trafficking relies on ER-derived Coat Protein complex II (COPII) vesicle coat pro-

teins allowing its maximal signaling capacities at the ERGIC [43,45–47]. In addition to these

studies, we previously showed that the ER-to-Golgi vesicular transport system serves as an orga-

nizing membrane-rich platform allowing the proper positioning of TRAF3 with MAVS onto

the mitochondria network following virus infection [48]. Other recent studies also propose a

role of ER-to-Golgi trafficking proteins in TRAF3-mediated antiviral signaling events [26] and

a recent study demonstrated the activation of TBK1 at the Golgi apparatus upon viral RNA

sensing [49]. Nevertheless, how cells allow TRAF3 to be recruited to such functional antiviral

subcellular synapses remains largely unresolved. We sought to determine the mechanism

underlying the recruitment of the ER-to-Golgi resident TRAF3 to membrane-bound MAVS for

the formation of functional signalling complex upon viral infection.

Here, our group identified a new role for an ER-to-Golgi resident protein, TRK-Fused Gene

(TFG), as a TRAF3-interacting protein that positively regulates the RLR-dependent type I IFN

antiviral response. TFG was first identified as a fusion partner of the nerve growth factor (NGF)

receptor (NTRK1) that generates the papillary thyroid TRK-T3 oncogene following chromo-

somal arrangement [50]. Subsequently, several other oncogenic fusion proteins involving TFG

have been reported [51]. While its molecular function is just starting to be unveiled, the current

model suggests that TFG functions in intracellular protein trafficking by regulating the integrity

of the ER-Golgi interface [52,53]. It has been shown that TFG promotes the organization of ER

exit sites and allows clustering of COPII vesicles between the ER and the ERGIC, allowing rapid

movement of secretory cargoes as well as promoting outer coat disassembly of COPII carriers at

the ER/ERGIC interface [54–56]. Our results detail the functional role of TFG in innate immu-

nity as an ER-to-Golgi resident protein which allows TRAF3 to interact with upstream adapter
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protein MAVS and downstream kinase TBK1 resulting in activation of TBK1 upon viral infec-

tion. Moreover, we demonstrate that TBK1 also associates and phosphorylates mTOR on serine

(Ser) 2159 upon RLR engagement in a TFG-dependent manner. Our study, therefore, identifies

TFG as an essential component of type I IFN antiviral response.

Results

TFG interacts specifically with TRAF3 and localizes on the ER-to-Golgi

compartments

Our group previously identified probable TRAF3-interacting proteins that could be implicated

in antiviral innate immunity through a functional proteomics approach based on FLAG affin-

ity purification and mass spectrometry analysis (AP-MS), and functionally characterized inter-

actions of TRAF3 with Sec16A and USO1 (also known as p115), components of the ER-to-

Golgi vesicular pathway [48]. This screen identified TFG as one of the most prevalent protein

in TRAF3-immunocomplexes (Fig 1A). Therefore, to confirm the physical interaction between

TRAF3 and TFG, we performed co-immunoprecipitation experiments and we found that

ectopically expressed tagged versions of TFG were part of immunocomplexes containing

TRAF3 in the human embryonic kidney (HEK) 293T cells (Fig 1B and 1C). To further sub-

stantiate the subcellular proximity between these proteins in a context in which cell integrity is

not altered, confocal microscopy experiments were done. Ectopically expressed or endogenous

TFG indeed colocalized with FLAG-TRAF3 in HeLa cells (Fig 1D and S1 Fig).

The adaptor proteins from the TRAF family are known regulators of multiple receptors

including TNFR, interleukin-1 receptor (IL1R), and TLRs. They are known to bridge intracel-

lular domains of these receptors to downstream effectors in the inflammatory and innate

immune signaling pathways. TRAFs contain a C-terminal TRAF domain and often share com-

mon interacting partners. Indeed, TRAF2, TRAF3 and TRAF6 were shown to interact with

MAVS [19,22,24,57]. Consequently, to verify the possible binding of TFG with other members

of the TRAF family, we co-immunoprecipitated ectopically expressed Myc-TFG along with

FLAG-tagged TRAF2, TRAF3 or TRAF6 in HEK293T cells. Only FLAG-TRAF3 was recovered

from Myc-TFG complexes thereby confirming the selectivity of their interaction (Fig 1E).

Thus, TFG seems to accumulate in a perinuclear region (Fig 1D) where it can specifically inter-

act with TRAF3. Our group previously observed that TRAF3 mainly colocalizes with markers

of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-

Golgi apparatus [48]. To define the subcellular organization of TFG, we performed a set of

confocal microscopy experiment between TFG and different markers of perinuclear compart-

ments at the endogenous level (Fig 2). TFG was recently shown to localize on the ER-to-Golgi

compartments where it interacts with Sec16A to control the export of cargoes from the endo-

plasmic reticulum [51,55,58]. We were able to further substantiate these observations by co-

labeling HeLa cells with polyclonal α-TFG antibodies and monoclonal antibodies directed

against endogenous markers for sites of COPII vesicle formation on the ERES, namely Sec16A

and Sec31A, but also with ERGIC-53, which accumulates on ERGIC (Fig 2A and 2B and S2

Fig) [59–61]. Additionally, a fraction of native TFG is also found to overlap with the cis-Golgi

marker GM130 and the early endosome marker EEA1 (Fig 2A and S2 Fig) [62,63].

TFG is essential for the formation of the MAVS-TRAF3-TBK1 complex

and activation of TBK1 upon RLR activation

As aforementioned, TRAF3 is an essential player of the type I IFN arm of the RLR-dependant

antiviral response. Upon viral infection, together with TBK1, TRAF3 transits from the
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perinuclear region onto MAVS-containing supramolecular complexes and promotes signaling

events leading to TBK1 activation [38,48]. Exogenous overexpression of tagged-proteins can

overwhelm the trafficking machinery, potentially affecting subcellular dispersion of proteins

and leading to their mislocalization [64]. Therefore, we also performed co-immunoprecipita-

tion of the endogenous proteins to further characterize the dynamics of interaction between

TFG and TRAF3 upon viral infection. Interestingly, upon SeV infection or stimulation with

Poly(I:C), TRAF3 recruitment to TFG-containing immunocomplexes was further increased

compared to that in control cells, plateauing at 4h for poly(I:C) transfection and increasing

between 8 to 24 h post infection with SeV (Fig 3A and S3A Fig). Additionally, the TRAF3 sub-

strate TBK1 was also recruited to TFG upon viral infection or stimulation with Poly(I:C) (Fig

3B). Previous studies showed that infection of HEK293T cells with SeV enhanced the interac-

tion of TRAF3 with both its upstream regulator MAVS and downstream effector TBK1

[65,66]. We next sought to determine if TFG could be part of the TRAF3-containing signaling

platform near MAVS. To do so, we performed confocal microscopy experiments between

endogenous TFG and MAVS to assess their possible proximity within the cell. Interestingly, a

pool of TFG appeared to be in close proximity to MAVS protein, probably on an interface

between the ER and mitochondria, in uninfected cells. This close proximity intensifies in cer-

tain points early after SeV infection and poly(I:C) stimulation with a subset of TFG localizing

with MAVS (Fig 3C and S4 Fig). Of note, upon stimulation with poly(I:C), a potent ligand for

RLR, MAVS polymerized into dense punctae compared to mock infected cells (Fig 3C) [67].

TFG also appeared to be loaded on a subset of these punctae, thereby suggesting that TFG is

indeed part of the MAVS signalosome complex. In summary, our data suggest that TFG local-

izes with COPII vesicle markers, which transit from the ERES to the ERGIC en route to cis-

Golgi compartments [68], but also with the mitochondria where it could regulate antiviral sig-

nalling events owing to its ability to interact with TBK1 and TRAF3.

We next tested whether TFG could be involved in the organization of MAVS signalosome

networks upon viral infection. To this end, we examined the ability of TRAF3 to interact with

both MAVS and TBK1 upon viral infection in HEK293T cells in which endogenous TFG was

knocked down with a TFG-specific short interfering RNA (siRNA, siTFG). Cells transfected

and expressing a non-targeting control siRNA (siNT) served as control. Depletion of endoge-

nous TFG by two unrelated siRNAs reduced the extent of recruitment of TRAF3 to MAVS

and TBK1 triggered by SeV infection (Fig 4A and 4B). Moreover, consistent with previous

reports showing the recruitment of TRAF3 to MAVS as an important process leading to down-

stream signaling, the silencing of TFG also blunted the activating transautophosphorylation of

TBK1 on Ser172 (p-TBK1 Ser172) normally observed upon viral infection (Fig 4B).

As mentioned previously, IRF3 is a critical mediator of type I interferons response follow-

ing viral infection. In fact, TBK1 mediates the phosphorylation-dependent dimerization of

Fig 1. TFG interacts and colocalizes specifically with TRAF3. (A) HEK293T cells were stably transfected with pcDNA3-FLAG-TRAF3 or pcDNA3-FLAG

alone. After G418 selection, cells were lysed and subjected to AP/MS as described here [48]. Data for TFG, which was undetected in control experiments,

represent previously unpublished information from two biological replicates. MS; mascot score, TP; average total number of peptides (spectral counts)

identified, UP; number of unique peptides observed. (B-C) HEK293T cells were transiently transfected with empty vector (-) or with vectors encoding

FLAG-tagged TRAF3 (FLAG-TRAF3) together with Myc-tagged TFG (Myc-TFG) or FLAG-tagged TFG (FLAG-TFG) together with Myc-tagged TRAF3

(Myc-TRAF3). FLAG-tagged proteins were immunoprecipitated (IP) and analysed with anti-FLAG (M2) or anti-Myc (A-14) antibodies. Whole cell extracts

(WCE) were also analyzed in parallel. Data represents representative results from at least 3 independent experiments. (D) HeLa cells were transfected with

FLAG-TRAF3 encoding plasmids before being fixed, permeabilized and immunostained with anti-FLAG (M2) or anti-TFG antibodies. Nuclei were labeled

with DAPI. Cells were then visualized by confocal microscopy. Scaling bars represent identified length. All images for all panels were representative of at

least two independent experiments in which cells were examined and displayed similar staining. (E) HEK293T cells were transfected with empty vector (-)

or with vectors encoding Myc-tagged TFG (Myc-TFG) together with FLAG-tagged TRAF2, TRAF3 or TRAF6. Myc-TFG was immunoprecipitated and

subjected to immunoblot analysis using anti-Myc (A-14) and anti-FLAG (M2) antibodies. WCE were also analyzed in parallel. Data represents

representative results from at least three independent experiments.

https://doi.org/10.1371/journal.ppat.1009111.g001
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Fig 2. TFG accumulates within ER-to-Golgi compartments. (A) HeLa cells were immunostained for endogenous TFG along with different markers of the ER-to-

Golgi associated compartments including Sec31A, ERGIC-53, GM130 and EEA1. Nuclei were labeled with DAPI. Cells were then visualized by confocal microscopy.

Scaling bars represent identified length. (B) HeLa cells were transfected with FLAG-TFG encoding plasmids before being fixed, permeabilized, and immunostained

with anti-FLAG (M2) or anti-Sec16A antibodies. Nuclei were labeled with DAPI. Cells were then visualized by confocal microscopy. Scaling bars represent identified

length. All images for all panels were representative of at least two independent experiments in which cells were examined and displayed similar staining.

https://doi.org/10.1371/journal.ppat.1009111.g002
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Fig 3. TFG is part of MAVS-TRAF3-TBK1 molecular complex upon activation of intracellular RNA sensors. (A, B) Whole cell extracts (WCE) were prepared from

HeLa cells subjected to SeV infection or transfected with Poly(I:C) for indicated times and were then immunoprecipitated using antibodies directed against endogenous

TFG before being immunoblotted for the presence of endogenous TRAF3 (A) and TBK1 (B). WCE were also immunoblotted in parallel. Immunoblots shown are from

a single experiment and are representative of at least three independent experiments. Input-normalized TRAF3 and TBK1 densitometric signal is shown below the blot.

(C) HeLa cells were either infected by SeV for 4h or transfected with Poly(I:C) for 4h before being fixed, permeabilized and immunostained with anti-MAVS or anti-

TFG antibodies. Nuclei were labeled with DAPI. Cells were then visualized by confocal microscopy. Scaling bars represent identified length. White arrows represent

sites of close proximity (NS) or colocalization (SeV and Poly(I:C)) between MAVS and TFG. All images for all panels were representative of two (Poly(I:C) or three

(SeV) independent experiments in which cells were examined and displayed similar staining.

https://doi.org/10.1371/journal.ppat.1009111.g003
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IRF3, allowing it to properly bind with response elements sites within IFN promoters. To eval-

uate more precisely the role of TFG in downstream signaling of TRAF3, we followed post-

translational modifications of TBK1 and IRF3 as biomarkers of TBK1 activity. TFG knock-

down led to a decrease of SeV-induced phosphorylation of TBK1 and homodimerization of

IRF3 compared to siNT treated HeLa cells (Fig 5A and S3B Fig). To further confirm the

involvement of TFG in regulating TBK1 and IRF3 activation in a primary cell type, we used

primary MRC-5 fibroblasts in which endogenous TFG was selectively knocked down using a

short hairpin RNA (shRNA) approach (shTFG). Importantly, altering the expression of TFG

by three shRNA constructs led to a decrease in the SeV-induced phosphorylation of both

TBK1 (Ser172) and its substrate IRF3 (Ser396) (Fig 5B and S3C Fig). IRF3 plays a significant

role in host survival following viral infection [69,70]. Indeed, besides its essential role in the

induction of IFN-β, IRF3 contributes to the expression of different antiviral proteins, including

ISG15, ISG54, ISG56 by binding to interferons-sensitive response elements (ISRE) present

within the promoter region of these genes [71–73]. We further substantiated the function of

TFG by measuring the expression of these IRF3-regulated antiviral ISGs in infected cells via

western blot analysis. Infection of HeLa cells and primary MRC-5 fibroblasts with SeV led to

the TFG-dependent production of detectable amounts of ISG15, ISG54 and ISG56 proteins

(Fig 5B and 5C). Consistently, the induction of IRF3-regulated genes IFNB1, IFIT2 (ISG54),

IFIT1 (ISG56), ISG15, RSAD2 (Viperin), CXCL10, IFNL1, IFNL2 and IFNL3 in response to

SeV infection was decreased following the knockdown of TFG by two different shRNA con-

struct in primary MRC-5 fibroblasts (Fig 6A). To corroborate this finding, IFN-β production

Fig 4. TFG is required for the formation of MAVS-TRAF3-TBK1 complex upon cytosolic RNA sensor activation. (A-B) Co-immunoprecipitation experiments were

carried using HEK293T previously transfected with indicated siRNA followed by SeV infection. TRAF3 was immunoprecipitated from the prepared whole cell extracts

(WCE) using antibodies directed against endogenous TRAF3 (anti-TRAF3 H-20) or isotype control antibodies (IgG) before being immunoblotted for the presence of

endogenous MAVS and TBK1. WCE were also immunoblotted with the indicated antibodies. Immunoblots shown are from a single experiment and are representative

of two independent experiments. Input-normalized densitometric signal of MAVS and TBK1 was divided by Input-normalized TRAF3 signal and shown below the blot.

https://doi.org/10.1371/journal.ppat.1009111.g004
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Fig 5. TFG is required for the activation of TBK1 and downstream signalling upon cytosolic RNA sensor activation. (A) HeLa cells previously treated with non-

targeting siRNA (-) or siRNA targeting TFG (siTFG #1) were left uninfected or infected with SeV for indicated time. Whole cell extracts (WCE) were used in

immunoblot analysis with indicated antibodies. The same WCE were used in native-page under non-denaturing conditions to evaluate IRF3 dimerization. (B) MRC-5

fibroblasts were infected with different lentiviral vectors encoding different TFG-targeting shRNA (shTFG #1, 2 or 3) or a nontargeting (NT) control shRNA (shNT) and

then subjected to puromycin selection as described in Materials and Methods. Cells were then left uninfected or infected with SeV for the times indicated. WCE were

harvested and used in immunoblot analysis with indicated antibodies. β-actin was used as a loading control. These results are representative of at least three independent

experiments with similar results. (C) WCE generated in (A) were used in immunoblot analysis with indicated antibodies. β-actin was used as a loading control. These

results are representative of at least three independent experiments with similar results.

https://doi.org/10.1371/journal.ppat.1009111.g005
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was evaluated by ELISA. Upon virus infection, siRNA-mediated silencing of TFG in HeLa

cells markedly decreased production and secretion of IFN-β (Fig 6B). Thus, TFG expression in

cells is important for the production of antiviral proteins following viral infection with an

RNA virus. We observed no effect on the phosphorylation of TBK1 in TFG-silenced cells in

response to DNA sensor agonists, including poly dA:dT, ISD, cGAMP and VACV-70 (S5 Fig).

TFG is essential for the phosphorylation of mTOR on Ser2159, a putative

TBK1 phosphoacceptor site

In addition to IRF3, TBK1 also targets many other substrates involved in antiviral innate

immune response [74]. Notably, a recent study showed that the phosphorylation of mTOR on

Ser2159 by TBK1 activates the mTORC1 complex, a process required for the nuclear transloca-

tion of IRF3 and the production of IFNβ upon TLR3 and TLR4 stimulation [75]. Studies have

demonstrated a preferred TBK1 consensus site on known TBK1 substrates; the most striking

being a preference for a hydrophobic amino acid (L or F) in the +1 position in the -S-x-x-x-pS

(L/F)- amino acid sequence context [76]. Strikingly, Ser2159, in the mTOR kinase domain,

perfectly fits this consensus (Fig 7A). Using in vitro kinase assays with recombinant TBK1 and

immunoprecipitated mTOR, we document the phosphorylation of mTOR on Ser2159 (Fig

7B). Accordingly, when mTOR was co-expressed with WT Flag-TBK1 or its kinase dead ver-

sion K38A, site-specific phosphorylation signal on Ser2159 was observed in WT TBK1

expressing cells which was decreased in K38A cells. Activation of mTORC1 signaling module

was evident in TBK1 expressing cells through an increase in phosphorylation of p70S6K

Thr389, a known mTORC1 substrate (Fig 7C). Since it was still unknown whether this novel

paradigm in antiviral signaling occurs upon RLR engagement, we next addressed the phos-

phorylation of mTOR on Ser2159 in cells infected with SeV. To confirm that this modification

of mTOR occurs independently of the activation of IFN receptors and the secreted IFNα/β, we

verified if this molecular event occurred in the IFN non-responsive HEC-1-B cell line [77–79].

In serum-deprived cells, SeV infection caused a sustained increase of mTOR on Ser2159 (Fig

7D). The use of the selective TBK1 ATP-competitor inhibitor MRT67307 [80] showed that the

virus-induced phosphosignal was dependent on TBK1 catalytic activity (Fig 7E and 7F).

Importantly, this modification of mTOR was also observed in primary fibroblasts infected

with SeV (Fig 7G). To better describe molecular events underlying mTOR activation down-

stream of TBK1, we sought to determine how TBK1 engages with mTOR during viral infec-

tion. Selective activation of mTOR at the lysosomes is obviously a possibility due to its

lysosomal localization [81]. However, recent observations rather imply that Rheb-GTPases-

induced mTOR activation occurs in a membrane-rich environment from multiple organelles

[82]. Since TFG localizes within the ER-to-Golgi compartments (Fig 2), we next verified if

mTOR could exist in complex with TFG. Interestingly, endogenous mTOR and TBK1 exist in

TFG and TRAF3 immunocomplexes and their interaction increases following SeV infection in

HEK293T cells (Fig 8A and 8B). Furthermore, the ability of TRAF3 to associate with mTOR,

and TBK1 following SeV infection as well as the virally induced Ser 2159 phosphosignal

require the presence of TFG (Fig 8C and 8D).

mTORC1 activation controls ISG expression without affecting the

phosphorylation, dimerization and nuclear accumulation of IRF3

mTOR phosphorylation on Ser2159 induces the activation of mTORC1 and promotes mTOR-

C1-associated mTOR S2481 autophosphorylation [83]. In the RLR pathway, we also document

mTORC1 activation in SeV-infected cells, as measured through the increased phosphorylation

of mTOR on Ser2481 and/or phosphorylation of p70S6K on Thr389 (Figs 7F, 9A and 9B),
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molecular events that are blunted by the use of Ku-0063794, a highly potent and selective

mTOR inhibitor. However, whereas the use of the inhibitor affected the expression of antiviral

proteins under the direct control of IRF3 (ISG54, ISG56, Viperin) and type I/III IFNs (IRF7)

other ISGs such as RIG-I were less affected. The use of the mTOR inhibitor neither change the

induction of the respective mRNA levels (S6 Fig) nor affected the phosphorylation-dependent

dimerization of IRF3 (Fig 9A and 9B). Moreover, the use of the mTOR inhibitor Ku-0063794

or the mTORC1 inhibitor rapamycin did not affect the ability of IRF3 to accumulate into the

nuclear compartment following the infection of primary fibroblasts with SeV (Fig 9C and S7A

Fig). Furthermore, whereas ectopically expressed mTOR synergized with the constitutively

active version of RIG-I to induce the activation of the mTORC1 substrate p70S6K (S7B Fig,

compare lanes 7 and 9), the mTOR S2159A mutant showed a dominant-negative effect (com-

pare lanes 7–8 and lanes 9–10). Under these conditions, the nuclear accumulation of IRF3 was

not affected following activation of the cGAS or RIG-I antiviral signaling pathways.

Altogether our data suggest that upon RIG-I activation, TFG acts as a signaling hub through

which TRAF3-associated TBK1 leads to the phosphorylation of not only IRF3 but also mTOR

on Ser2159 which leads to mTORC1 activation and a proper antiviral response.

Silencing of TFG expression compromises the establishment of an antiviral

state during virus infection

We next determined the importance of TFG expression on the replication of VSV, which is

sensed by RIG-I [14]. In fact, by using a functional antiviral assay involving a modified version

of VSV expressing a GFP-tagged protein (VSV-GFP), it is possible to monitor the extent of

viral replication and infection. HeLa cells in which TFG was silenced using four different

siRNA exhibited substantially enhanced VSV-GFP infection rates compared to those of cells

expressing siNT, as shown in fluorescence microscopy (Fig 10A). Using one of the siRNA

duplexes, the observed decrease in the antiviral response in fluorescence microscopy or semi-

quantitative western blot analysis was reproduced using multiple multiplicity of infection

(MOI) (Fig 10B). Similarly, primary MRC-5 fibroblasts expressing TFG-targeting shRNAs

were more sensitive to VSV challenge (Fig 10C). In summary, these loss-of-function experi-

ments demonstrate that TFG expression is important for an adequate antiviral response

through its interaction with different players of the antiviral response.

Together, these results suggest that TFG sustains RLR-signaling pathways by enabling an

efficient organization of important mediators that result in the activation of TBK1 following

the activation of MAVS. TFG is further required for downstream signaling events including

phosphorylation of mTOR and IRF3 by TBK1 ultimately resulting in the establishment of an

antiviral state following RLR engagement.

Discussion

The RIG-I-MAVS-TRAF3 axis is recognized as a fundamental signaling pathway leading to

rapid and potent antiviral host response to viral infection. An emerging paradigm proposes

Fig 6. TFG is required for optimal production of ISGs and type I IFN secretion upon viral infection. (A) MRC-5 fibroblasts were

infected with different lentiviral vectors encoding different TFG-targeting shRNA (shTFG #1, 2 or 3) or a nontargeting (NT) control shRNA

(shNT) and then subjected to puromycin selection as described in Materials and Methods. Cells were then left uninfected or infected with

SeV for the indicated times. RNA was extracted and analyzed by RT-qPCR for indicated gene expression. Mean values and SD of biological

triplicates are shown � Significantly below the induction response; � P<0.05, �� P<0.01, ��� P<0.001, ���� P<0.0001. RQ, relative

quantification. N.D, Not detected. (B) HeLa cells previously treated with non-targeting siRNA (-) or siRNA targeting TFG (siTFG #1) were

left uninfected or infected with SeV for indicated time. Supernatants were collected post-infection and analyzed for IFN-β by ELISA. Mean

values and SD of biological triplicates are shown (��� P-value< 0.001).

https://doi.org/10.1371/journal.ppat.1009111.g006
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that RLRs are dependent on the cellular trafficking machinery to link virus sensing sites to sig-

nal transducing hub within the cell [84–86]. Whereas the regulated transport of RLRs to their

cognate sorting adaptors represents a new critical checkpoint for innate immune signal trans-

duction, much less is known concerning the events leading to the recruitment and the organi-

zation of downstream effectors. Here, we present the role of TFG as an essential component of

MAVS-TRAF3-TBK1 signaling complex. Its subcellular localization allows efficient recruit-

ment of TRAF3 to its upstream adaptor MAVS, permitting the activation of downstream

kinase TBK1. Interestingly, TFG also allows the positioning of mTOR with TRAF3-TBK1

complex resulting in mTOR phosphorylation on Ser2159. Phosphorylation of IRF3 and

mTOR by TBK1 is followed by the subsequent expression of type I IFNs and ISGs (Fig 11).

Whereas conflicting reports regarding TFG’s role in RLR and TLR3-induced type I IFN antivi-

ral signaling exist [87,88], our study clearly demonstrates mechanistic details of a positive

molecular role of TFG in organizing antiviral responses upon RLR activation in multiple cell

types.

Since VSV is a well-established IFN-sensitive virus [89,90], we confirmed the importance of

TFG expression in the ability of cells to prevent VSV replication and dissemination using

RNAi approaches. Confirming this notion, ELISA experiments showed the critical role of TFG

in IFN-β expression/secretion. Likewise, subsets of IRF3-regulated ISGs expression following

SeV infection was decreased compared to their cognate TFG-expressing controls. As such,

these experiments using the RIG-I-sensed VSV and SeV reveal a potential role of TFG in RLR

signaling pathways. However, the precise level at which TFG plays its role was still unknown.

A previous study identified TRIM25, a known regulator of RIG-I, as a TFG-interacting partner

suggesting a role of TFG in RLR signaling [87]. However, it was recently shown that Riplet,

but not TRIM25, is required for endogenous RIG-I-dependent antiviral response [91].

TRIM25 can also promote K48-linked ubiquitination and degradation of target proteins,

including MAVS [92–94]. Importantly, studies have shown that during RNA virus infection,

expression of MAVS diminishes over time [39,92]. Paradoxically, this loss of MAVS expression

appears to positively regulate antiviral signaling, as this loss immediately precedes the phos-

phorylation of IRF3. Thus, even though TFG interacts with TRIM25 [87], it appears to play

downstream MAVS activation. Indeed, MAVS degradation pattern upon SeV infection was

unchanged in TFG-silenced HeLa cells (Fig 4A). On the other hand, TFG-depletion directly

affected the autophosphorylation of TBK1 within its activation loop on Ser172 and subsequent

IRF3 activation, thereby proposing a role for TFG in RLR pathway downstream MAVS signal-

ing (Figs 4B and 5). Moreover, we observed that knockdown of TFG in HeLa cells further

affected IRF3 phosphorylation in conditions where MAVS degradation was avoided by

Fig 7. TBK1-dependent phosphorylation of mTOR on Ser2159 during viral infection. (A) Phosphorylation and sequence alignment of different

substrates of TBK1 reveal a conserved consensus site. The TBK1 phosphorylation consensus sequence is composed of a central serine that is surrounded

by a hydrophobic residue (L/F/M) at the +1 position relative to the phosphorylation site and a polar uncharged side chain (S/T) at the -4 position. TBK1

autophosphorylation at Ser172 closely follows this consensus except for the -4 residue which is represented by a negatively charged side chain. (B)

FLAG-GFP and FLAG-mTOR were immunoprecipitated (IP) with FLAG M2 antibody from transfected HEK 293T cells. In vitro kinase assay was

conducted by adding indicated amount of recombinant TBK1 and radiolabeled ATP and incubating at 30˚C for 30 min followed by detection with

autoradiography and immunoblot using indicated antibodies. Data represents representative results from at least 2 independent experiments. (C) HeLa

cells were transfected with FLAG- GFP, FLAG-TBK1 and FLAG-TBK1(K38A) mutant. Next day, the media was changed with serum free media for 30h

and whole cell extracts (WCE) were subjected to immunoblot analysis with indicated antibodies. Data represents representative results from at least 2

independent experiments. (D, G) HEC-1-B (D), and MRC-5 (G) cells were serum starved for 30h and then left uninfected or infected with SeV for

indicated time. WCE were subjected to immunoblot analysis with indicated antibodies. (E, F) HEC-1-B (E), and HeLa (F) cells were serum starved for

30h and then incubated with DMSO and a specific TBK1 inhibitor (MRT67307; 2μM) for 2h before infection with SeV for 16h under the continuous

presence of DMSO or inhibitor. WCE were subjected to immunoblot analysis with indicated antibodies. Data represents representative results from at

least 2 independent experiments.

https://doi.org/10.1371/journal.ppat.1009111.g007
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Fig 8. TFG is required for the proper positioning of mTOR with TBK1-TRAF3 complex as well as its phosphorylation on Ser2159, the

putative TBK1 phosphoacceptor site. (A) Co-immunoprecipitation (IP) experiments from whole cell extracts (WCE) prepared from HEK293T

cells infected with SeV using antibodies directed against endogenous TFG and immunoblotted for the presence of endogenous mTOR and TBK1.

WCE were also immunoblotted with the indicated antibodies. Immunoblots shown are from a single experiment and are representative of three

independent experiments. (B) Co-IP experiments from WCE prepared from HEK293T cells following SeV infection using antibodies directed

against endogenous TRAF3 and immunoblotted for the presence of endogenous mTOR, MAVS and TBK1. WCE were also immunoblotted with

the indicated antibodies. Immunoblots shown are from a single experiment and are representative of three independent experiments. (C) Co-IP

experiments were carried out from HEK293T WCE previously treated with indicated siRNA followed by SeV infection using TRAF3 antibody.

The same WCE were also used in immunoblot analysis with indicated antibodies. Immunoblots shown are from a single experiment and are

representative of two independent experiments. (D) Following the depletion of TFG, HeLa cells were infected with SeV for the indicated time.

WCE were subjected to immunoblot analysis using the indicated antibodies. N.B: Data from Fig 8C was obtained simultaneously with that for Fig

4B. It was separated for clarity of presentation. Hence, the data are the same, except for the presentation of the immunoblot for mTOR.

https://doi.org/10.1371/journal.ppat.1009111.g008
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Fig 9. Implication of mTOR in the induction of selected sets of Interferon-Stimulated Genes (ISGs) during RLR signaling. Serum starved HeLa cells (A) or primary

MRC5 fibroblasts (B) were pretreated with 0.5 μM Ku-0063794, a highly selective mTOR inhibitor, or vehicle for 30 minutes and then left uninfected or infected with

SeV (200 HAU/ml) for the indicated times in the continuous presence of the drug. Whole cell extracts (WCE) were subjected to immunoblot analysis using the indicated

antibodies. (C) Serum starved primary MRC5 fibroblasts were treated as described above. Crude nuclear and cytoplasmic fractions were prepared and subjected to

immunoblot analysis using the indicated antibodies. Immunoblots shown are from a single experiment and are representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1009111.g009
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pretreatment of cells with the proteasome inhibitor MG132. Altogether, these results suggest

that TFG acts downstream of MAVS activation and degradation.

TBK1 functions in multiple signaling pathways, including type I IFN antiviral response and

autophagy [95–97]. Growing evidence also revealed the aberrant TBK1 activity in a variety of

autoimmune diseases and cancers [74,98]. As such, numerous regulatory mechanisms exist to

prevent TBK1 activation in the absence of pathway stimulation [97]. The main molecular

event that controls TBK1 activity is the phosphorylation of the catalytic serine residue in the

activation T-loop at position 172 (Ser172) [99,100]. Existing in a dimeric assembly in a config-

uration limiting its transautophosphorylation [101,102], TBK1 requires K63-linked polyubi-

quitination modification to become active [32,103]. In RLR signaling, several E3 ligases were

shown to be involved in such ubiquitination, including TRAF3 [31]. Moreover, another regu-

latory mechanism controlling the activation of TBK1 is the presence of scaffold proteins like

TANK and NEMO bringing TBK1 and TRAF3 together onto MAVS complex [104]. However,

how such movements of proteins are regulated remains unsolved. We identify TFG as being

part of a molecular complex comprised of at least MAVS, TRAF3 and TBK1 and requirement

of TFG in the interactions of TRAF3 with TBK1 and MAVS upon viral infection (Figs 3, 4 and

8). Mechanistically, we propose that TFG allows TRAF3 to recruit TBK1 to MAVS where, fol-

lowing its activation by TRAF3 [31], TBK1 contributes to the phosphorylation of MAVS and

the subsequent recruitment and phosphorylation of IRF3 [105]. Interestingly, TFG was previ-

ously shown to physically interact with both TANK and NEMO, further implying a role of

TFG in TBK1-mediated IRF3 activation [106]. Since NEMO is an adaptor protein promoting

crosstalk between NF-κB and IRF signaling pathways [104] and given its interaction with

TFG, a role of TFG in the activation of NF-κB cannot be excluded.

With accumulating evidence of the role of cellular trafficking machinery in multiple signal-

ing pathways, it is now well-known that several organelles house and transport cellular signal-

ing molecules [107–111] and thus, they may act as signaling hubs for crosstalk between

multiple cell signaling pathways. Here, we present the crosstalk of mTOR and RLR-signaling

pathways by demonstrating the requirement of TFG for the interaction of TRAF3 and TBK1

with mTOR upon viral infection. The importance of the RLR-dependent association of

TRAF3 with mTOR observed here is possibly a hallmark in the ability of infected cells to pro-

duce type I IFN. In fact, it was recently discovered that mTOR and TRAF3 constitutively asso-

ciate in plasmacytoid dendritic cells, the major producers of IFN-α in response to virus

exposure [112]. Within the mTORC1 complex, mTOR can be phosphorylated on several acti-

vating residues, Ser2159 being one of them [83]. The phosphorylation of this phosphoacceptor

site by TBK1 has recently been reported to activate mTORC1 signaling upon TLR3/TLR4

engagement and is required for the nuclear translocation of IRF3 [75]. How TBK1 engages

mTOR was however not addressed. Our data demonstrate that TFG is important for TBK1-

dependent activation of mTORC1 signaling following RLR engagement during SeV infection.

Fig 10. Knockdown of TFG increases viral replication and dissemination. (A) HeLa cells were treated with siNT or with four different siTFG

constructs. Cells were then infected with VSV-GFP for 16h at an MOI of 0.1 and monolayers were analysed with an inverted fluorescence

microscope. Observation from one experiment out of three experiments is shown. Quantification of fluorescence from 3 independent biological

replicates is shown below the images. Mean values and SD of pooled data are shown (� P-value< 0.05; ��� P-value< 0.001). (B) HeLa cells were

treated with siNT or with siTFG #1 before being infected with VSV-GFP for 16h at indicated MOI. Monolayers were analyzed by fluorescence

microscopy before whole cell extracts (WCE) were prepared. WCE were then immunoblotted with indicated antibodies. (C) MRC-5 fibroblasts

were infected with different lentiviral vectors encoding different TFG-targeting shRNA (shTFG #1, 2 or 3) or a nontargeting (NT) control shRNA

(shNT) and then subjected to puromycin selection. Cells were then infected with VSV-GFP for 16h at an MOI of 0.01. and monolayers were

analysed with an inverted microscope. Then, the extent of VSV-GFP infection was further analysed by quantifying GFP-positive cells by flow

cytometry. Data were pooled from three independent experiments and are expressed relative to their cognate shNT control from each experiment

to account for day-to-day variation. Mean values and SD of pooled data are shown (� P-value< 0.05; ��� P-value< 0.001).

https://doi.org/10.1371/journal.ppat.1009111.g010
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Fig 11. Proposed unified model representing the implication of TFG in the organization of RLR-dependent antiviral innate immunity. The ER-to-Golgi vesicular

transport system serves as an organizing membrane-rich platform allowing the organization of RLR-dependent antiviral innate immunity. TFG is involved in optimizing

COPII assembly at the ERES and disassembly at the ER/ERGIC interface (pink vesicles located between the RER and ERGIC). TFG thereby enables an efficient export of

proteins from the ER to other organelles. Possibly through its ability to self-associate and to generate larger polymers, TFG also allows the proper positioning of essential

effectors (TRAF3, TBK1) with MAVS onto an interface between mitochondria and ER-related membranes where they can functionally interact upon viral infection.

These signaling events result in the phosphorylation of IRF3, its dimerization and nuclear translocation where it rapidly induces the transcription of type I IFN genes and

a subset of ISGs. TFG also allows the positioning of mTOR with TRAF3-TBK1 complexes resulting in mTORC1 signaling pathway activation. The translation of a subset

of ISGs mRNA is also under the control of mTORC1 pathway, which is regulated, at least in part, by TBK1. SER: smooth endoplasmic reticulum, RER: rough

endoplasmic reticulum. The model was created using Servier Medical Art templates (www.servier.com) licensed under a CC BY 3.0 license (https://creativecommons.org/

licenses/by/3.0/).

https://doi.org/10.1371/journal.ppat.1009111.g011
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However, further characterization of mTORC1 signaling in antiviral response proposes that it

acts without affecting IRF3 phosphorylation and nuclear translocation. We propose that it is

within the membrane-rich microenvironment of the secretory system (i.e. endomembranes)

that TBK1, in association with TFG, interacts with and phosphorylates mTOR on Ser2159

upon RLR stimulation. Our observations suggest that TBK1 can fine tune the antiviral

response by having two roles in RLR signaling. In addition to its established transcriptional

role through the phosphorylation and activation of IRF3, TBK1 phosphorylates mTOR on

Ser2159 leading to mTORC1 activation and canonical cap-translation of selected mRNAs such

as eIF4E-sensitive transcripts IRF7 [113]. The kinetic of the phosphorylation of mTOR leading

to its activation within the mTORC1 complex and the spatiotemporal regulation of such events

remains unresolved. Interestingly, it was shown that mTORC1 activation could also happen at

the Golgi apparatus [114], where localization of p-TBK1 has recently been reported [49]. How-

ever, the details of the movement of TBK1 between mitochondria and Golgi is not clear. As we

have also observed TFG partially localized to the Golgi apparatus (Fig 2A), it is tempting to

speculate that TFG plays a role in this movement and would be a subject of future studies.

TBK1 is a major effector regulating autophagy and in the context of cellular growth and catab-

olism, it was also proposed to inhibit the mTORC1 pathway [115,116] through phosphoryla-

tion of Raptor on Ser877 [116]. Additional studies, like this one, could pave the way to

understand why TBK1 activates the AKT /mTORC1 pathway under certain situations [117–

119] and repress in others.

This study proposes an important role for the ER-to-Golgi vesicular transport system pro-

tein TFG in allowing the proper positioning of TRAF3 with MAVS, TBK1 and mTOR, which

is required for the establishment and likely the fine regulation of antiviral signaling events.

Future characterization of TFG’s implication in other PRRs-regulated pathways will undoubt-

edly help to appreciate the importance of the trafficking secretory pathway in innate immunity

and autoimmune diseases.

Materials and methods

Cell culture, reagents and antibodies

Human cervical adenocarcinoma (HeLa), human embryonic kidney (HEK) 293T and primary

human fetal lung fibroblast (MRC-5), and THP-1 cell lines were obtained from American

Type Culture Collection (ATCC). All cell lines were maintained according to ATCC’s guide-

lines. HEK293T cells were cultured in high glucose Dulbecco’s Modified Eagle Medium

(DMEM) (Cat# 11995–065; Invitrogen) containing 4 mM L-Glutamine (Cat# G7513, Sigma),

HeLa cells were maintained in low glucose DMEM (Cat# 11885–084; Invitrogen), MRC-5

fibroblasts were cultured in Eagle’s Minimum Essential Medium (EMEM) (Cat# 11095–080;

Invitrogen) complemented to 0.1 mM non-essential amino acid (Cat# 11140–050; Invitrogen)

and to 1 mM sodium pyruvate (Cat# 11360–070; Invitrogen). THP-1 cells were cultured in

RPMI-1640 Medium supplemented with 2-mercaptoethanol to a final concentration of 0.05

mM. All media were supplemented with 10% heat inactivated foetal bovine serum FBS-HI

(Cat# 16000–044; Invitrogen).

Poly (I:C) (1μg/ml) (GE HealthCare) and the DNA sensor agonists (all from Invivogen):

Poly dA:dT (2 μg/ml), ISD (2 μg/ml), cGAMP (5 μg/ml) and VACV-70 (2 μg/ml) were trans-

fected with Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol. Polybrene

and Puromycin were purchased from Sigma. Ku-0063794 and Rapamycin were from Selleck

Chemicals.

Antibodies were obtained from indicated companies: anti-TFG (Cat# IMG-5901A; Novus

Biologicals), anti-FLAG M2 (Cat# F3165; Sigma), polyclonal anti-FLAG (F7125; Sigma), anti-
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Myc 9E10 (Cat# sc-40; Santa Cruz Biotechnology), anti-Myc A-14 (Cat# sc-789; Santa Cruz

Biotechnology), anti-Sec31A (Cat# 612350; BD Biosciences), anti-ERGIC-53 (Cat# 804-

602-C100; Enzo Life Sciences), anti-GM130 (Cat# 610822; BD Transduction), anti-EEA1

(Cat# 610456; BD Transduction), anti-Sec16A (Cat# A300-648A; Bethyl Laboratories), anti-

MAVS (Cat# ALX-804-847; Enzo Life Sciences), anti-TRAF3 G-6 (Cat# sc-6933; Santa Cruz

Biotechnology), anti-TRAF3 H-20 (Cat# sc-948; Santa Cruz Biotechnology) anti-p-TBK1

Ser172 (Cat# 5483, Cell Signaling), anti-TBK1 (Cat# IMG-270A; Novus Biologicals), anti-p-

IRF3 Ser396 (Cat# 4947; Cell Signaling), anti-IRF3 C-20 (Cat# sc-15991; Santa Cruz Bio-

technology), anti-ISG15 (Cat# 2743; Cell Signaling), anti-ISG54 (Cat# NBP1-31164; Novus

Biologicals), anti-ISG56 (Cat# NBP1-32329; Novus Biologicals), anti-Viperin (Cat# ALX-

210-956, Enzo Life Sciences), anti-IRF7 (Cat# sc-9083, Santa Cruz Biotechnology), anti-β-

actin (Cat# A2228; Sigma), anti-α-Tubulin (Cat# T6199; Sigma), anti-GFP (Cat# G8965-

22C; Abcam), anti-p-mTOR-Ser2159 (Cat# ABS79; Millipore-Sigma), anti-mTOR (Cat#

2972; Cell Signaling), anti-p-p70S6K Thr389 (Cat# 9205; Cell Signaling), anti-mouse HRP-

conjugated (Cat# 074–1806; KPL), anti-rabbit HRP-conjugated (Cat# 074–1506; KPL),

anti-goat HRP-conjugated (Cat# 01-13-06; KPL), alexa 488-conjugated anti-mouse (Cat#

A11001; Invitrogen) and alexa 568-conjugated anti-rabbit (Cat# A10042; Invitrogen) sec-

ondary antibodies.

Plasmids constructs, transfections and infections

Plasmids encoding FLAG-TFG and Myc-TFG were produced from TFG cDNAs. TFG cDNAs

were first amplified from the MGC bank collection and then subcloned in pTag2B (FLAG),

pTag3B (Myc) and pMRX vectors. FLAG-TRAF3 and Myc-TRAF3, FLAG-TRAF2 and

FLAG-TRAF6 were obtained as previously described [48]. FLAG-mTOR was a kind gift from

Dr. Philippe Roux (IRIC, Université de Montréal). mTOR S2159A was produced using site-

directed mutagenesis. pCDA3.1-MYC-delta RIG-I (encoding the first 128 a.a. of RIG-I; a con-

stitutively active version of RIG-I) was received from Dr. Rongtuan Lin (McGill University).

pCDNA3.1 FLAG-cGAS and FLAG-STING were gifts from Dr. Daniel Lamarre (Université

de Montréal).

HEK293T cells transfections were carried out using calcium-phosphate precipitation

method unless otherwise stated. HeLa cells were transfected using Lipofectamine 2000 (Invi-

trogen) according to manufacturer’s protocol.

Sendai virus (SeV) was obtained from Specific Pathogen-Free Avian Supply (Charles River

Laboratories). Cells were infected respecting the ratio of 100 HAU/106 cells. GFP-expressing

VSV (VSV-GFP, kindly provided by Dr. Benjamin tenOever, Mount Sinai Hospital, New

York, NY, USA) was propagated in Vero cells and quantified by standard plaque assay as

described here [120], and used at corresponding multiplicity of infection (MOI).

Protein extraction and preparation of cytoplasmic and nuclear proteins

Proteins from whole cell extracts (WCE) were obtained by resuspending cells in conventional

Triton X-100 lysis buffer complemented with protease inhibitors (50 mM Tris, pH 7.4; 150

mM NaCl; 50 mM NaF; 5 mM EDTA; 10% glycerol; 1 mM Na3VO4; 40 mM β-glyceropho-

sphate; 0.1 mM phenylmethylsulfonyl fluoride; 5 μg/ml of leupeptin, pepstatin, and aprotinin;

1% Triton X-100) for 30 minutes on ice before being centrifuged and harvested. Proteins from

WCE were quantified by Bradford protein assay (BioRad) according to manufacturer’s

protocol.

For preparation of cytoplasmic and nuclear fractions, cells were harvested with ice-cold

phosphate-buffered saline (PBS) and lysed by douncing 20 times in 500 μl membrane lysis
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buffer (10 mM, pH 7.9, Hepes, 10 mM KCl, 0.1 mM EDTA, 0.4% Nonidet P-40) containing

protease inhibitors. The homogenate was centrifuged at 500 g for 10 min. The supernatant was

saved as cytosol, and the pellet was saved as crude nuclei. The crude nuclei were washed twice

with 500 μl membrane lysis buffer and resuspended in 20–50 μl of extract buffer (20 mM, pH

7.9, Hepes, 0.4 M NaCl, 1 mM EDTA) and shaken vigorously every 30 s for 15 min, followed

by centrifugation at 15,000 g for 10 min. The supernatants containing nuclear proteins were

saved for subsequent analysis.

Immunoprecipitation, gel electrophoresis and immunoblot analysis

For co-immunoprecipitation assay, 1 mg of WCE were incubated with 1 μg of antibody at 4˚C

overnight on the rotating wheel, while 40 μl of protein A-Sepharose beads suspension were

blocked with 1% BSA buffer. Lysates were then immunoprecipitated with corresponding

sepharose beads at 4˚C for 3 hours. After five washes with protease inhibitors complemented

lysis buffer, immune complexes were recovered from beads with 50 μl 2X sample buffer before

analysis by SDS-PAGE and immunoblotting.

Immunoblots were accomplished according to previously described procedures [121]. Suc-

cinctly, WCE (50 μg) were prepared in 1x sample buffer and separated using sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method and a SE400 electrophoresis

apparatus (GE Health Care). The proteins were transferred onto a nitrocellulose membrane

(BioTrace NT) using Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) according to manu-

facturer’s protocol. Nitrocellulose membranes were then incubated with 5% milk or 5% bovine

serum albumin (BSA; for detection of phosphorylated proteins) for 1h to prevent non-specific

binding of antibodies. For anti-p-mTOR-Ser2159, the membranes were blocked in 3% milk.

The membranes were probed with primary antibodies followed by HRP-conjugated secondary

antibodies raised against the appropriate species diluted in blocking buffer at a final concentra-

tion recommended by manufacturers. Bands were detected with the Western Lightning ECL

kit (Perkin-Elmer). Densitometry analysis was performed using ImageJ 1.53 [122].

For Native-PAGE analysis, non-denaturing (without SDS) conditions were used. 7.5%

native polyacrylamide gels were pre-run using only 25 mM Tris and 192 mM glycine buffer

with corrected-pH of 8.4 in the anode chamber, but containing also 1% deoxycholate in the

cathode chamber for 30 minutes at 40 mA. WCE (20 μg) were diluted in native sample buffer

(62.5 mM Tris-HCl, pH 6.8, 15% glycerol, and bromophenol blue) and ran into native gel for 3

hours at 25 mA using the SE400 electrophoresis apparatus. Transfer and immunoblotting

were accomplished as mentioned above.

Confocal immunofluorescence microscopy

Confocal immunofluorescence microscopy experiments were accomplished as previously

described by us [48]. Briefly, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 20

min before being permeabilized through 5 minute-treatment with 0.1% Triton X-100. Cells

were then washed with PBS (pH 7.2) and blocked with 0.5% BSA in PBS before being probed

with primary antibodies and subsequent secondary fluorophore-conjugated antiserum (Alexa

Fluor 488 and 564). Anti-FLAG antibody (M2, Sigma) was used at 1:1000, anti-FLAG poly-

clonal antibody; 1:400, anti-Myc 9E10; 1:100, anti-Sec31A; 1:100, anti-ERGIC-53; 1:100, anti-

GM130; 1:100, anti-EEA1; 1:100, anti-Sec16A; 1:200, and anti-MAVS; 1:100. Secondary fluor-

ophore-conjugated antiserum (Alexa Fluor 488 and 564) was used at 1:500 in PBS 0.5% BSA.

The nucleus was labeled by 40,6-diamidino-2-phenylindole (DAPI) staining. The confocal

micrographs represent a single optical section (Z-stack) of cells. Images were acquired from a

LSM 510 inverted microscope (Zeiss) combined to LSM v3.2 software (Zeiss). Colocalization
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of labeled protein was assessed by linescan analysis using “Profile” function in the ZEN 3.1

blue software (Zeiss). The pixel intensity in each channel is measured along a line drawn on

the image and is plotted versus distance along the line.

RNA interference

ON-TARGETplus siRNA against TFG mRNA (siTFG) and the non-targeting control (siNT)

were purchased from Dharmacon. siRNA targeting the open reading frame are as follow:

siTFG #1 (Cat# J-016366-08-0002), siTFG #2 (Cat# J-016366-07-0002), siTFG #3 (Cat# J-

016366-06-0002), siTFG #4 (Cat# J-016366-05-0002). Cells were transfected with 40 nM

siRNA using Lipofectamine 2000 at a final concentration of 4 μg/mL and maintained in cul-

ture for 72 hours before analyzing cell extracts. The RNAi Consortium (TRC)/ Mission

shRNA lentiviral vectors targeting TFG (#1: TRCN0000078659; #2: TRCN0000078660; #3:

TRCN0000311703) and non-targeting control (shNT: SHC002) shRNA were purchased from

Sigma. Lentiviral vector production was conducted in HEK293T cells. Cells (3.5 x106 in

100mm dish) were transfected with 6 μg of non-targeting control, specific shRNA along with

1.5 μg pMDLg/pRRE, 1.5 μg pRSV-REV, and 3 μg pVSVg using Lipofectamine 2000 (Invitro-

gen). 16 hours post-transfection, the medium was replaced before being harvested the next

day. Medium containing lentivirus was then filtered through 0.45 μm filter and stored at

-80˚C. Lentiviral titers were determined by limiting dilution assay using HeLa cells as

described [123]. The cells were infected with lentivirus at an MOI of 5 for 24h in the presence

of 8 μg/ml polybrene followed by puromycin selection for 3 days (2 μg/ml) before further

manipulation.

In vitro kinase assay

The phosphotransferase activity of the TBK1 was assayed as described previously [124].

Whole-cell extracts (1000 μg) were incubated with 60 μL protein G-Sepharose beads pre-

adsorbed with FLAG M2 beads overnight at 4˚C. Beads were washed 3 times with ice-cold

lysis buffer and 1 time with kinase assay buffer (20 mM HEPES, pH 7.4, 20 mM MgCl2, 2 mM

dithiothreitol, and 20 μM NaO4). Beads were resuspended in kinase assay buffer containing

100 or 500 ng of recombinant full length human TBK1 (Upstate Biotechnology, Lake Placid,

NY, Cat# 14–628), 20μM of ATP and 20μCi of [γ-32P]ATP. The kinase reactions were incu-

bated at 30˚C for 30 min and stopped by the addition of 5X Laemmli’s sample buffer and heat-

ing at 95˚C for 10 min. The reactions were resolved on 6% SDS-PAGE and the gels were dried

and exposed for autoradiography for imaging with Typhoon scanner 9410 (Amersham Biosci-

ences) or transferred onto a nitrocellulose membrane for immunoblot analysis.

RNA isolation and RT-qPCR analysis

Total RNA from MRC5 was extracted by using the RNeasy mini Kit (Qiagen). RNA was quan-

tified with NanoPhotometer (Implen GmbH, Munich, Germany), and samples were evaluated

for integrity with a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). RNA was reverse

transcribed into cDNA with the Maxima First Strand cDNA synthesis kit with dsDNase

(Thermo Fisher Scientific). Gene expression was determined using assays designed with the

Universal Probe Library from Roche (www.universalprobelibrary.com). For each qPCR assay,

a standard curve was performed to ensure that the efficiency of the assay was between 90% and

110%. The QuantStudio7 qPCR instrument (Thermo Fisher Scientific) was used to detect the

amplification level. All reactions were run in triplicate and Relative mRNA expression was cal-

culated according to the comparative threshold (CT) formula 2−ΔΔCT, where ΔΔCT = ΔCT test

sample–ΔCT calibrator sample and ΔCT = CT(target)–CT(endogenous control). HPRT and
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TBP were used as endogenous control. The sequences of the primers and Universal Probe

Library (UPL) probes used are listed in S1 Table.

ELISA

IFN-β production and secretion in supernatants was determined using the Verikine human

IFN beta ELISA kit (Cat# 41410, PBL Assay Science) according to manufacturer’s instructions.

VSV-GFP antiviral assay and flow cytometry analysis

The antiviral state of cells following TFG knockdown was measured by VSV-GFP reporter

virus replication as described previously [125]. Briefly, cells were infected with VSV-GFP and

cells were inspected and photographed using an inverted fluorescence microscope (Zeiss,

Goettingen, Germany) 16h post-infection. Fluorescence intensity was quantified using ImageJ

1.53 [122]. Moreover, VSV-GFP infected cells were trypsinized and either harvested for immu-

noblot analysis or fixed with 2% paraformaldehyde in PBS and analyzed by flow cytometry

using FACS caliber (BD Bioscience) combined with the BD FACSDiva software.

Statistical analysis

Statistical analyses were performed using GraphPad Prism version 5.0. All data are from a

minimum of two independent experiments. Comparison of two groups was carried out using

a two-tailed t-test, and comparison of more than two groups was evaluated with one-way

ANOVA and Bonferroni test for multiple comparisons. Differences were considered signifi-

cant at a P-value below 0.05.

Supporting information

S1 Fig. (A) Representative linescan analysis of confocal data showing TFG-TRAF3 colocaliza-

tion presented in Fig 1D. The pixel intensity in each channel is measured along a line drawn

on the image and is plotted versus distance along the line. (B-C) HeLa cells were transfected

with both Myc-TFG and FLAG-TRAF3. Cells were stained with anti-Myc (9E10) and poly-

clonal anti-FLAG antibodies. Nuclei were labeled with DAPI. Cells were then visualized by

confocal microscopy. Images are representative of three independent experiments in which

cells were examined and displayed similar staining. Data for 2 cells are shown with a represen-

tative linescan analysis shown below.

(TIF)

S2 Fig. Representative linescan analysis of confocal data showing colocalization of TFG

and different markers of perinuclear compartments presented in Fig 2. The pixel intensity

in each channel is measured along a line drawn on the image and is plotted versus distance

along the line.

(TIF)

S3 Fig. (A) Densitometry analysis of immunoprecipitated TRAF3 interacting with TFG. Data

from two independent experiments presented in Fig 3A were quantified and input-normalized

TRAF3 signal is shown. (B) Densitometry analysis of IRF3 dimerization following SeV infec-

tion of siNT and siTFG cells. Data from two independent experiments presented in Fig 5A

were quantified and α-tubulin- normalized dimer signal is shown. (C) Densitometry analysis

of pIRF3 following SeV infection of shNT and shTFG cells. Data from three independent

experiments presented in Fig 5B were quantified and the β-actin-normalized signal is shown.

(TIF)
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S4 Fig. Representative linescan analysis of confocal data showing colocalization of TRAF3

and MAVS presented in Fig 3C. The pixel intensity in each channel is measured along a line

drawn on the image and is plotted versus distance along the line. NS (A), SeV (B), and Poly:

(IC) (C)

(TIF)

S5 Fig. No significant effect of TFG knockdown on the phosphorylation of TBK1 in

response to DNA sensor agonists. THP-1 monocytes were transfected with an siRNA duplex

(NT or TFG) and three days post-transfection, cells stimulated with the DNA sensor agonists

Poly dA:dT (2 μg/ml), ISD (2 μg/ml), cGAMP (5 μg/ml) and VACV-70 (2 μg/ml) for indicated

time. Whole cell extracts (WCE) were harvested and subjected to immunoblot analysis with

indicated antibodies.

(TIF)

S6 Fig. Effect of an mTOR inhibitor on SeV-induced ISGs expression. Serum starved pri-

mary MRC5 fibroblasts were pretreated with 0.5 μM Ku-0063794, a highly selective mTOR

inhibitor, or vehicle for 30 minutes and then left uninfected or infected with SeV (100 HAU/

106 cells) for the indicated times in the continuous presence of the drug. RNA was extracted

and analyzed by RT-qPCR for indicated gene expression. Mean values and SD of two indepen-

dent experiments are shown. RQ, relative quantification.

(TIF)

S7 Fig. Activation of mTORC1 and the phosphorylation of mTOR on Ser2159 do not pre-

vent the nuclear accumulation of IRF3. A) MRC5 were infected with SEV (100 HAU/106

cells) for 6 hours under the continuous presence of DMSO or Rapamycin [20 ng/ml]. B) 293T

cells were transfected with the indicated constructs. 24h post-transfection, crude nuclear and

cytoplasmic fractions were prepared to perform immunoblot analysis with the indicated anti-

bodies.

(TIF)

S1 Table. RT-qPCR probes and primers used in this study.
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