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Abstract

Background: 5,10-methylenetetrahydrofolate reductase (MTHFR) variants, C677T and A1298C, have been reported
to be associated with decreased risk of acute lymphoblastic leukemia (ALL). However, results derived from
individually underpowered studies are conflicting. We carried out an updated meta-analysis on the association
between MTHFR polymorphisms and ALL risk.

Methods: Relevant publications were searched through PUBMED and EMBASE databases. The associations between
MTHFR C677T and A1298C polymorphisms and the risk of ALL were evaluated by odds ratios (ORs). The
heterogeneity and publication bias were estimated. Meta-regression analysis was performed to evaluate the
potential sources of heterogeneity.

Results: C677T polymorphism was associated with a reduced risk of ALL (allele contrast: ORge =0.91, 95%

Cl: 0.83-0.99). Subgroup analysis showed MTHFR C677T variant was associated with decreased susceptibility to ALL
in children and Caucasians. Meta-regression showed the logOR for the association between T allele and ALL
increased as sex ratio (M/F) in the case group increased (P=0.01). Regarding A1298C polymorphism, no significant
association was observed (allele contrast: ORge =1.01, 95% Cl: 0.91-1.11). There was no publication bias for C677T or
A1298C polymorphism.

Conclusions: The present meta-analysis suggests that the C677T polymorphism, not A1298C, in MTHFR gene is
associated with a decreased risk of ALL, particularly among children and Caucasians subjects. Our findings suggest
that the influence of the C677T polymorphism on ALL susceptibility is modified by sex ratio in cases (M/F). Since
folate intake may be a possible confounding factor, including this factor in future prospective studies is warranted.
Further meta-analysis studies should be at least stratified for folate levels and gender to give more powerful and
informative results.
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Background

Acute lymphoblastic leukemia (ALL) is a malignant neo-
plasm of the lymphocyte precursor cells or lympho-
blasts. This hematologic malignancy accounts for 75% of
pediatric leukemias and 20% of adult leukemias, with an
early peak incidence at 2 to 5 years of age followed by a
second peak after age 50 years[1-3]. To date, the cause
of ALL remains largely unknown and is likely to involve
a complex interaction between genetic susceptibility and
environmental exposure [4].

Folate metabolism plays an essential role in both
DNA synthesis and cellular methylation reactions (e.g.,
DNA methylation). The enzyme 5,10-methylenetetrahy-
drofolate reductase (MTHFR) is a key player in folate
metabolism, which irreversibly catalyzes the reduction
of 5,10-methylenetetrahydrofolate (5,10-methylene THF)
into 5-methyltetrahydrofolate (5-methyl THEF), the pre-
dominant circulatory form of folate (Additional file 1:
Figure S1) [5]. The MTHFR gene, containing 11 exons
and 10 introns, is located on the short arm of chromo-
some 1 (1p36.3) [6,7]. Two common polymorphisms in
the MTHFR gene, C677T (rs1801133) and A1298C
(rs1801131) contribute to reduced enzyme activity and
disturbance in folate metabolism. Severe enzymatic ac-
tivity deficiency results in hyperhomocysteinaemia and
is linked to increased risk of neural tube defects and
vascular diseases[8-11].

MTHEFR variants have been reported to be associated
with reduced risk of ALL. However, results derived from
individually underpowered studies are conflicting. Here,
we reevaluate the association between MTHFR poly-
morphisms and ALL in a more comprehensive meta-
analysis, providing better power to detect small effect
size and performing more detailed analysis on the effects
of MTHFR C677T and A1298C variants on ALL risk.

Methods

Selection criteria and identification of studies

We conducted a comprehensive search of PUBMED and
EMBASE databases for publications on the association
between MTHFR C677T and/or A1298C variant(s) and
ALL, using the following search terms: methylenetetra-
hydrofolate reductase or MTHFR; leuk(a)emia, acute
lymphocytic or acute lymphoblastic; and gene, poly-
morphism or genetic variant. The latest searches were
undertaken on Oct 3, 2011. All relevant articles identi-
fied through the search were scanned on the basis of
title and abstract. The articles that clearly did not meet
the inclusion criteria were rejected in the initial screen-
ing. The appropriateness of remaining articles for inclu-
sion in the meta-analysis was assessed by reading the
full text. All references cited in the studies were
reviewed to identify additional publications. We also
evaluated previous meta-analysis articles [12-17] and
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manually searched bibliographies to ensure that any
relevant but previously omitted articles were included in
the present study.

The meta-analysis included case—control, cross-
sectional and cohort studies that met all of the inclusion
criteria as follows: (i) provided cases of ALL and control
subjects without hematologic or other malignancies; (ii)
provided relevant data to calculate the odds ratio (OR);
(ili) published in English language journals. Case reports,
editorials and review articles were excluded. Family-
based association studies and genome-wide linkage scans
were also excluded for different design considerations.
When multiple studies reported on the same population,
we used the most recent one only.

Data collection

For each eligible study, the following data were extracted
independently by 2 investigators, using a piloted data ex-
traction form: first author, year of publication, demo-
graphics (age, sex, and ethnicity), study design,
genotyping method, leukemia characteristics, number of
case and control subjects, source of controls and blind-
ing of laboratory workers to participant status. The fre-
quencies of the allele and the genotypic distributions
were extracted (if not available, the allele frequencies
were calculated from genotypes), for both the cases and
the controls. When articles presented data for different
ethnic groups, results for the subgroups were considered
as separate studies. If raw data could not be extracted
for the meta-analysis, we attempted to obtain this infor-
mation by corresponding with the authors. Discrepan-
cies were resolved by discussion, when necessary,
adjudicated by a third reviewer.

Data synthesis and analysis

The risk of ALL associated with the MTHFR C677T and
A1298C polymorphisms was evaluated by OR with cor-
responding 95% confidence intervals (Cls) under allele
contrast, dominant model, recessive model and additive
model[18]. In addition, subgroup analysis was carried
out by ethnicity (Caucasians or East Asians) and study
population (adults or children).

The interstudy heterogeneity in terms of degree of as-
sociation was tested using the Cochran’s Q-statistic [19].
If P<0.10, the heterogeneity was considered significant,
which was further explored by I* statistic. I* is expressed
as the percentage of between-study variability that is at-
tributable to genuine variation rather than sample error
[20]. If there was heterogeneity among studies, we used
a random-effect (RE) model to pool the ORs; otherwise,
a fixed-effect (FE) model was selected [21].

Given that immunophenotypic subtypes of ALL (B or
T-lineage ALL), sex ratio (males vs females, M/F) might
modulate the effects of MTHFR polymorphisms on ALL
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risk, and year of publication, journal impact factor
(according to the Journal of Citation Report 2010) might
lead to publication bias and heterogeneity, we included
these factors as covariates in meta-regression. The cu-
mulative and recursive cumulative meta-analysis were
performed to demonstrate how evidence concerning the
genetic association has evolved over time [18]. The
Egger regression test and Begg—Mazumdar test were
used to estimate the potential publication bias [22].
Pearson’s x> test was used to evaluate Hardy-Weinberg
equilibrium (HWE) in the control group for all studies.
Studies with controls not in HWE or studies not report-
ing enough information to evaluate HWE were subjected
to a sensitivity analysis. Furthermore, we omitted 1 study
at a time to assess the stability of results in the sensitiv-
ity analysis. Analyses were performed with Stata software
(version 10.0; Stata Corporation, College Station, Texas,
USA), using two-side P-values.

Results

Characteristics of the included studies

The literature search identified 155 articles. After ab-
stract examination, 111 articles were excluded, and 44
articles were retrieved and evaluated against the inclu-
sion criteria. Data from 33 articles[5,23-54] that investi-
gated the association between MTHFR polymorphisms
and ALL met the inclusion criteria. Figure 1 presents a
flowchart for the process of articles inclusion/exclusion,
with specification of reasons. All of the articles were in
full length except one in letter [32]. Two articles pro-
vided separate data for 2 ethnic groups each [33,48].
Thus data were obtained from 35 studies.

-

| 155 Articles found in MEDLINE and EMBASE ‘

| 34 Articles carried out in vitro or on animals ‘

'| 4 Reviews, editorials or case reports ‘

73 Articles  investigating irmelevant outcomes or
irrelevant genes

| 44 Aticles given a more detailed evaluation

; | 1 Article notin English

»| 10 Articles not providing sufficient data on MTHFR
polymorphisms

A

33 Articles included in the meta-analysis

Figure 1 Flowchart describing the process of articles
inclusion/exclusion.
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The studies were published from 1999 through 2010
(Additional file 2: Table S1). All the studies were described
as case—control in design. Six studies [23,25,28,39,44,46]
involved adult ALL patients, 26 [5,24,26,27,30-35,37,38,
40,42,43,45,47-54] involved pediatric patients and 3
[29,36,41] involved a mixed population of adult and child-
hood patients. The identified studies were undertaken in a
wide range of ethnicities: 15 [23,27-33,37,38,43,45,47,52,54]
providing data on Caucasians, 7 [35,36,39,44,46,48,49]
on East Asians (Chinese and Korean), and 13 [5,24-
26,33,34,40,42,43,48,50,51,53] on other ethnic origins.
Twenty-one studies [5,26,28-31,33,38-41,43-45,49-54] in-
volved general population-based controls and 5 studies
[23,27,34,42,45] involved hospital-based controls, 9 stud-
ies [24,25,32,35-37,47,48] did not describe the source of
their controls. Different genotyping methods were used:
polymerase chain reaction (PCR) followed by restriction
fragment length polymorphism (RFLP) analysis was used
in 26 studies [5,23,24,26,28,29,31,33,34,36-40,44-51,53,54],
real-time PCR was used in 8 studies [25,31,32,41-44,52]
and allele-specific oligonucleotide hybridization (ASO)
was used in 2 studies [27,35]. In most studies, authors
reported that the diagnosis of ALL was based on mor-
phologic and immunophenotypic criteria. Eight studies
[23,24,28,34, 39,47,49,51] stated that the controls were
age and gender matched. Only one study [23] mentioned
genotyping was performed under blind conditions. Twelve
studies provided data for combined genotype distribu-
tion of C677T and A1298C variants [23,27,31,32,34,35,
38,42, 46,50,51] and 4 studies provided analysis of haplo-
types for these two variants [39,44,46,53]. In three studies
[26,36,39] on C677T and two studies [38,50] on A1298C,
the distribution of the genotypes in control group were
found to deviate from HWE according to P value (P<
0.05). Thirty-four studies dealt with C677T, 29 studies
dealt with A1298C and 28 studies investigated the two
polymorphisms together.

There were 5710 cases and 10798 controls included
for the association between C677T polymorphism and
the risk of ALL. The frequency (%) of T allele/TT geno-
type in controls in Caucasians was 35.4/12.9, in East
Asians was 40.8/16.0, respectively. The studies provided
5356 cases and 9906 controls for A1298C polymorph-
ism. The frequency (%) of C allele/CC genotype in con-
trols in Caucasians was 31.8/10.1, in East Asians was
18.5/3.3, respectively. Detailed information regarding
genotype distribution and allele frequency for cases and
controls is available in Additional file 3: Table S2 and
Additional file 4: Table S3.

C677T Polymorphism Associated with A Decreased Risk
of ALL

Table 1 shows the meta-analysis results for C677T poly-
morphism. Overall, significant heterogeneity between
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Table 1 ORs and heterogeneity results for the genetic contrasts of UTHFR C677T polymorphism for ALL risk

Genetic Model Studies P, P, Q Fixed-effect Random-effect
(%) Test® T T
All Allele contrast 34 58 0.000 0.92(0.88-0.97) 0.91(0.83-0.99)
Dominant model 34 58 0.000 0.92(0.86-0.98) 0.90(0.80-1.02)
Recessive model 33 22 0.129 0.86(0.77-0.96) 0.85(0.74-0.98)
Additive mode 33 39 0013 0.82(0.73-0.93) 0.80(0.68-0.95)
All in HWE Allele contrast 31 61 0.000 0.92(0.87-0.97) 0.90(0.82-0.99)
Dominant model 31 60 0.000 0.92(0.86-0.99) 0.90(0.80-1.02)
Recessive model 30 25 0.109 0.85(0.76-0.96) 0.84(0.72-0.97)
Additive model 30 41 0.011 0.82(0.72-0.92) 0.78(0.65-0.94)
Children Allele contrast 25 56 0.000 0.92(0.87-0.98) 0.90(0.82-0.997)
Dominant model 25 60 0.000 0.92(0.85-0.99) 0.90(0.79-1.03)
Recessive model 24 0 0479 0.85(0.74-0.96) 0.86(0.75-0.98)
Additive model 24 23 0.158 0.82(0.71-0.94) 0.80(0.67-0.95)
Adults Allele contrast 6 75 0.001 0.95(0.83-1.09) 0.95(0.71-1.26)
Dominant model 6 67 0.010 0.94(0.77-1.14) 0.96(0.68-1.35)
Recessive model 6 66 0.012 0.93(0.72-1.22) 0.85(0.52-1.40)
Additive model 6 74 0.002 0.89(0.67-1.19) 0.82(0.44-1.52)
Adults+children Allele contrast 3 40 0.187 0.88(0.72-1.06) 0.89(0.69-1.14)
Dominant model 3 52 0.126 0.85(0.64-1.12) 0.86(0.57-1.29)
Recessive model 3 31 0.236 0.85(0.60-1.20) 0.85(0.55-1.39)
Additive model 3 30 0.241 0.77(0.52-1.14) 0.79(0.49-1.26)
East Asians Allele contrast 7 65 0.009 0.92(0.83-1.02) 0.95(0.79-1.15)
Dominant model 7 60 0.020 0.90(0.78-1.04) 0.95(0.74-1.22)
Recessive model 7 53 0.047 0.89(0.72-1.09) 0.91(0.66-1.24)
Additive model 7 60 0.020 0.87(0.69-1.09) 0.90(0.62-1.32)
Caucasians Allele contrast 15 54 0.006 0.89(0.83-0.96) 0.85(0.76-0.95)
Dominant model 15 54 0.007 0.88(0.80-0.96) 0.82(0.70-0.95)
Recessive model 15 27 0.155 0.85(0.73-0.98) 0.82(0.68-0.99)
Additive model 15 40 0.053 0.80(0.69-0.93) 0.74(0.59-0.92)

All=all of the studies meet the inclusion criteria; All in HWE = all of the studies meet the inclusion criteria except ones with genotype distribution of the controls

deviating from HWE; HWE = Hardy-Weinberg Equilibrium.

? Q test is to estimate heterogeneity between studies. P<0.10 indicates significant heterogeneity.

studies was found in all genetic contrasts except reces-
sive model (recessive model: Pq. 75 =0.13, P =22%).
Marginally significant inverse association was observed
in allele contrast, recessive model and additive model
(allele contrast: ORgg =0.91, 95% CI: 0.83-0.99; recessive
model: ORpg=0.86, 95% CI: 0.77-0.96; additive model:
ORgg =0.80, 95% CI: 0.68-0.95; Figure 2A). After exclu-
sion of the studies lack of agreement of controls with
the HWE, there was no significant alteration in the pat-
tern of the results (Table 1). Removal of any one study
did not result in movement of the point estimate outside
the 95% Cls, suggesting no single study exhibited exces-
sive influence (Additional file 5: Figure S2).

When the analysis was carried out in different age sub-
groups, the MTHFR 677 T variant was associated with a
decreased susceptibility to pediatric ALL (n=25, allele
contrast: ORgg = 0.90, 95%CI: 0.82-0.997; recessive model:
ORpg =0.85, 95% CI: 0.74-0.96; additive model: ORgg =0.82,
95% CI: 0.71-0.94; Figure 2A), whereas it did not show
reduced risk for ALL in adults (n=6). Higher degree of
heterogeneity was observed in adults in comparison with
children subgroup (Table 1). Importantly, recessive model
showed the absence of heterogeneity in children (/* = 0%).
Analysis stratified by ethnicity showed 677 T variant was
associated with a significantly decreased risk of ALL
in Caucasians under all genetic contrasts (n=15, allele
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Figure 2 (See legend on next page.)
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Figure 2 Random-effect OR estimates with the corresponding 95% Cls for the allele contrast of MTHFR C677T and A1298C
polymorphisms and the risk of ALL. (A) C677T polymorphism and ALL; (B) A1298C polymorphism and ALL. Studies are displayed by ascending
order of publication year. The size of the square represents the weight of the corresponding study. C, Chinese; M, Malays; N, non-Caucasians,
admixture of Amerindians, Europeans and Africans; W, mainly Brazilians of Caucasian descent.

contrast: ORgg=0.85, 95% CI: 0.76-0.95). However, no
significant association was observed in East Asians
(Table 1).

No association between A1298C polymorphism and risk
of ALL observed

Regarding the MTHFR A1298C polymorphism, no sig-
nificant association was observed in any genetic model
test when all the 29 studies pooled together (allele con-
trast: ORgg=1.01, 95% CI: 0.91-1.11; dominant model:
ORgg =1.02, 95% CI: 0.90-1.16; recessive model: ORgg =
0.99, 95% CI: 0.88-1.12; additive model: ORgg=1.01,
95% CI: 0.83-1.22; Figure 2B). Heterogeneity between
studies was significant in all genetic contrasts except re-
cessive model. Exclusion of studies deviating from HWE
did not alter the pattern of results (Table 2). None of the
single study exhibited excessive influence on the pooled
results (Additional file 6: Figure S3). Subgroup analysis
showed evidence for a relationship between A1298C
polymorphism and a decreased risk of ALL neither in
pediatric (n=22) nor in adult subjects (n=5). Stratifica-
tion taking into account ethnicity also produced no sig-
nificant results, with a magnitude of effects similar to
that found in the main analysis (Table 2).

For combined genotypes analysis, we did not observe
significant pooled ORs when using 677CC/1298AA
combination as a baseline (Additional file 7: Table S4).
We did not pool the ORs for haplotypes in the meta-
analysis because of the limited data.

Potential Bias

Meta-regression results indicated a significant correl-
ation between sex ratio (M/F) in ALL cases and genetic
effect (n=25, P =0.01), which could explain 28% of the
variance (Figure 3), whereas year of publication, journal
impact factor, immunophenotypic subtypes and sex ratio
in controls did not contribute significantly to between-
study heterogeneity (P >0.05). The logOR for the associ-
ation between T allele and ALL increased as M/F in the
case group increased. No covariates modulating the ef-
fect of A1298C polymorphism on ALL risk was found
(data not shown). Cumulative meta-analysis showed a
trend of inverse association between C677T variant and
ALL risk as evidence accumulated. Recursive cumulative
meta-analysis showed that the relative change in ORs for
the C677T polymorphism fluctuated in the beginning

years (from 1999 to 2006) and then stabilized at around
1.0 (Figure 4).

No significant publication bias was detected for
C677T or A1298C polymorphism by formal statistics
(C677T: Egger's test, P=0.42, Begg's test, P=0.51;
A1298C: Egger's test, P=0.61, Begg's test, P=0.81; re-
spectively), indicating there is no differential magnitude
of effect in large vs small studies.

Discussion

Two meta-analyses published in 2006, focused on the
associations between MTHFR C677T and A1298C poly-
morphisms and ALL risk [12,13]. Nevertheless, incon-
sistent results were obtained between the two studies for
C677T and A1298C variants, which might mainly be due
to limited number of the included studies and/or differ-
ent selection criteria[18,55]. In recent two years, another
4 meta-analyses also investigated the associations be-
tween MTHFR polymorphisms and ALL risk [14-17].
None of the authors carried out analysis in detail which
could be done as more studies were available. Addition-
ally, fewer studies were collected in these meta-analyses
compared with ours (Additional file 8: Table S5), prob-
ably due to insufficient attention in the search strategy
or screening process, which might introduce selection
bias. Thus, it is not surprising these meta-analyses also
failed to give consistent results. Here, the strength of the
present analysis is that our study is based on a larger
amount of published data and gives comprehensive and
intensive information to evaluate the effects of MTHFR
C677T and A1298C polymorphisms on ALL risk.

It is possible to draw several conclusions from the
current data. The results of main analysis support a pro-
tective role of the C677T variant in the development of
ALL, but not A1298C polymorphism. The stability in
sensitive analysis and recursive cumulative meta-analysis
indicates that there is sufficient evidence to confirm the
beneficial effect of C677T variant in ALL. It has been
well documented that MTHFR 677 T variant encodes a
thermolabile enzyme with reduced catalytic activity and
increases plasma homocysteine levels [1,2]. MTHER en-
zyme function influences cancer risk in two pathways.
Polymorphisms that affect MTHFR enzyme activity
decreases the methylation of homocysteine to methio-
nine and in turn the level of S-adenosylmethionine
(SAM), resulting in DNA hypomethylation (Additional
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file 1: Figure S1). This phenomenon can increase the risk
of some cancers (e.g. esophageal[56] and gastric cancers
[57]). On the other hand, the mechanism proposed to
explain the reduced risk of leukemia[23], colorectal car-
cinoma[58] and other neoplasias is that impaired
MTHER activity, because of polymorphic variation, leads
to an accumulation of cytosolic 5,10-methylene THF
available for purine and pyrimidine synthesis, thus a
lower incorporation of uracil into DNA and a lower can-
cer risk (Additional file 1: Figure S1). The A1298C poly-
morphism contributes to less effect on enzyme activity.
Decrease in enzyme activity in individuals homozygous
for the A1298C polymorphism (30-40% of the wild type)
is less than that of C677T homozygotes (60-70% of the
wild type). A1298C polymorphism does not seem to be
powerful enough to affect plasma homocysteine level,
except when accompanied by C677T variant [3,4]. This
may partly explain why MTHFR C677T variant but not
A1298C was found to be protective for ALL.
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Our data show that C677T variant plays a protective
role in a group of pediatric patients, but has no signifi-
cantly beneficial effect in adult subjects. There is signifi-
cant difference between adult and childhood acute
leukemia. The most common form of acute leukemia in
adults is acute myeloid leukemia (AML), whereas in
childhood is ALL[59]. The effect of C677T polymorph-
ism in disease susceptibility may vary depending on fol-
ate status. Individuals during the periods of rapid cell
division and growth, such as infants and children, have
higher folate requirement and are more susceptible to
DNA damage as a result of folate insufficiency than
adults. In addition, children are not exposed to many en-
vironmentally carcinogenic factors, so a diet- and
genetic-related etiology of leukaemia is more likely [14].

We observed MTHFR C677T polymorphism was asso-
ciated with a significant reduction of ALL risk in Cauca-
sian subjects, whereas it failed to show any protective
effect in East Asians. As the role of the MTHFR

Table 2 ORs and heterogeneity results for the genetic contrasts of MITHFR A1298C polymorphism for ALL risk

Genetic model Studies P P, Q Fixed-effect Random-effect
(%) Test? OR OR
All Allele contrast 29 63 0.000 0.99(0.94-1.05) 1.01(091-1.11)
Dominant model 29 65 0.000 0.99 (0.92-1.06) 1.02(0.90-1.16)
Recessive model 29 20 0171 0.99(0.88-1.12) 00(0.86-1.17)
Additive model 29 41 0.012 0.99(0.87-1.13) 01(0.83-1.22)
All in HWE Allele contrast 27 64 0.000 0.99(0.94-1.05) 1.01(091-1.11)
Dominant model 27 66 0.000 0.99(0.92-1.07) 02(0.89-1.17)
Recessive model 27 26 0.113 0.99(0.87-1.22) 00(0.84-1.18)
Additive model 27 44 0.008 0.99(0.87-1.13) 01(0.82-1.24)
Children Allele contrast 22 64 0.000 1.01(0.95-1.07) 04(0.93-1.16)
Dominant model 22 67 0.000 1.01(0.93-1.09) 07(0.92-1.24)
Recessive model 22 26 0.129 1.00(0.88-1.14) 00(0.85-1.18)
Additive model 22 47 0.008 1.00(0.87-1.15) 1.02(0.83-1.25)
Adults Allele contrast 5 67 0.016 0.96(0.81-1.14) 0.92(0.67-1.25)
Dominant model 5 68 0014 0.97(0.79-1.19) 0.92(0.63-1.33)
Recessive model 5 41 0.150 0.84(0.50-1.42) 0.85(0.37-1.93)
Additive model 5 51 0.086 0.84(0.49-1.42) 0.80(0.32-2.01)
East Asians Allele contrast 7 53 0.046 1.01(0.89-1.15) 1.01(0.82-1.23)
Dominant model 7 63 0.013 1.01(0.87-1.17) 01(0.78-1.31)
Recessive model 7 0 0.730 1.02(0.70-1.50) 07(0.72-1.58)
Additive model 7 0 0671 1.03(0.70-1.51) 1.07(0.72-1.59)
Caucasians Allele contrast 12 62 0.003 0.96(0.89-1.04) 0.98(0.86-1.12)
Dominant model 12 55 0.011 0.95(0.86-1.04) 0.98(0.83-1.15)
Recessive model 12 42 0.062 0.97(0.82-1.14) 0.97(0.76-1.25)
Additive model 12 52 0.019 0.95(0.80-1.12) 0.98(0.73-1.30)

All=all of the studies meet the inclusion criteria; All in HWE = all of the studies meet the inclusion criteria except ones with genotype distribution of the controls

deviating from HWE; HWE = Hardy-Weinberg Equilibrium.

? Q test is to estimate heterogeneity between studies. P<0.10 indicates significant heterogeneity.
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Figure 3 Meta-regression of sex ratio (M/F) in ALL cases and
MTHFR C677T genetic effect using allele contrast. The size of the
circles represents the weight of the corresponding study in the
meta-regression.

genotypes in the development of ALL may differ among
population origin due to the different dietary customs
and racial backgrounds [60], we retrieved the T allele fre-
quency in controls and folate intake in the included
studies. There was no obvious difference in the average
T allele frequency in controls between Caucasians and
East Asians (35.4% and 40.8%, respectively). No study
provided data on folate intake. Only one study provided
data on the serum folate level in ALL [49]. There may
be lower folate status or even folate deficiency in the
Asian populations, especially in China where women
taking insufficient folate during pregnancy result in a
high incidence of infant neural tube defects [61]. There-
fore, it is unexpected that the protective effect of C677T
polymorphism is not observed in East Asian popula-
tions. Importantly, we calculated the pooled results in
Caucasian children and East Asian children, separately,
and found significant results in both groups (allele con-
trast: Caucasian children, ORgg=0.89, 95% CI. 0.79-
0.997, n=11; East Asian children, ORgg=0.79, 95% CI:
0.69-0.92, n=3). As we included English studies only in
this meta-analysis, the results might be influenced by
language bias, especially in non-English ethnicity. We
pooled the studies on Chinese children without any re-
striction on language in another article and found a sig-
nificant protective effect of MTHFR C677T variant on
ALL risk (n =7, data not shown). We cannot exclude the
possibility that the difference between Caucasians and
East Asians is attributable to chance factors or age com-
position. Thus, the conclusion derived from such sub-
group should be interpreted with caution.

We carried out the meta-regression study to evaluate
the potential sources of heterogeneity. For C677T poly-
morphism, the heterogeneity could be partly attributed
to variation in M/F in ALL cases of the original studies.

Page 8 of 12

The OR increased as M/F in the case group increased. It
was surprising to find OR>1 in studies with M/F>2 in
case group, indicating the protective effect of T allele
disappeared or even turned to the opposite in these
studies [25,26,36,50,51]. We limited our analysis to the
pediatric patients and observed a similar trend (data not
shown). This interesting result motivated us to check
three studies providing data on the separate sex group
[26,34,46]. Belta et al.[26] and Reddy et al.[34] showed
the CT/TT genotypes were more frequent in male than
female cases, but Lv et al.[46] did not show any differ-
ence on the CT/TT genotypes distribution between male
and female cases. The ORs in the male group were also
not consistent, with OR<1 in Reddy’s study and OR>1
in the Lv’s study. Because of the discrepant results, we
could not give the conclusion whether the genetic effects
are different or not in separate gender here. It has been
reported gender difference exists in ALL susceptibility
and ALL is more common in males of all age group,
despite the underlying mechanisms for sex difference re-
main unknown[62]. Our study showed sex ratio in case
group modified the C677T variant effects with regard to
ALL risk. However, this result is preliminary and
deserved further investigation stratified for gender.

Gene-environment interaction between the MTHFR
genotypes and dietary folate intake has been documen-
ted in previous studies concerning colorectal cancer,
which might alter the effects of the polymorphic variants
[5,6]. With respect to the risk of ALL, epidemiological
studies proved a protective effect of maternal folate sup-
plementation during pregnancy against childhood ALL
[63,64]. As mentioned above, however, no studies to date
described the effect of folate status on the association
between MTHFR polymorphic variants and ALL suscep-
tibility. Conflicting results among studies may be due to
the lack of information on folate status. Other enzymes
involved in folate metabolism, including methionine
synthase (MS), thymidylate synthase (TS) and serine
hydroxymethyltransferase (SHMT), may regulate intra-
cellular folate metabolism. The variant forms of these
enzymes may be associated with the risk of ALL and
interactions between these candidate genes may exist.
Three included studies described the interactions be-
tween MTHER polymorphisms and other gene variants.
Jonge et al. [45] found the MTHFR C677T and NNMT
C-151 T variants interacted to decrease the risk of
pediatric ALL. Petra et al. [38] reported the MTHFR
C677T, MS A2756G and MTRR A66G interaction was
associated with a reduced risk of pediatric ALL, whereas
Gemmati et al. [28] did not detect a significant inter-
action between MTHFR C677T and MS A2756G poly-
morphisms. No further analysis on these interactions in
our study was performed due to limited number of
reports on each item.
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Figure 4 Cumulative and recursive cumulative meta-analysis for the association between MTHFR C677T polymorphism and the risk of
ALL. (A) Cumulative meta-analysis; (B) Recursive cumulative meta-analysis. Allele contrast was used in cumulative and recursive cumulative
meta-analysis. N, non-Caucasians, admixture of Amerindians, Europeans and Africans; W, mainly Brazilians of Caucasian descent.

Conclusion

In conclusion, the present meta-analysis suggests that
the C677T polymorphism in MTHFR gene is associated
with decreased susceptibility to ALL, and indicates a
lack of positive relationship between A1298C poly-
morphism and ALL. The C677T variant plays a pro-
tective role in pediatric patients and Caucasian
subjects. M/F in cases could modulate the influence of

the C677T polymorphism on ALL susceptibility. Al-
though more than 30 genetic association studies are
included in this meta-analysis to draw relative safe con-
clusions, it is also worth mentioning that several inter-
esting but unsolved issues are raised from current
meta-analysis and thus further studies are needed
which should be at least stratified for folate levels and
gender.
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