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Abstract Lipids are structural components of cellular membranes and signaling molecules that

are widely involved in development and diseases, but the underlying molecular mechanisms are

poorly understood, partly because of the vast variety of lipid species and complexity of synthetic

and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide

(MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the

Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the

NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be

composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic

level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-

dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer

is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL

MacCer promotes synaptic bouton formation via Wg signaling.

DOI: https://doi.org/10.7554/eLife.38183.001

Introduction
The glycosphingolipids (GSLs) are particularly abundant in the nervous system and are essential for

brain development (Fantini and Yahi, 2015; Yu et al., 2009). Specific deletion of GSLs in mouse

brain leads to severe neural defects or lethality (Jennemann et al., 2005). Nevertheless, the molecu-

lar and cellular functions of GSLs in development are poorly understood, partially due to the com-

plexity of GSL metabolism and the variety of GSL structures in vertebrates. Because of the

comparatively simple metabolic pathways and the power of genetic studies in invertebrates

(Bellen and Yamamoto, 2015; Zhu and Han, 2014), a mechanistic understanding of the role of

GSLs in development and function of the nervous system is beginning to be established

(Dahlgaard et al., 2012; Huang et al., 2016; Kniazeva et al., 2015; Yonamine et al., 2011).

GSLs and sphingomyelins (SMs, another class of sphingolipids) assemble with sterol into deter-

gent-resistant membrane microdomains known as lipid rafts, which are critical for signal transduction

and membrane trafficking (Lingwood and Simons, 2010). In neural development, multiple processes

such as neuronal proliferation, recognition, migration, and synapse formation are regulated by lipid

rafts (Aureli et al., 2015). For instance, disruption of rafts by depletion of sphingolipid or sterol
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leads to enlargement and gradually loss of synapses in cultured hippocampal neurons (Hering et al.,

2003). Many growth factors or their receptors are preferentially located within and functionally

dependent on membrane rafts (Wang and Yu, 2013; Watanabe et al., 2009; Zhai et al., 2004).

Specifically, GSLs interact with raft-associated signaling proteins, such as epidermal growth factor

receptor (EGFR) and Notch, thereby facilitating signal transduction (Coskun et al., 2011;

Hamel et al., 2010; Wang and Yu, 2013). Our previous study uncovered that the GSL mannosyl glu-

cosylceramide (MacCer) promotes NMJ overgrowth (Huang et al., 2016). However, the mechanisms

by which GSLs mediate in vivo neural development remain elusive.

Normal brain function depends on proper formation of synaptic connections. The Drosophila lar-

val glutamatergic neuromuscular junction (NMJ) is an advantageous model for dissecting mecha-

nisms underlying synaptic development (Bayat et al., 2011; Khuong et al., 2013; Khuong et al.,

2010; Korkut and Budnik, 2009). To uncover potential functions of lipids at synapses, we used the

Drosophila NMJ as a model synapse and performed a genetic screen targeting genes involved in

lipid biosynthesis and turnover pathways. From this screen, we identified multiple genes involved in

sphingolipid de novo synthesis affecting NMJ development. We further found that MacCer is both

required and sufficient for promoting NMJ growth and bouton formation in presynaptic neurons.

MacCer promotes NMJ growth in a raft-dependent manner. We revealed that MacCer positively

regulates synaptic Wg level and the presynaptic activity of Wg signaling. Further multiple indepen-

dent assays showed MacCer physically interacts with Wg via a previously unidentified GSL-binding

motif in Wg. Mutations in this motif disrupt the MacCer-Wg binding and normal NMJ growth. These

findings demonstrate that the GSL MacCer plays a crucial role in bouton formation and NMJ growth

and uncover a novel regulatory mechanism of Wg signaling pathway by MacCer.

Results

Mutations in de novo sphingolipid synthetic enzymes affect NMJ
growth
To gain novel insights into the role of lipids in regulating synaptic development, we carried out a

genetic screen targeting genes involved in the biosynthesis and turnover of fatty acids, glycerophos-

pholipids, and sphingolipids. We tested over 60 candidate genes by examining NMJ morphology

(Supplementary file 1) and identified two enzymes, serine palmitoyltransferase 2 Lace and ceramide

synthase Schlank, promoting NMJ bouton formation as mutations in either of the two proteins led

to fewer and larger boutons (Figure 1B–F,H,I,K). Mutations in lace and schlank disrupt the de novo

synthesis of ceramides, the central intermediate in sphingolipid synthesis/metabolism (Figure 1A;

Adachi-Yamada et al., 1999; Bauer et al., 2009; Fyrst et al., 2004). These data indicate that deple-

tion in de novo synthesis of ceramides inhibits bouton formation. In addition to the de novo cer-

amide synthesis, the ceramide precursor sphingosines can be phosphorylated by sphingosine kinase

2 (Sk2) to produce phosphorylated sphingosines (Figure 1A). In Sk2 mutants, the level of phosphory-

lated sphingosines is reduced, while sphingosines accumulate (Fyrst et al., 2004; Yonamine et al.,

2011). We found that mutations in Sk2 resulted in more satellite boutons at NMJs (Figure 1G,J), in

contrast to the fewer and larger bouton phenotype in lace and schlank mutants. These results indi-

cate that the de novo synthesis of ceramides, their downstream derivatives, or both promote bouton

formation and NMJ growth.

GSL and ceramide phosphoethanolamine (CerPE, the Drosophila analogue of SM) are major

membrane sphingolipids modified from ceramides (Figure 1A). However, we did not study the

effects of CerPE in NMJ growth because there are multiple genes encoding candidates of CerPE

synthase in the Drosophila genome (Vacaru et al., 2013); Supplementary file 1).

GSL synthases Egh and Brn bi-directionally regulate NMJ growth
presynaptically
In contrast to the complex CerPE synthesis, the first three steps of GSL synthetic pathway are cata-

lyzed by single GSL synthases in Drosophila (Figure 2A; Chen et al., 2007; Schwientek et al., 2002;

Wandall et al., 2003). Disruption of the first one glucosylceramide synthase (GlcT1) to block GSL

biosynthesis by feeding larvae with a specific GlcT1 inhibitor D, L-threo-PDMP at 0.5 mg/ml

(Delgado et al., 2006) resulted in fewer and larger boutons at NMJ synapses (Figure 2C,N), without
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Figure 1. NMJ growth depends on de novo synthesis of ceramides (A) Simplified de novo biosynthesis pathway of sphingolipid in Drosophila is

shown.(B–G) Representative images of NMJ4 co-stained with anti-HRP (green) and anti-CSP (magenta) in wild type (B), lace k05305/lace2 (C), lacek05305/Df

(2L)Exel7063 (D), schlankG0489/Y (E), schlankG0061/Y (F) and Sk2KG05894/Df(3L)BSC671 (G). Scale bar: 10 mm; Arrowheads indicate large boutons in

different mutants. (H–J) Quantifications of bouton number (H), bouton size (I) and satellite bouton number (J) of NMJs in abdominal segments A3 or A4

of different genotypes. (K) Bouton number and size in schlank mutants were normalized to muscle surface area as schlank mutants showed decreased

body size (Bauer et al., 2009). *p<0.05; **p<0.01, and ***p<0.001 by student’s t test between a test genotype and the wild-type control; n � 10 larvae;

error bars: s.e.m. Source data 1. Numerical data for the statistical graphs. The following figure supplement is available for Figure 1.

DOI: https://doi.org/10.7554/eLife.38183.002
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Figure 2. GSL synthases Egh and Brn bi-directionally regulates NMJ growth presynaptically (A) GSL synthesis pathway in Drosophila.(B–M) Images of

NMJ4 co-stained with anti-HRP (green) and anti-CSP (magenta) in wild type (B), larvae treated with 0.5 mg/ml D, L-threo-PDMP (C), egh62d18/Y (D), UAS-

Egh/+; nSyb-Gal4/+ (E), egh62d18/Y; UAS-Egh/+; nSyb-Gal4/+ (F), UAS-Egh/OK6-Gal4 (G), egh62d18/Y; UAS-Egh/OK6-Gal4 (H) brn fs107/brn1.6P6 (I), UAS-

brn-RNAi/+; nSyb-Gal4/+ (J) nSyb-Gal4/UAS-brn (K), UAS-brn-RNAi/OK6 Gal4 (L), and OK6-Gal4/+; UAS-brn/+ (M). Scale bar: 10 mm; Arrowheads point

Figure 2 continued on next page
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affecting the developmental time and larval size (muscle 4 size was normal; Figure 2—figure supple-

ment 1). GlcCer can be further converted into MacCer by Egghead (Egh) (Wandall et al., 2003). It

has been previously shown that the enzymatic activity of Egh is reduced in egh62d18 and egh7

mutants (Wandall et al., 2005). Here we show that both homozygous egh62d18 and hetero-allelic

egh62d18/egh7 mutants also displayed fewer and larger synaptic boutons (Figure 2,D,O and Fig-

ure 2—figure supplement 1; Huang et al., 2016). In contrast, neuronal (presynaptic) overexpression

of Egh driven by the pan-neuronal nSyb-Gal4 or motor neuronal specific OK6-Gal4 led to synaptic

overgrowth with more and smaller boutons (Figure 2, D–H and O and Figure 2—figure supple-

ment 1 ), indicating that Egh promotes bouton formation. However, expression of egh in muscles

(postsynaptic) driven by C57-Gal4 or in glia driven by Repo-Gal4 did not affect NMJ growth in both

wild type and egh62d18 mutant background (Figure 2—figure supplement 2). The cell-type specific

manipulations of egh expression support that Egh promotes NMJ bouton formation in presynaptic

motoneurons. Heterozygous mutation of egh significantly suppressed NMJ overgrowth in larvae

neuronal overexpressing Egh, and homozygous mutation of egh in Egh-overexpressing background

fully suppressed bouton number but not bouton size to the control level (Figure 2O), indicating that

neuronal expression of egh promotes NMJ growth in a dose-dependent manner.

Brainiac (Brn) converts MacCer to GlcNAc-MacCer (Figure 2A; Schwientek et al., 2002). Hypo-

morphic brnfs.107 and brn1.6P6 mutants display MacCer accumulation in egg chambers (Pizette et al.,

2009; Wandall et al., 2005). We observed more boutons and satellite boutons in homozygous

brnfs.107 and trans-allelic brn1.6P6/brnfs.107 mutants; neuronal knockdown of brn by an RNAi under

the control of nSyb-Gal4 or OK6-Gal4 also resulted in NMJ overgrowth. Conversely, neuronal over-

expression of Brn driven by nSyb-Gal4 or OK6-Gal4 led to fewer and larger boutons (Figure 2, I–M

and P; Huang et al., 2016), recapitulating the phenotype of egh mutants. Furthermore, overexpres-

sion and knockdown of brn in muscles by C57-Gal4 or in glia by Repo-Gal4 did not affect NMJ

growth (Figure 2—figure supplement 2). The cell type specific rescue and RNAi knockdown results

demonstrate that both Egh and Brn act presynaptically. The opposite effect of Egh and Brn in regu-

lating bouton number suggests that the GSL MacCer promotes NMJ growth.

GSL MacCer promotes NMJ growth
To verify if MacCer indeed promotes NMJ growth, we performed immunostaining and found that

endogenous MacCer, detected by a specific anti-MacCer antibody (Wandall et al., 2003), was

enriched at presynaptic NMJ boutons in a punctate pattern (Figure 3A). Compared to wild type,

MacCer intensity at NMJs was reduced in egh mutant and brn-overexpressing larvae; conversely,

MacCer intensity was increased at NMJs of brn mutant, brn RNAi knockdown, and egh-overexpress-

ing larvae (Figure 3, B–H), demonstrating the specificity of the anti-MacCer. These findings are con-

sistent with previous reports showing that MacCer is decreased in egh mutants but increased in brn

mutants by high performance thin layer chromatography (Hamel et al., 2010; Wandall et al., 2005),

which we confirmed (Figure 8—figure supplement 1). Based on the fact that the presynaptic MacCer

levels positively correlate with synaptic bouton number, we conclude that the GSL MacCer promotes

NMJ growth presynaptically.

To characterize the synaptic structure in MacCer-deficient NMJs, we examined a few molecules

that play important roles in synaptic growth and function, including the cell adhesion molecule

Figure 2 continued

at large boutons. (N–P) Quantifications of total bouton number, bouton size, and satellite bouton number of NMJs in different genotypes or treated

with PDMP. ‘CT’ denotes corresponding control in each multiple comparison.*p<0.05; **p<0.01, ***p<0.001 by one-way ANOVA with Tukey post hoc

tests; n � 12 larvae; error bars: s.e.m.

DOI: https://doi.org/10.7554/eLife.38183.003

The following source data and figure supplements are available for figure 2:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.006

Figure supplement 1. Additional NMJ images and quantifications.

DOI: https://doi.org/10.7554/eLife.38183.004

Figure supplement 2. Alteration of egh and brn level in glia or muscle does not affect NMJ growth.

DOI: https://doi.org/10.7554/eLife.38183.005
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Figure 3. MacCer staining intensity at NMJs is bi-directionally regulated by Egh and Brn. (A) Images of wild-type NMJ4 co-stained with anti-MacCer

(green), anti-HRP (blue) and anti-DLG (red).MacCer puncta were apparent in presynaptic boutons. Scale bar: 10 mm. (B) Statistical results of normalized

intensities of MacCer against anti-HRP staining within presynaptic boutons in different genotypes. **p<0.01 and ***p<0.001 by student’s t test between

a test genotype and wild type; n � 16 larvae; error bars: s.e.m. (C–H) Representative images of NMJ4 stained with anti-MacCer in wild type (C),

egh62d18/Y (D), UAS-Egh/+; nSyb-Gal4/+ (E), brn1.6P6/brnfs107 (F), UAS-brn-RNAi/+; nSyb-Gal4/+ (G) and nSyb-Gal4/UAS-Brn (H). Scale bar: 5 mm.

DOI: https://doi.org/10.7554/eLife.38183.007

The following source data and figure supplement are available for figure 3:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.009

Figure supplement 1. Images and quantifications of Fas II and Syx1A staining at NMJs of different genotypes.

DOI: https://doi.org/10.7554/eLife.38183.008
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Fasciclin II (Fas II) and SNARE protein Syntaxin 1A (Syx1A) (Schulze et al., 1995; Schuster et al.,

1996). The synaptic levels of Fas II and Syx1A were not visibly affected in egh mutant and brn-over-

expressing NMJs (Figure 3—figure supplement 1).

MacCer promotes NMJ bouton formation in a lipid raft-dependent
manner
GSLs are constituents of lipid rafts that are detergent-resistant membrane microdomains composed

of sphingolipids, sterols and proteins. Like other GSLs, Drosophila MacCer is enriched in detergent-

insoluble membrane microdomains (Rietveld et al., 1999). Consistently, MacCer substantially over-

laps with Syx1A, a lipid raft-localized protein in human and Drosophila cells (Chamberlain et al.,

2001; Zhai et al., 2004), at NMJs (Figure 4A). Our results also show that mutations in lace and

schlank result in fewer boutons at NMJs (Figure 1), probably due to a disruption of lipid rafts by

depleting total sphingolipids. Thus, we asked if synaptic development requires the formation of lipid

rafts. The assembly of lipid rafts is sterol-dependent (Lingwood and Simons, 2010); sterol depletion

by methyl-b-cyclodextrin (MbCD), a cyclic oligosaccharide that absorbs sterols from the membrane,

efficiently disrupts raft assembly in mammalian cells and Drosophila cells (Sharma et al., 2004;

van Zanten et al., 2009; Zhai et al., 2004). Drosophila does not synthesize but takes sterols from

food (Carvalho et al., 2010). Thus we used drug treatment rather than genetic means to deplete

sterols. Feeding wild-type larvae with MbCD at concentrations higher than 25 mM led to early larval

lethality, while MbCD treatment at 20 mM led to a mild developmental delay but normal larval and

muscle size (Figure 4—figure supplement 1). MbCD treatment significantly reduced the co-localiza-

tion of MacCer and Syx1A (Figure 4, B and C). We also treated larvae with another sterol binding

drug filipin at 50 mg/ml, which did not affect larval developmental time but led to a mild but signifi-

cant decrease in muscle size (Figure 4—figure supplement 1). Treatments with both drugs resulted

in obviously fewer and larger boutons at NMJs, recapitulating the NMJ phenotype of sphingolipid-

and MacCer-deficient larvae (Figure 4, D–G and Figure 4—figure supplement 1). These results sug-

gest that a proper level of sterols is required for bouton formation.

Depleting sterol with MbCD in egh-overexpressing background fully restrict the NMJ overgrowth

to the level of the wild-type larvae treated with MbCD. Moreover, MbCD treatments in sphingolipid-

deficient lacek05305/Df mutants and MacCer-deficient larvae (egh62d18 and nSyb-Gal4/UAS-brn) did

not exacerbate the NMJ phenotype (Figure 4G, and Figure 4—figure supplement 1), suggesting

that sterol may modulate NMJ growth in a common genetic pathway with sphingolipids and

MacCer. We then determined if MbCD treatment suppresses NMJ growth via directly reducing the

MacCer level. We found that MbCD completely suppressed the NMJ overgrowth without detectably

reducing the synaptic MacCer level in wild-type and Egh-overexpressing larvae; similarly, Filipin

treatment did not affect the synaptic level of MacCer (Figure 4, H–N).These data suggest that

restriction of synaptic growth by MbCD may be due to defects of MacCer function by disrupting raft

assembly rather than a reduction in the synaptic level of MacCer per se. This finding is consistent

with a previous report that disrupting the formation of membrane rafts may compromise the func-

tion of raft-associated factors but not necessarily affecting their levels; more specifically, the localiza-

tion of a raft protein LFA-1 was unaltered examined by confocal microscopy at subcellular level but

altered by single-molecule near-field optical microscopy at molecular level upon raft disruption

(van Zanten et al., 2009). Together, these data suggest that the NMJ growth-promoting effect of

MacCer depends on normal lipid rafts.

MacCer promotes NMJ bouton formation via Wg signaling
NMJ development is controlled in part by growth factors and pathways (Bayat et al., 2011;

Harris and Littleton, 2015; Korkut and Budnik, 2009). Bone morphogenic protein (BMP) is an

important growth promoting signaling in NMJs (Bayat et al., 2011). However, we found that the

NMJ growth-promoting effect of MacCer is not mediated through the BMP signaling pathway

(Huang et al., 2016). Wnt1/Wingless (Wg) activates another signaling pathway promoting NMJ

growth (Korkut and Budnik, 2009). Because Wg is a lipid raft-associated protein (Zhai et al., 2004),

we further investigated if Wg signaling play roles in MacCer-mediated NMJ growth. Previous reports

showed that loss-of-function mutations of Wg signaling components, including the ligand Wg, the

receptor dFrizzled2 (Fz2), the co-receptor Arrow (Arr), and the Wg-binding protein Evenness
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Interrupted/Wntless (Evi/Wls), decrease synaptic bouton number, while overexpression of Wg in

motor neurons results in synaptic overgrowth (Korkut et al., 2009; Miech et al., 2008;

Packard et al., 2002). In addition, the proper secretion, binding with the receptor Frizzled, and acti-

vation of Wg requires lipidation at the conserved serine at amino acid 239 (Janda et al., 2012;

Takada et al., 2006). Specifically, the synaptic level of Wg and the downstream signaling are

Figure 4. Sterol-depletion inhibits NMJ growth in a common genetic pathway with MacCer. (A and B) Confocal images of single slice of NMJ4 boutons

triple-labeled with anti-MacCer (red), anti-Syx1A (green) and anti-HRP (blue) in wild type with or without 20 mM MbCD treatment. Plot profiles of the

relative intensity along the dashed lines are shown. (C) Pearson’s coefficients of colocalization between MacCer and Syx1A. n = 63 and 52 boutons from

eight wild-type larvae each with or without MbCD treatment. (D–F) Images of NMJ4 co-labeled for anti-HRP (green) and anti-CSP (magenta) in

untreated wild type (D), wild type treated with 20 mM MbCD (E), wild type treated with 50 mg/ml filipin III (F), Scale bar: 10 mm. (G) Quantification of

bouton number and bouton size of NMJs. ns, no significance, ***p<0.001 by one-way ANOVA with Tukey post hoc tests, error bars: s.e.m. (H–M)

Images of NMJs from larvae stained with anti-MacCer of wild type (H), wild type treated with 20 mM MbCD (I), UAS-Egh/+; nSyb-Gal4/+ (J), and UAS-

Egh/+; nSyb-Gal4/+ treated with 20 mM MbCD (K), wild-type larvae treated with vehicle DMSO (L) or 50 mg/ml filipin III (M). Scale bar: 5 mm. (N)

Quantification of MacCer intensities normalized to HRP intensities in different genotypes. ns, no significance; **p<0.01 by one-way ANOVA with Tukey

post hoc tests; n � 12 larvae; error bars: s.e.m.

DOI: https://doi.org/10.7554/eLife.38183.010

The following source data and figure supplement are available for figure 4:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.012

Figure supplement 1. Additional NMJ images and quantifications of bouton number and bouton size.

DOI: https://doi.org/10.7554/eLife.38183.011
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positively regulated by the acyltransferase Porcupine (Packard et al., 2002), which activates the lipi-

dation and raft-association of Wg (Zhai et al., 2004). We hypothesized that the NMJ growth-pro-

moting effect of Wg depends on its association with membrane rafts. Indeed, raft disruption by

MbCD treatment which depletes sterol significantly reduced Wg staining intensity at NMJs and con-

strained NMJ overgrowth in Wg-overexpressing larvae (Figure 5—figure supplement 1), suggesting

that normal Wg signaling at NMJs requires intact lipid rafts.

Next, we determined whether Wg signaling cooperates with MacCer in promoting NMJ growth.

Genetic analysis showed that loss of one copy of egh62d18 had no effect on NMJ morphology but

fully suppressed the NMJ overgrowth phenotype of Wg-overexpressing larvae. Homozygous muta-

tion of egh or overexpression of brn on a Wg-overexpressing background led to a decrease in bou-

ton number, recapitulating the phenotype of egh mutants and brn-overexpressing larvae (Figure 5,

A–E, K and Figure 5—figure supplement 1). These results together indicate that the NMJ growth-

promoting effect of Wg signaling depends on the proper level of MacCer. Conversely, mutation in

wg1/wgCX4 restricted NMJ overgrowth in Egh-overexpressing larvae to the wg mutant level (Fig-

ure 5, G–I and K). In addition, although bouton number was normal in wg1 and egh62d18 single het-

erozygotes (wg1/+and egh62d18/+), there were fewer and larger boutons in egh62d18/+;

wg1/+ transheterozygotes. Similarly reduced bouton numbers were observed in egh62d18/+; arr-
k08131/+and egh62d18/+; evi2/+ transheterozygotes (Figure 5, J, K and Figure 5—figure supplement

1), suggesting that Egh and Wg signaling act in the same genetic pathway. Together, these results

demonstrate that MacCer works synergistically with Wg signaling in promoting NMJ growth and

bouton formation.

MacCer facilitates local presynaptic Wg signaling at NMJs
To reveal the molecular mechanism by which MacCer promotes NMJ growth via Wg signaling, we

first examined if there was colocalization between MacCer and Wg. Indeed, a substantial overlap

between MacCer and Wg immunoreactivity was observed in NMJ boutons (Figure 6A and E). It is

known that Wg secretion from presynaptic terminals requires the recycling endosomal small GTPase

Rab11 (Koles et al., 2012; Korkut et al., 2009). It is also known that recycling endosomes are

enriched with components of lipid rafts including Lactosylceramide (LacCer), the vertebrate analog

of MacCer (Balasubramanian et al., 2007; Gagescu et al., 2000; Hortsch et al., 2010). Consis-

tently, we found strong colocalization of MacCer with Rab11 at NMJ terminals (Figure 6, C and E).

In contrast, MacCer puncta did not overlap with the early endosomal marker Rab5-YFP or the late

endosome protein Spinster-GFP (Spin-GFP). Although GSLs are synthesized in the Golgi apparatus,

there were few overlaps between MacCer and the Golgi marker Mannose II-GFP (Figure 5—figure

supplement 1).

The specific colocalization of MacCer with Wg and Rab11 suggests that the trafficking or distribu-

tion of Wg at NMJ synapses may be altered upon MacCer reduction. Indeed, the staining intensity

of endogenous Wg was significantly decreased in egh62d18 mutant boutons and brn-overexpressing

NMJs; Conversely, Wg intensity was increased in egh-overexpressing and brn-RNAi knockdown bou-

tons (Figure 6B, F–I and Figure 6—figure supplement 2). Thus, MacCer is both required and suffi-

cient for Wg level at NMJ synapses. Though the total protein level of Wg in egh mutant brains

appeared normal by Western assay, we found an increase of Wg in the central neuropil but not in

peripheral axons within segmental nerves of egh mutants (Figure 6—figure supplement 3), sug-

gesting a defect in axonal transport of Wg. In contrast to reduced synaptic Wg, the staining intensi-

ties of Rab11 and the Wg receptor Fz2 were largely normal in egh NMJs (Figure 6D and Figure 6—

figure supplement 4). Conversely, MacCer staining was normal in wg or rab11 mutants (Figure 6—

figure supplement 4). These results together show that MacCer positively regulates Wg level, but

not vice versa, at NMJs.

Wg coordinates pre- and postsynaptic signaling cascades that modulate synapse development.

The presynaptic Wg signaling pathway promotes formation of Futsch-associated microtubule loops

without transcriptional regulation (Korkut and Budnik, 2009; Miech et al., 2008). Futsch is a micro-

tubule-associated protein, and the formation of Futsch-positive microtubule loops is essential for

synaptic growth (Roos et al., 2000). In wg and arr mutants with impaired Wg signaling, the number

of Futsch loops is reduced while the percentage of boutons containing unbundled Futsch is

increased (Miech et al., 2008; Packard et al., 2002). We observed similar Futsch staining phenotype

in brn-overexpression larvae, egh62d18 mutants and egh62d18/+; wg1/+ transheterozygotes, i.e., a
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Figure 5. MacCer is required for the NMJ growth-promoting effect of Wg signaling. (A–J) Representative images of NMJ4 co-stained with anti-HRP

(green) and anti-CSP (magenta) in egh62d18/+ (control, (A), UAS-Wg-HA/+; nSyb-Gal4/+ (B), egh62d18/+; UAS-Wg-HA/+; nSyb-Gal4/+ (C), egh62d18 (D),

egh62d18; UAS-Wg-HA/+; nSyb-Gal4/+ (E), wg1/+ (F), wg1/wgCX4 (G), nSyb-Gal4/UAS-Egh (H), wgCX4,UAS-Egh/wg1; nSyb-Gal4/+ (I), and egh62d18/+;

wg1/+ (J).Scale bar: 10 mm. (K) Quantifications of bouton number and bouton size of NMJs in different genotypes. ‘CT’ denotes corresponding control

Figure 5 continued on next page
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significant increase in the percentage of boutons containing unbundled and punctate Futsch signals,

especially in large boutons (Figure 6, J–M and Figure 6—figure supplement 2), indicating that

MacCer and Wg cooperate in controlling the formation of Futsch loops. Together, these results sup-

port that MacCer facilitates presynaptic Wg signaling during NMJ development.

MacCer is not required for postsynaptic differentiation
Distinct from the presynaptic Wg pathway, Wg regulates postsynaptic differentiation and bouton

formation by activating the Fz2 nuclear import pathway in postsynaptic muscles (Ataman et al.,

2006; Mathew et al., 2005; Mosca and Schwarz, 2010); defects in this pathway lead to a reduced

number of boutons, altered distribution of the postsynaptic type A glutamate receptor (GluRIIA), a

decrease of subsynaptic reticulum (SSR) with increase of ‘ghost bouton’ that lacks of Discs large

(DLG) postsynaptic staining, and enlarged pockets in SSR juxtaposed to active zones (Mosca and

Schwarz, 2010; Packard et al., 2002). However, we did not find these abnormalities in egh62d18

mutants except that the GluRIIA intensity was significantly but slightly increased (Figure 7, A, B and

E); rather, the ghost bouton number, the GluRIIA cluster size, as well as the SSR ultrastructure were

largely normal (Figure 7, C–I), suggesting that the postsynaptic Wg signaling remains unaffected

upon MacCer reduction.

Wg contains a functional MacCer-binding domain
The results shown above suggest that MacCer may interact with Wg and thus modulate its signaling

activity. Previous in vitro studies show that GSLs are able to specifically bind proteins containing a

structurally conserved GSL-binding motif (GBM), which contains both basic (Lys, Arg) and turn-induc-

ing (Gly, Ser) residues (Fantini and Yahi, 2015; Hamel et al., 2010). By in silico analysis, we identi-

fied a potential GBM of Wg between amino acid residues 233 and 247, therein Lys and Met are

required for the interaction with MacCer (Figure 8A). Interestingly, this region contains a palmitoyla-

tion site at Ser-239 by a palmitoleate (C16:1; Figure 8A and C) (Herr and Basler, 2012;

Kakugawa et al., 2015; Takada et al., 2006), which is known to affect the association of membrane

proteins to lipid rafts (Resh, 2004). Structure homology modeling and a series of molecular dynam-

ics simulations showed that this acylated GBM is fully exposed on the protein surface and perfectly

fit with MacCer. A remarkable feature of the molecular complex is that the ceramide part of MacCer

interacts with the acyl chain of the GBM, whereas the sugars of MacCer bind the peptidic part of the

GBM (Figure 8B and C).

We then analyzed the interaction of a synthetic peptide derived from the predicted GBM of Wg

with monolayers of purified GSLs by Langmuir microtensiometer experiments (Di Scala et al., 2014).

The amino acid sequence of the peptide contains four Cys residues with several possibilities of form-

ing two disulfide bridges may not fully stable under our experimental conditions. Thus we designed

a synthetic peptide in which the Cys residues were replaced by isosteric Ser residues (referred to as

Wg233-247). This Cys/Ser substitution respects the electrostatic distribution of partial charges at the

surface of the peptide. The Wg233-247 peptide showed high affinity with LacCer (Figure 8—figure

supplement 1).

Figure 5 continued

in each multiple comparison. n � 12 larvae; ns, no significance, *p<0.05; **p<0.01; ***p<0.001 by one-way ANOVA with Tukey post hoc tests, error

bars: s.e.m.

DOI: https://doi.org/10.7554/eLife.38183.013

The following source data and figure supplements are available for figure 5:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.016

Figure supplement 1. Additional NMJ images and quantifications.

DOI: https://doi.org/10.7554/eLife.38183.014

Figure supplement 2. Additional NMJ images and quantifications.

DOI: https://doi.org/10.7554/eLife.38183.015
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Figure 6. MacCer is required for the local presynaptic Wg signaling at NMJs. (A–D) Confocal images of single slice of NMJ4 boutons triple-labeled

with anti-MacCer (red), anti-HRP (blue) and anti-Wg (green; A–B) or anti-Rab11 (green; C–D) in wild type and egh62d18 mutants. MacCer puncta showed

substantial colocalization (arrowheads) with Wg and Rab11 in boutons. Arrows indicate Rab11-positive puncta without MacCer staining in the egh62d18

mutants. Images were processed by deconvolution. Scale bar: 2 mm. (E) Pearson’s coefficients of colocalization between MacCer and indicated

proteins. n = 51 and 44 boutons (from ten wild-type larvae each) for colocalization of MacCer with Wg and Rab11, respectively. (F–H) Representative

images of NMJ4 co-labeled with anti-Wg (green) and anti-HRP (magenta) in wild type (F), egh62d18 mutants (G) and UAS-Egh/+; nSyb-Gal4/+(H). Scale

bar: 5 mm. (I) Quantification of intensities of endogenous Wg normalized to HRP intensities in different genotypes. n � 15 larvae; ns, no significance;

**p<0.01 and ***p<0.001 by student’s t test; error bars: s.e.m. (J–L) Representative images of NMJ6/7 labeled with anti-Futsch (green) and anti-HRP

Figure 6 continued on next page
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We further analyzed the interaction of Wg233-247 with GSLs extracted from Drosophila larvae of

different genotypes. In agreement with previous findings (Hamel et al., 2010; Wandall et al.,

2005), wild-type larvae expressed a broad range of GSLs including tetra- and penta-hexosylcera-

mides, while egh62d18 mutants lacked MacCer and brn1.6P6 mutants contained almost exclusively

MacCer (Figure 8—figure supplement 1). As expected, Wg233-247 showed strong interaction with

MacCer-enriched GSLs from brn mutants but no interaction with MacCer-deficient GSLs from egh

mutants (Figure 8D). In contrast, a GBM mutant containing mutations at key Lys and Met (K234E

and M238R; Figure 8A) showed no interaction to GSLs from brn mutants (Figure 8—figure supple-

ment 1). Moreover, we examined whether full-length Wg binds to MacCer-enriched GSLs. Myc-

tagged full-length Wg was produced by an in vitro translation kit containing rabbit reticulocyte

lysates and purified by anti-Myc immunoprecipitation. Wild-typed Wg showed high affinity to GSLs

from brn but not egh mutants; in contrast, Wg with GBM deleted or mutated showed no affinity to

GSLs from brn mutants (Figure 8E and F).

We further validated the GSL binding ability of Wg by pull-down assay. Wild-type Myc-Wg but

not Wg with mutated GBM was substantially pulled down by LacCer-coated beads (Figure 8G).

Taken together, these data support that Wg has an intrinsic affinity for MacCer/LacCer via GBM.

Wg GBM is critical for its colocalization with MacCer and normal NMJ
growth
To further test the physiological role of the Wg GBM, we generated double site-directed point

mutations of K234E and M238R in Wg (Figure 8A) by CRISPR/Cas9-mediated mutagenesis. This

double point-mutation wg allele was named wgGBM. Homozygous wgGBM or in combination with a

null allele wgCX4 (wgGBM/wgCX4) led to larval lethality before 3rd instar stage. However, wgGBM in

combination with a hypomorphic allele wg1 (wg1/wgGBM) resulted in escapers survived to adults. The

Wg protein level in wg1/wgGBM mutants was largely normal in whole larvae by western analysis and

at NMJs by immunostaining compared with wg1 heterozygotes (wg1/+) (Figure 9, A–D). MacCer

level was not altered in wg1/wgGBM mutants compared with that of wg1/+ heterozygous control (Fig-

ure 9, A–C). However, the colocalization between Wg and MacCer was significantly decreased in

wg1/wgGBM mutants compared with that of wg1/+ heterozygous and wild-type control (Figure 9, E–

H), suggesting that wgGBM mutation, presumably a null allele, affect proper localization of Wg in syn-

aptic boutons.

To determine if Wg GBM interacts with MacCer in regulating Wg signaling and bouton formation,

we examined the genetic interaction between wgGBM and egh mutation. We found that wgGBM/wg1

mutants and egh62d18/+; wgGBM/+ transheterozygotes showed fewer and larger boutons, and the

Figure 6 continued

(magenta) in wild type (J), egh62d18 mutants (K) and egh62d18/+; wg1/+transheterozygotes (L). Insets show higher magnification images of Futsch

staining of a single bouton (asterisk). Arrows indicate boutons displaying unbundled Futsch; arrowheads denote boutons with Futsch loops. Scale bar:

10 mm. (M) Quantifications of percentage of Futsch loops and unbundled Futsch staining in different genotypes. The genotype of egh rescue was

egh62d18; UAS-Egh/+; nSyb-Gal4/+; the genotype of wg was wg1/wgCX4. n � 12 larvae; ns, no significance, *p<0.05; **p<0.01 by one-way ANOVA with

Tukey post hoc tests, error bars: s.e.m.

DOI: https://doi.org/10.7554/eLife.38183.017

The following source data and figure supplements are available for figure 6:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.022

Figure supplement 1. MacCer puncta showed few overlap with Rab5-YFP, Spinster-GFP and Mannose II-GFP.

DOI: https://doi.org/10.7554/eLife.38183.018

Figure supplement 2. The Wg level in egh brains by immunochemical analysis.

DOI: https://doi.org/10.7554/eLife.38183.019

Figure supplement 3. Additional images showing Wg and Futsch staining at NMJ of different genotypes.

DOI: https://doi.org/10.7554/eLife.38183.020

Figure supplement 4. Images and quantifications of MacCer, Rab11, and Fz2 staining at NMJ of different genotypes.

DOI: https://doi.org/10.7554/eLife.38183.021
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Figure 7. Postsynaptic differentiation is normal in egh mutants. (A and B) Representative images of NMJ4 from wild type and egh62d18 mutants co-

stained with anti-HRP (magenta) and anti-GluRIIA (green). Scale bar: 2 mm. (C and D) Images of NMJ6/7 from wild type and egh62d18 mutants co-stained

with anti-HRP (magenta) and anti-DLG (green). An arrowhead points at a ghost bouton. Scale bar: 20 mm. (E and F) Quantification of normalized

intensities and area of GluRIIA against anti-HRP staining of NMJ4 (E) and ghost bouton number of NMJ6/7 (F) in wild type and egh62d18 mutants. ns, no

significance, *p<0.05 by student’s t test; n � 12 larvae; error bars: s.e.m. (G and H) Ultrastructure images of NMJ6/7 boutons from wild type and

egh62d18 mutants. The subsynaptic reticulum (SSR; green) is folded membrane network that surrounds the presynaptic bouton (b); The SSR region

juxtaposed to the active zone (AZ) is indicated by asterisks in red. Scale bar: 1 mm. (I) Quantification of various bouton parameters of NMJ 6/7 synapses

Figure 7 continued on next page
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phenotype in wgGBM/wg1 mutants was rescued by neuronal expression of Wg but not by expression

of Egh (Figure 9I–N). The NMJ phenotype of wgGBM/wg1 was insensitive to egh overexpression

(Figure 9L and N), supporting that wg is epistatic to egh. We also observed significantly fewer bou-

tons with Futsch loops and more boutons with unbundled Futsch staining in both wgGBM/wg1

mutants and egh62d18/+; wgGBM/+ transheterozygotes (Figure 9O-R). Together, these findings sug-

gest that the intact Wg GBM is critical for proper Wg localization, Wg signaling and thus bouton

formation.

Discussion
In the present study, based on genetic analysis of cell-type specific manipulations of Egh, Brn and

Wg expression, together with immunochemical, genetic interaction and lipid-protein interaction

analysis, we demonstrate that MacCer promotes NMJ bouton formation by interacting with Wg,

thereby facilitating presynaptic Wg signaling. This is the first report defining a critical role of a spe-

cific class of sphingolipids in synapse development.

A crucial role for sphingolipids in NMJ synapse development
Sphingolipids are essential components of lipid rafts which regulate multiple signaling pathways and

neural functions. The present study provides compelling evidence implicating sphingolipids in regu-

lating NMJ growth (Figure 1 and Figure 2; Supplementary file 1). Previous studies revealed that

various mutations in either egh or brn result in similar ovarian defects and neuronal hypertrophy dur-

ing embryogenesis (Goode et al., 1996). The similarity of egh and brn mutant phenotypes suggests

that both are caused by a lack of complex GSLs downstream of brn. A more recent study showed

that egh mutations result in overgrowth of subperineurial glia through elevated phosphatidylinositol-

3 kinase (PI3K) signaling; the glial phenotype is due to the accumulation of GlcCer, the substrate of

Egh (Dahlgaard et al., 2012). At NMJs, however, our data demonstrate that the NMJ defects in

egh mutants are caused by lack of MacCer.

Do other classes of sphingolipids besides MacCer also regulate synapse development? Many

sphingolipids, such as phosphorylated sphingosines and CerPE, the most abundant sphingolipid in

lipid rafts, play a diverse array of functions in the nervous system (Fantini and Yahi, 2015;

Yonamine et al., 2011). It will be intriguing to define the molecular mechanisms by which these

structural and signaling sphingolipids regulate synapse development.

MacCer promotes synaptic growth via presynaptic Wg signaling
Drosophila NMJ development is mediated by multiple signaling cascades. How does MacCer func-

tion in synaptic growth? Consistent with previous findings that GSL/lipid rafts are enriched in recy-

cling endosomes (Balasubramanian et al., 2007; Gagescu et al., 2000; Hortsch et al., 2010), we

observed a substantial colocalization between MacCer and recycling endosomal marker Rab11 at

NMJ synapses (Figure 6). We note, however, the impact of MacCer and Rab11 on NMJ growth is

opposite. The NMJ bouton formation is positively regulated by MacCer but negatively regulated by

Rab11 (Huang et al., 2016; Khodosh et al., 2006; Liu et al., 2014; this study). The opposite effect

on NMJ growth of the two might be caused by the fact that MacCer and Rab11 regulate different

signaling pathways. For example, Rab11 inhibits BMP signaling (Huang et al., 2016; Liu et al.,

2014) while MacCer facilitates Wg signaling (this study) at NMJ terminals.

Our results showed that MacCer facilitates the presynaptic Wg signaling in promoting NMJ

growth (Figure 5). In contrast to the abnormal microtubule cytoskeleton (Figure 6), egh mutants

Figure 7 continued

in wild type and egh62d18 mutants. n = 50 boutons from five wild-type animals, and n = 37 boutons from three egh62d18 larvae. Statistical analysis was

performed by student’s t test.

DOI: https://doi.org/10.7554/eLife.38183.023

The following source data is available for figure 7:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.024
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Figure 8. Wg has a functional MacCer-binding domain (A) Schematic representation of Wg protein and amino acid sequence of a putative GSL-

binding motif (GBM) and mutated GBM with asterisks denoting the mutated amino acids.(B) A 3D model of Wg residues 85–277 with the location of

the GBM, which exposes on the protein surface. (C) Energy-minimized model of the acylated (C16:1 w7) GBM in Wg binding with MacCer. (D and E)

Surface pressure change (Dp) by the addition of Wg233-247 peptide (GBM peptide; D) and full-length Wg produced by in vitro translation system (E) on a

Figure 8 continued on next page
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showed normal postsynaptic differentiation with no increase in ghost bouton number as well as

normal SSR ultrastructure (Figure 7), suggesting a specific regulation of presynaptic rather than

postsynaptic Wg activity by MacCer. A recent study showed that at NMJs, Wg is secreted from

glial cells as well as presynaptic motor neurons, and that this glia-derived Wg controls the

assembly of postsynaptic machinery at NMJs without affecting the bouton number (Kerr et al.,

2014). The normal postsynaptic differentiation in egh mutants may be due to normal postsynap-

tic Wg signaling triggered by glia-derived Wg. This postulation is supported by the observation

that manipulations of glial MacCer by genetic means did not affect NMJ growth (Figure 2—fig-

ure supplement 2).

How does MacCer affect Wg signaling at the molecular and cellular levels? Wg associates with

lipid rafts via its acylation (Zhai et al., 2004), enabling its access to the raft-component MacCer.

Upon lipid raft disruption by sterol depletion, Wg de-localizes from the lipid rafts (detergent-resis-

tant, cholesterol-rich membrane microdomains) revealed by biochemical fractionation (Zhai et al.,

2004). We envisage that delocalization of Wg does not allow its binding to MacCer, compromises

its transport to the NMJ terminals (Figure 5—figure supplement 1), and in turn restricts NMJ

growth (Figure 4). This notion is supported by colocalization of MacCer and Wg on specific mem-

brane domains of presynaptic organelles (Figure 6) and direct MacCer-Wg binding (Figure 8). As

MacCer is both required and sufficient for normal Wg expression at NMJ boutons, but not vice versa

(Figures 6 and 9), we propose that MacCer acts as an adaptor for Wg at the presynaptic recycling

endosomes (Figure 9). Our in silico data combined with biochemical and genetic analysis of GSL-Wg

interaction further showed that the 233 – 247 domain of Wg, which is acylated at Ser-239, is a func-

tional GBM that mediates high affinity binding to MacCer. Although we could not exclude the possi-

bility that Wg GBM might have other function independent of MacCer binding, our in vivo data

support that the GBM plays important roles in Wg-MacCer colocalization, Wg signaling and NMJ

development (Figure 9).

The association of Wg with membrane rafts requires the acylation at Ser-239 mediated by Porcu-

pine, a process conserved from Drosophila to vertebrates (Galli et al., 2007; Herr and Basler,

2012; Zhai et al., 2004). Importantly, the acylation by Porcupine is essential for the recognition of

Wg by Evi thereby affecting the transport and secretion of Wg through recycling endosomes and

exosomes (Herr and Basler, 2012; Koles et al., 2012; Korkut et al., 2009). Furthermore, both Por-

cupine and Evi are known to regulate the synaptic level of Wg and the signaling activity

(Korkut et al., 2009; Packard et al., 2002). In the present study, we showed a reduction in Wg level

at NMJ terminals but an increase in the neuropil of the ventral nerve cord of egh mutants (Figure 6

and Figure 6—figure supplement 2), similar to that in evi mutants with impaired Wg transport and

secretion (Korkut et al., 2009). These findings suggest that the transport and trafficking of Wg via

endosomes may be compromised when MacCer is deficient. The detailed mechanism by which

MacCer regulates Wg transport and trafficking remains to be further investigated. As Wnt signaling,

which is widely involved in various developmental processes and diseases including neurological and

psychological diseases, is evolutionally conserved (Herr et al., 2012; Korkut and Budnik, 2009; Sali-

nas, 2012), our finding that MacCer facilitates Wg signaling transduction suggests a new target for

intervening Wnt signaling associated pathogenesis.

Figure 8 continued

monolayer of GSLs purified from wild type, egh62d18 and brn1.6P6 larvae. GBM peptide and full-length Wg showed specific high affinity to MacCer

enriched GSLs. (F) Surface pressure change (Dp) by the addition of Myc-tagged wild-type Wg (WgWT) and Wg with GBM deleted (WgGBM deleted) or

mutated (WgGBM) on a monolayer of GSLs purified from brn1.6P6 larvae. All surface pressure measurements were performed in triplicate and a

representative curve is shown. (G) Wild-type Wg (WgWT) but not Wg with mutated GBM (WgGBM) was pulled-down by LacCer-beads. Five biological

repeats were carried out for the pull-down assay and a representative blot is shown.

DOI: https://doi.org/10.7554/eLife.38183.025

The following figure supplement is available for figure 8:

Figure supplement 1. Additional monolayer data and GSL profiles of egh and brn mutants.

DOI: https://doi.org/10.7554/eLife.38183.026
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Figure 9. Wg GBM is required for Wg-MacCer colocalization and NMJ growth. (A and B) Representative images of NMJ4 co-labeled with anti-Wg

(green), anti-MacCer (red) and anti-HRP (blue) in wg1/+ (A) and wgGBM/wg1 mutants (B). (C) Quantification of Wg and MacCer intensities normalized to

HRP intensities in different genotypes. n � 15 larvae; ns, no significance by one-way ANOVA with Tukey post hoc tests; error bars: s.e.m. (D) Western

results of Wg and Actin from 3rd instar larvae of wg1/+and wgGBM/wg1 mutants. Actin was used as a loading control. Western blots were performed in

triplicate and a representative image is shown. (E–G) Representative images of NMJ4 boutons triple-labeled with anti-Wg (green), anti-MacCer (red)

and anti-HRP (blue) in wild type (E), wg1/+ (F) and wgGBM/wg1 mutants (G). Arrowheads indicate puncta positive for both MacCer and Wg signals;

arrows indicate puncta without obvious overlap of MacCer and Wg. Images were processed by deconvolution. Scale bar: 2 mm. Plot profiles of relative

intensity of MacCer and Wg along the dashed lines were shown. (H) Pearson’s coefficients of colocalization between MacCer and Wg. n = 58/10, 57/8,

Figure 9 continued on next page
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Materials and methods

Key resources table

Reagent type (species) or resource Designation
Source or
reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

wgGBM this paper NA This allele
carries the
point
mutation of
K234E
and M238R in Wg

Genetic reagent
(D. melanogaster)

wg1 doi: 10.1523/
Jneurosci.
3714–13.
2014

RRID:
BDSC_2978

Genetic reagent
(D. melanogaster)

wgCX4,
wgl-17

doi: 10.1016/
S0092-
8674 (02)01047–4

RRID:
BDSC_2980

Genetic reagent
(D. melanogaster)

UAS-Wg-
HA(6C)

doi: 10.1016/
S0092-
8674 (02)01047–4

RRID:
BDSC_5918

Genetic reagent
(D. melanogaster)

UAS-Wg-
HA(3C)

doi: 10.1016/
S0092-
8674 (02)01047–4

RRID: DGGR_108488

Genetic reagent
(D. melanogaster)

egh7 PMID:
9012507

RRID:
BDSC_3902

Genetic reagent
(D. melanogaster)

egh62d18 PMID:
9012507

NA Dr. Stephen
M. Cohen
(National
University of
Singapore)

Genetic reagent
(D. melanogaster)

UAS-Egh-
Myc

doi: 10.1074/
jbc.C4005
71200

NA

Genetic reagent
(D. melanogaster)

brnfs107 PMID:
1483386

RRID:
BDSC_4303

Genetic reagent
(D. melanogaster)

brn1.6P6 PMID:
1483386

RRID:
BDSC_50762

Genetic reagent
(D. melanogaster)

UAS-Brn doi: 10.1016/
j.ydbio.
2007.04.013

NA

Genetic reagent
(D. melanogaster)

UAS-brn-
RNAi

doi: 10.1038/
nmeth

RRID:
BDSC_55386

Continued on next page

Figure 9 continued

and 46/8 (from left to right, boutons/animals). ns, no significance, ***p<0.001 by one-way ANOVA with Tukey post hoc tests; error bars: s.e.m. (I–M)

Representative images of NMJ4 co-stained with anti-HRP (green) and anti-CSP (magenta) in wgGBM/+ (I), wgGBM/wg1 (J), UAS-Wg-HA, wgGBM/wg1;

nSyb-Gal4/+ (K), UAS-Egh, wgGBM/wg1; nSyb-Gal4/+ (L), and egh62d18/+; wgGBM/+ (M). Scale bar: 10 mm. (N) Quantifications of bouton number and

bouton size of NMJs in different genotypes. n � 12 larvae; ns, no significance, *p<0.05; **p<0.01; ***p<0.001 by one-way ANOVA with Tukey post hoc

tests, error bars: s.e.m. (O–Q) Representative images of NMJ6/7 labeled with anti-Futsch (green) and anti-HRP (magenta) in wild type (O), wgGBM/wg1

(P), and egh62d18/+; wgGBM/+ transheterozygotes (Q). Insets show higher magnification images of Futsch staining of a single bouton (asterisk). Arrows

indicate boutons displaying unbundled Futsch; arrowheads denote boutons with Futsch loops. Scale bar: 10 mm. (R) Quantifications of percentage of

Futsch loops and unbundled Futsch staining in different genotypes. n � 12 larvae; ns, no significance, **p<0.01 by one-way ANOVA with Tukey post

hoc tests, error bars: s.e.m. (S) A schematic presentation of the role for MacCer in promoting synapse growth via interacting with Wg in lipid rafts. The

presynaptic Wg signaling is denoted by a curved arrow.

DOI: https://doi.org/10.7554/eLife.38183.027

The following source data is available for figure 9:

Source data 1. Numerical data for the statistical graphs.

DOI: https://doi.org/10.7554/eLife.38183.028
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Continued

Reagent type (species) or resource Designation
Source or
reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

arrk08131 doi: 10.1534/
genetics.
104.026427

RRID:
BDSC_665

Genetic reagent
(D. melanogaster)

arr2 doi: 10.1038/
35035110

RRID:
BDSC_3087

Genetic reagent
(D. melanogaster)

evi2 doi: 10.1074/
jbc.M112.
342667

NA Dr. Vivian Budnik
(University
Massachusetts
Medical School)

Genetic reagent
(D. melanogaster)

lace2 doi: 10.1128/
MCB.19.
10.7276

RRID:
BDSC_3159

Genetic reagent
(D. melanogaster)

lacek05305 doi: 10.1128/
MCB.19.
10.7276

RRID:
BDSC_12176

Genetic reagent
(D. melanogaster)

Df(2L)
Exel7063

NA RRID:
BDSC_7831

Genetic reagent
(D. melanogaster)

schlankG0489 doi:10.1038/
emboj.
2009.305

RRID: DGGR_111936

Genetic reagent
(D. melanogaster)

schlankG0061 doi:10.1038/
emboj.
2009.305

RRID:
BDSC_11665

Genetic reagent
(D. melanogaster)

Sk2KG05894 doi: 10.1194/
jlr.M300005-
JLR200

RRID:
BDSC_14133

Genetic reagent
(D. melanogaster)

Df(3L)
BSC671

NA RRID:
BDSC_26523

Genetic reagent
(D. melanogaster)

UAS-ManII-
GFP

doi:10.1016/
j.cell.
2007.06.032

RRID:
BDSC_65248

Dr. Yuh Nung Jan
(University
of California,
San Francisco)

Genetic reagent
(D. melanogaster)

UAS-Spin-
GFP

doi: S089662
7302010140

RRID:
BDSC_39668

Dr. Graeme Davis
(University
of California,
San Francisco)

Genetic reagent
(D. melanogaster)

UAS-YFP-Rab5 doi: 10.1534/
genetics.106.
066761

RRID:
BDSC_24616

Genetic reagent
(D. melanogaster)

nSyb-Gal4 NA RRID:
BDSC_51635

Genetic reagent
(D. melanogaster)

OK6-Gal4 NA RRID:
BDSC_64199

Genetic reagent
(D. melanogaster)

C57-Gal4 NA RRID:
BDSC_32556

Genetic reagent
(D. melanogaster)

Repo-Gal4 NA RRID:
BDSC_7415

Genetic reagent
(D. melanogaster)

act-Cas9 NA RRID:
BDSC_54590

Antibody Mouse IgM
anti-MacCer

doi: 10.1074/
jbc.C4005
71200

NA IHC (1:1)

Antibody Mouse anti-
CSP

DSHB Cat.
#: 6D6

RRID:
AB_528183

IHC (1:300)

Antibody Mouse anti-
Wg

DSHB Cat.
#: 4D4

RRID:
AB_528512

IHC (1:10),
WB (1:50)

Continued on next page
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Continued

Reagent type (species) or resource Designation
Source or
reference Identifiers Additional information

Antibody Mouse
anti-Futsch

DSHB Cat.
#: 22C10

RRID:
AB_528403

IHC (1:50)

Antibody Mouse
anti-DLG

DSHB Cat.
#: 4F3

RRID:
AB_528203

IHC (1:500)

Antibody Mouse
anti-GluRIIA

DSHB Cat.
#: 8B4D2

RRID:
AB_528269

IHC (1:200)

Antibody Mouse
anti-Fas II

DSHB Cat.
#: 1D4

RRID:
AB_528235

IHC (1:50)

Antibody Mouse
anti-Syx1A

DSHB Cat.
#: 8C3

RRID:
AB_528484

IHC (1:20),
WB (1:1000)

Antibody Mouse
anti-dFz2

DSHB Cat.
#:12A7

RRID:
AB_528257

IHC (1:5)

Antibody Mouse
anti-Rab11

BD Biosciences
Cat. #: 610656

RRID:
AB_397983

IHC (1:50)

Antibody Mouse
anti-HA

MBL
International
Cat. #: M180

RRID:
AB_10951811

IHC (1:1000)

Antibody Mouse
anti-Myc

CWBIO Cat.
#: CW0259

IHC (1:300),
WB (1:1000)

Antibody Mouse
anti-Myc

MBL
International
Cat. #: M192

RRID:
AB_11160947

IHC (1:300),
WB (1:1000)

Antibody Rat
anti-GFP

MBL
International
Cat. #: D153

RRID:
AB_591820

IHC (1:200)

Antibody fluorescence-
conjugated
anti-HRP

Jackson
Immuno
Research

RRID:
AB_2314647

IHC (1:200)

Antibody Mouse
anti-b-
actin

Millipore
Bioscience
Research

RRID:
AB_2223041

WB (1:50000)

Chemical compound,
drug

D,L-threo-
PDMP

Matreya Cat.#: 1719 0.5 mg/ml

Chemical compound,
drug

filipin III Cayman 70440 50 mg/ml

Chemical compound,
drug

MbCD Sigma-
Aldrich

C4555 20 mM

Chemical compound,
drug

Lactosyl
ceramide

Matreya Cat.#: 1500

Peptide, recombinant
protein

GBM this paper CKCHGMSG
SCTVKTC

Peptide, recombinant
protein

GBMmut this paper CECHGRSG
SCTVKTC

Recombinant
DNA reagent

pcDNA3.1-Myc-Wg Invitrogen V790-20

Recombinant
DNA reagent

U6b-sgRNA Addgene 65956

Recombinant
DNA reagent

pBluescript SK (-) Stratagene 212206

Commercial
assay or kit

TNT T6 Quick Coupled
Transcription/
Translation System

Promega Cat.#: L1171

Commercial
assay or kit

LacCer-
coated beads

Echelon Cat.#: P-B0LC

Continued on next page
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Continued

Reagent type (species) or resource Designation
Source or
reference Identifiers Additional information

Commercial
assay or kit

Control beads Echelon Cat.#: P-B000

Commercial
assay or kit

HPTLC Silica Gel
(aluminium plates)

Merck-
Millipore

Cat.#: 105547

Software,
algorithm

Hyperchem software Hypercube

Drosophila strains and genetics
Flies were cultured on standard cornmeal media at 25˚C. w1118 was used as the wild type control,

unless otherwise indicated. egh62d18, brn1.6P6, UAS-Egh-Myc (Wandall et al., 2005) and UAS-Brn

(Chen et al., 2007) were provided by S. M. Cohen and S. Pizette. evi2 was from V. Budnik

(Korkut et al., 2009). UAS-ManII-GFP was from Y. N. Jan (Ye et al., 2007). UAS-Spin-GFP was from

G. Davis (Sweeney and Davis, 2002). The following fly lines were obtained from the Bloomington

Stock Center: Df(2L)Exel7063, Df(3L)BSC671, Sk2KG05894, lace2, lacek05305, schlankG0489, schlankG0061,

egh7, brnfs107, arr2, arrk08131, wgCX4 (wg[l-17]), wg1, rab1193Bi, nSyb-Gal4, OK6-Gal4, C57-Gal4, Repo-

Gal4, UAS-Wg-HA, UAS-brn-RNAi, UAS-YFP-Rab5 and act-Cas9. For fly strains used in the genetic

screen, UAS-GalNAc-TA and UAS-GalNAc-TB were provided by S. M. Cohen (Chen et al., 2007).

desat110A, desat111A, desat1119A and desat1EY07679 were provided by E. Hafen (Köhler et al., 2009).

Other fly lines were obtained from the Bloomington Stock Center, Kyoto Stock Center and the

Tsinghua Drosophila RNAi Center.

Site-directed mutation in wg
We generated double site-directed point mutations at K234E and M238R in Wg to test the function

of GBM. The CRISPR/Cas9-mediated targeted mutagenesis of wg (CG4889) from w1118 was per-

formed largely according to previously published homology-directed repair procedures

(Gratz et al., 2014; Port et al., 2014) at Fungene Biotech (http://www.fgbiotech.com). sgRNA (syn-

thetic guide RNA) targets were designed with CRISPR Optimal Target Finder (Gratz et al., 2014).

Two sgRNAs recognized the region containing the mutations (gcgacaggagtgcaaatgccatgg and

gcaaatgccatggcatgtccgg; the last three bases ngg denotes proto-spacer adjacent motif) were

cloned into U6b-sgRNA vector (Ren et al., 2013). For donor vector construction, a 1.8 kb wg gene

region containing the site-directed mutation was cloned into pBluescript SK (-) vector. The donor

vector with the site-directed mutation and the sgRNA vector were injected into act-Cas9 transgenic

embryos. PCR sequencing was performed to identify if the offspring flies carried the designed

mutation.

Immunochemical analysis
Immunostaining of larval preparations was performed as previously described (Liu et al., 2014). For

most antibody staining, specimens were dissected in Ca2+-free HL3 saline, fixed in 4% paraformalde-

hyde for 30 min, and washed in 0.2% Triton X-100 in PBS. For MacCer staining, specimens were

fixed in 4% paraformaldehyde at 4˚C for 60 min and permeabilized with 0.1% Triton X-100 in cold

PBS, incubated with undiluted anti-MacCer hybridoma supernatants for 18 hr at 4˚C and detected

with Fluor 568 conjugated goat anti-mouse IgM (1:1000; Invitrogen). For GluRIIA staining, specimens

were fixed in cold methanol for 5 min. We used the following antibodies: mouse anti-cysteine string

protein (CSP) (1:300; 6D6 from DSHB), mouse anti-Wg (1:10; 4D4 from DSHB), mouse anti-Futsch

(1:50; 22C10 from DSHB), mouse anti-Rab11 (1:50; BD Biosciences), mouse anti-DLG (1:500; 4F3

from DSHB), mouse anti-GluRIIA (1:200; 8B4D2 from DSHB), mouse anti-Fas II (1:50; 1D4 from

DSHB), mouse anti-Syx1A (1:20; 8C3 from DSHB), mouse anti-dFz2 (1:5; 12A7 from DSHB), mouse

anti-HA (1:1000; MBL International), mouse anti-Myc (1:300; CWBIO, MBL International), rat anti-

GFP (1:200; MBL International), and fluorescence-conjugated anti-horseradish peroxidase (HRP)

(1:200; Jackson ImmunoResearch). Primary antibodies were visualized using corresponding second-

ary antibodies conjugated to Fluor 488, Cy3 (both at 1:1000; Invitrogen) or DyLight 649 (1:500; Jack-

son ImmunoResearch).
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Western analysis was performed as previously described (Liu et al., 2014). Briefly, 3rd instar larval

brains were dissected in cold PBS and homogenized in RIPA buffer (50 mM Tris-HCl at pH 7.4, 150

mM NaCl, 0.1% SDS, 1% NP-40) with proteinase inhibitors Set I (Calbiochemistry) on ice. Samples

were then subjected to SDS-PAGE and immunoblotting according to standard procedures. The fol-

lowing antibodies were used: mouse anti-Wg (1:50; 4D4 from DSHB), mouse anti-Syx1A (1:1000;

8C3 from DSHB), and mouse anti-actin (1:50000; Millipore Bioscience Research Reagents). All West-

ern blotting were performed at least for three independent biological replicates.

Image collecting and statistical analysis
Image collecting was carried out as previously described (Liu et al., 2014). NMJ images were col-

lected with an Olympus Fluoview FV1000 confocal microscope using a 40x/1.42 NA or 60 x/1.42 NA

oil objective and FV10-ASW software, or with a Leica confocal microscope using a 40x/1.25 NA oil

objective and LAS AF software. All images of muscle 4 or muscle 6/7 glutamatergic type Ib NMJ of

abdominal segments A2 to A4 for a specific experiment were captured using identical settings for

statistical comparison among different genotypes. High resolution confocal images were processed

with the deconvolution software AutoQuant X2 (Media Cybernetics). Brightness, contrast, and color

were adjusted using Photoshop CS5 (Adobe). NMJ morphological features were quantified using

ImageJ (National Institutes of Health, Bethesda, MD).

For quantification analysis of NMJ growth, individual boutons were defined according to the dis-

crete staining signal of anti-CSP. Satellite boutons were defined as extensions of five or fewer small

boutons emanating from the main branch of the NMJ terminals. For quantification of bouton sizes,

synaptic areas (mm2) were measured by assessing HRP-positive boutons, and normalized to bouton

numbers. Ghost boutons were defined as boutons positive for HRP staining but negative for DLG

staining. NMJ bouton number and size of schlank mutants were normalized to muscle surface area.

For quantification of protein levels at NMJ, staining intensities of each protein were measured within

HRP-positive NMJs using ImageJ. For colocalization analysis, single slices were analyzed using

WCIF-ImageJ ‘Colocalization Analysis’ within HRP-labeled synaptic boutons. Statistical comparisons

were performed using GraphPad Prism 6. Data of NMJ features are expressed as mean ± standard

error of the mean (s.e.m.). Statistical significance between each genotype and the controls was

determined by two tailed Student’s t test, whereas multiple comparisons between genotypes were

determined by one-way ANOVA with a Tukey post hoc test. Asterisks above a column indicate com-

parisons of a specific genotype to wild type (denoted WT) or genetic control (denoted CT), whereas

asterisks above a bracket denote comparisons between two specific genotypes. ns denotes p>0.05;

* indicates p<0.05; ** denotes p<0.01; *** indicates p<0.001.

Drug treatment of larvae
Larvae of different genotypes were raised on vehicle- or drug-containing media from egg hatching.

D,L-threo-PDMP (Matreya) and filipin III (Cayman) were dissolved in DMSO and then individually

added to standard media at specific concentrations. All the treatments used DMSO vehicle at a con-

centration of 0.5%. MbCD (Sigma-Aldrich) was resolved in standard media at a final concentration of

20 mM.

Molecular simulation
Docking of Wg onto MacCer was performed with the Hyperchem 8.0 program as described previ-

ously (Fantini and Yahi, 2011). Homology modeling of Wg fragment of 85 – 277 amino acids was

based on the published crystal structure of XWnt8 (Janda et al., 2012).

Lipid–protein interaction assay
Synthetic peptides of GBM (95%) were purchased from Sangon Biotech. Myc-tagged full-length Wg

were produced by an in vitro translation kit containing rabbit reticulocyte lysates (Promega).

pCDNA-Myc-Wg was expressed in the translation system at 30˚C for 90 min. Myc-Wg was immuno-

precipitated with anti-Myc affinity resin (Millipore), eluted with a Myc-peptide solution (Sigma), and

concentrated using a 30kD filter column (Amicon).

GSL–protein interactions were determined with the Langmuir-film balance technique as previously

described (Di Scala et al., 2014). It was monitored by surface pressure with a fully automated
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microtensiometer (mTrough SX; Kibron Inc.). All experiments were performed at 20 ± 1˚C. Monomo-

lecular films of GSLs were spread on pure water subphases (800 ml) from chloroform/methanol (1:1

vol/vol). The initial surface pressure of the monolayers was 12–15 mN/m. The accuracy of our experi-

mental conditions was ±0.25 mN/m. Real-time measurements kinetically followed the increase in the

surface pressure after injecting the peptide or protein (final concentration of 10 mM) into the aque-

ous phase underneath the GSL monolayer until equilibrium was reached. The data were analyzed

with the FilmWareX program (version 3.57; Kibron Inc.).

Lipid–protein pull-down assay was modified following a previous protocol (Kunisaki et al., 2006).

Wild-type and mutated Myc-Wg were produced by an in vitro translation kit containing rabbit reticu-

locyte lysates (Promega). The reticulocyte lysates were suspended in 400 mL lipid-binding/washing

buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 0.35% NP-40) and incubated with 20 mL slurry of con-

trol or LacCer-coated beads (Echelon) at 4˚C for 3 hr under rotary agitation. After extensive washing

with lipid-binding/washing buffer, the bound proteins were eluted from beads with 2 � Laemmli

sample buffer and subjected to Western analysis with mouse anti-Myc (1:1000; CWBIO).

GSL extraction and analysis
GSL extraction was performed as described (Hamel et al., 2010; Wandall et al., 2005). 3rd instar

larvae were homogenized in 1.5 ml solvent A (2-isopropanol/hexane/water; 55:25:20 vol/vol/vol).

The homogenate was centrifuged at 2,000 rpm and the supernatant was collected. This step was

repeated with 1.5 ml solvent B (chloroform/methanol; 1:1 vol/vol), 1.5 ml solvent A, and finally 1.5

ml solvent B. The four solvent extracts were combined, evaporated under a nitrogen flux, and re-sus-

pended in chloroform/methanol (2:1 vol/vol) at a lipid concentration of 1 mg/ml. The extracts were

again evaporated, then re-suspended in 5 ml methanol containing 0.1 M NaOH, and incubated for 1

hr at 37˚C under agitation to remove most glycerolipids. The samples were evaporated and re-

extracted in chloroform/methanol (2:1 vol/vol). Neutral GSLs were finally purified on a column

(DEAE-Sephadex A-25; Sigma-Aldrich) and eluted with chloroform/methanol/water (30:60:8 vol/vol/

vol). GSL extracts were analyzed by high performance thin layer chromatography (HPTLC) using silica

gel 60 HPTLC plates (Merck) in chloroform/methanol/water (60:35:8 vol/vol/vol). The HPTLC plates

were sprayed with orcinol and heated at 110˚C for GSL detection. GSLs bands were identified by

their mobility relative to GSL standards (Matreya).

Electron microscopy
Electron microscopy (EM) was performed as described (Liu et al., 2014). Briefly, dissected 3rd instar

larvae were fixed overnight at 4˚C in 2% glutaraldehyde plus 2% paraformaldehyde in 0.1 M cacody-

late buffer (pH 7.4), and post-fixed in 1% OsO4 in cacodylate buffer for 90 min at room temperature.

Samples were stained in saturated aqueous uranyl acetate for 1 hr, dehydrated in a graded acetone

series and embedded in Spurr resin (Electron Microscopy Sciences). Type 1b boutons from NMJ 6/7

in abdominal segments A2 to A4 were serially sectioned with a Leica UC6 ultramicrotome, stained

with uranyl acetate and Sato’s lead, and observed using a JEOL 1400 electron microscope. The num-

ber of synaptic vesicles within a 200 nm radius of the active zones (AZs) in egh mutants and wild

type was quantified. Other features were quantified as previously described (Packard et al., 2002).
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