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Clustering subtypes of breast cancer by
combining immunohistochemistry profiles
and metabolism characteristics measured
using FDG PET/CT
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Abstract

Background: The aim of this study was to investigate the effect of combining immunohistochemical profiles and
metabolic information to characterize breast cancer subtypes.

Methods: This retrospective study included 289 breast tumors from 284 patients who underwent preoperative 18 F-
fluorodeoxyglucose (FDG) positron emission tomography/ computed tomography (PET/CT). Molecular subtypes of
breast cancer were classified as Hormonal, HER2, Dual (a combination of both Hormonal and HER2 features), and
triple-negative (TN). Histopathologic findings and immunohistochemical results for Ki-67, EGFR, CK 5/6, and p53
were also analyzed. The maximum standardized uptake value (SUV) measured from FDG PET/CT was used to
evaluate tumoral glucose metabolism.

Results: Overall, 182, 24, 47, and 36 tumors were classified as Hormonal, HER2, Dual, and TN subtypes, respectively.
Molecular profiles of tumor aggressiveness and the tumor SUV revealed a gradual increase from the Hormonal to
the TN type. The tumor SUV was significantly correlated with tumor size, expression levels of p53, Ki-67, and EGFR,
and nuclear grade (all p < 0.001). In contrast, the tumor SUV was negatively correlated with the expression of
estrogen receptors (r = − 0.234, p < 0.001) and progesterone receptors (r = − 0.220, p < 0.001). Multiple linear
regression analysis revealed that histopathologic markers explained tumor glucose metabolism (adjusted R-squared
value 0.238, p < 0.001). Tumor metabolism can thus help define breast cancer subtypes with aggressive/adverse
prognostic features.

Conclusions: Metabolic activity measured using FDG PET/CT was significantly correlated with the molecular
alteration profiles of breast cancer assessed using immunohistochemical analysis. Combining molecular markers and
metabolic information may aid in the recognition and understanding of tumor aggressiveness in breast cancer and
be helpful as a prognostic marker.
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Introduction
Breast cancer is the most common type of cancer among
women, accounting for about 30 % of newly detected
cancer cases in the United States, and is the second lead-
ing cause of death from cancer among women [1]. In re-
cent decades, researchers have attempted to characterize
the biology of breast cancer and standardize treatment
to improve its prognosis [2–4]. Molecular markers are
key to the classification of breast cancer subtypes, the se-
lection of treatment modalities, and prognostic predic-
tion. The expression of estrogen receptors (ER) and/or
progesterone receptors (PR) determine the luminal type
of breast cancer and the target for anti-hormonal ther-
apy. Human epidermal growth factor receptor 2 (HER2)
expression is a marker for HER2-enriched breast cancer
and the target for anti-HER2 therapy. The absence of a
molecular target (i.e., ER-negative, PR-negative, and
HER2-negative) is regarded as a triple-negative (TN)
breast cancer subtype that indicates a worse prognosis
for the patient [5].
Intrinsic subtypes of breast cancer (luminal A, luminal

B, HER2-enriched, and basal-like) are routinely used as a
classification system. These immunohistochemistry
(IHC) marker-based subtypes exhibit different gene ex-
pression profiles and molecular characteristics. The lu-
minal A subtype has a low mutation rate overall, with
significantly mutated genes that include PIK3CA,
MAP3K1, GATA3, and MAP2K4. The luminal B sub-
type exhibits more frequent mutations of TP53 and
hypermethylation than the luminal A subtype. The
HER2-enriched subtype is characterized by the high ex-
pression of HER2-related genes and a high frequency of
APOBEC3B-associated mutations. The basal-like sub-
type is the most distinct of the breast cancer subtypes. It
has a high mutation rate for TP53 and ATM and the
loss of BRCA1 [2, 6–8].
In addition to the IHC-based system, gene-expression-

based assays such as PAM50 are used to classify cancer
subtypes. Studies have revealed a noticeable discordance
between these two classification systems. Prat et al. [9]
reported that over 35 % of luminal B tumors classified
using PAM50 are identified as luminal A by IHC, while
28.2 and 30.4 % of clinically HER2-positive and negative
tumors, respectively, are luminal B tumors. Around 10 %
of basal-like tumors exhibit the overexpression of HER2
[2, 10, 11]. Therefore, a precise and easily accessible
classification system is necessary to improve the
management of breast cancer.

18 F-fluorodeoxyglucose (FDG) positron emission tom-
ography (PET)/computed tomography (CT) can be used
to visualize tumor biology based on glucose metabolism.
Tumoral FDG uptake is significantly associated with
prognostic factors for breast cancer, although the
independent prognostic role of FDG uptake remains

unclear [12]. Previous studies have reported a relation-
ship between tumor FDG uptake and both clinicopatho-
logic characteristics [13–15] and the molecular subtypes
of breast cancer [16–19]. However, the role of glucose
metabolism in classifying breast cancer is not yet fully
understood.
The main purpose of this study was to analyze the cor-

relation between glucose metabolism and immunohisto-
chemical results for breast cancer and to investigate the
combination of IHC profiles and metabolic information
to characterize breast cancer subtypes.

Materials and methods
Patients
Consecutive patients with primary breast cancer who
underwent a curative resection from March 2013 to
December 2015 were included in this retrospective
study. Inclusion criteria for patient selection were (1)
those who were initially diagnosed with primary breast
carcinoma, (2) those who underwent preoperative FDG
PET/CT at our hospital, and (3) those who underwent
curative surgery, including breast-conserving surgery
and mastectomy, using a patient-optimized technique at
our hospital. Exclusion criteria were (1) those who
underwent neoadjuvant chemotherapy, (2) patients who
had more than one primary malignancy, (3) those who
had only ductal carcinoma in situ (DCIS) or papilloma,
and (4) those whose immunohistochemistry profile from
the histopathologic report was unavailable (Supplemen-
tary Fig. 1). Clinical characteristics and histopathologic
results for the patients were obtained from their medical
records. The study protocol was approved by the Institu-
tional Review Board of our hospital.

FDG PET/CT
FDG PET/CT was performed using a dedicated scanner
(Gemini TF 16, Philips Medical Systems). Patients fasted
for 6 h. At the time of FDG injection, their blood glu-
cose levels were confirmed to be less than 200 mg/dL.
PET/CT images were acquired 54.2 ± 12.5 min after
FDG injection (approximately 5.18 MBq/kg) from the
skull vertex to the upper thigh of the patients. A low-
dose CT scan was acquired for attenuation correction
(50 mA, 120 kVp, slice thickness of 4 mm, matrix size of
512 × 512). Emission PET images were acquired for
1 min for each bed position. Transaxial PET images
were reconstructed using a 3D iterative algorithm (row
action maximum likelihood algorithm) with a TOF func-
tion (3 iterations, 33 subsets, matrix size 144 × 144). All
FDG PET/CT images were analyzed by two experienced
nuclear medicine physicians (H.W.K and S.K) in consen-
sus. A region of interest (ROI) with a maximal diameter
of 3 cm was positioned at the point of highest intensity
in the tumor. After this, the size of the ROI was
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modified to exclude surrounding false-positive normal
tissue activity. The maximum standardized uptake value
(SUV) for the tumor was calculated from the ROI in
transaxial PET images using the following formula:
SUV =maximum activity within the tumor (MBq/ml)/
maximum injected FDG dose (MBq/kg body weight).

Histopathological analysis
Diagnosis and comprehensive histopathological ana-
lysis of the primary breast carcinoma were conducted
using surgical specimens. Histological staging was
based on the Scarff Bloom Richardson classification
system. The histological subtype, tumor size, and nu-
clear grade were determined using formalin-fixed
paraffin-embedded tissue sections after staining with
hematoxylin and eosin. Immunohistochemical analysis
was conducted using paraffin-embedded slides with
primary antibodies. The proliferation index was evalu-
ated using Ki-67 staining. Expression levels of ER
(Dako, Glostrup, Denmark), PR (Dako, Glostrup,
Denmark), HER2 (Thermo Scientific, IL, USA), Ki-67
(Dako, Glostrup, Denmark), and p53 (Novocastra,
UK) were determined based on the percentage of
positive cancer cells, cytokeratin (CK) 5/6 (Dako,
Glostrup, Denmark), and epidermal growth factor re-
ceptor (EGFR; Dako, Glostrup, Denmark).
The expression of ER and PR was considered posi-

tive if the Allred scores were equal to or higher than
3 (≥ 3) [16]. Allred scores were also used to analyze
ER expression levels as a continuous variable. HER2
expression was determined using positive membrane
staining of the tumor cells (+ 1: 10 %, + 2: ≤30 %, + 3:
≥30 %). Fluorescence or silver-enhanced in situ
hybridization analysis was conducted to confirm
HER2 positivity. For Ki-67 and p53, the upper bound
value of the positive cell population was used for the
analysis of continuous variables. Based on the histo-
pathologic results, the patients were classified into
four subgroups: (1) Hormonal type: ER and/or PR-
positive; (2) HER2 type: HER2-positive; (3) dual posi-
tive (Dual) type: features of both Hormonal and
HER2 types; and (4) TN type: neither Hormonal nor
HER2 type.

Statistical analysis
Student t-tests and one-way ANOVA were performed
to compare group differences for the continuous vari-
ables. Tukey’s post-hoc analysis was employed for
between-group comparisons. Chi-squared tests were
used to evaluate the frequency of the variables be-
tween groups. Relationships between variables were
analyzed using Pearson’s correlation coefficients.
Logistic regression with stepwise selection (likelihood
ratio method; entry threshold, p < 0.05; removal

threshold, p > 0.1) was used to determine the effect of
the molecular profile on metabolic activity. Supervised
clustering of the breast cancer subtypes was analyzed
using the Uniform Manifold Approximation and Pro-
jection (UMAP) package implemented in R [17], in
which binary variables were transformed into 0 and 1
while continuous variables were normalized using the
mean and standard deviation. Receiver operating char-
acteristic (ROC) curves were used to evaluate the op-
timal cutoff values for the continuous variables. All
data were analyzed using MedCalc Software v19.4.1
(MedCalc Software Ltd, Ostend, Belgium) and R
v3.5.1 (https://cran.r-project.org). P values of less than
0.05 were considered statistically significant.

Results
Characteristics of the patients and tumors
A total of 289 tumors from 284 patients were included in
this study, including Hormonal (n = 182), HER2 (n = 24),
Dual (n = 47), and TN (n = 36) tumor subtypes (Table 1). A
total of 185 specimens were acquired from breast-
conserving surgery, while 88 and 16 specimens were ob-
tained from modified radical mastectomy and skin-sparing
mastectomy, respectively. The mean ± standard deviation of
the patients’ age was 54.7 ± 10.8 years (range, 30–87 years).
The mean difference in the patients’ age was not significant
between the cancer types.

Histopathologic classification identified invasive ductal
carcinoma (n = 242), invasive lobular carcinoma (n = 16),
and others (carcinoma with medullary features, n = 4;
carcinoma with neuroendocrine differentiation, n = 1;
microinvasive carcinoma, n = 2; papillary carcinoma, n =
8; cribriform carcinoma, n = 1; metaplastic carcinoma,
n = 3; mucinous carcinoma, n = 8; and tubular carcin-
oma, n = 4). Histopathologic classification and nuclear
grade differed significantly between the cancer types
(p = 0.035 and p < 0.001, respectively), while the histo-
pathologic T and N categories and stage group were not
significantly different according to the cancer type. His-
topathologic results for the excluded patients are de-
scribed in Supplementary Table 1.
The mean ± standard deviation of the tumor size was

1.94 ± 1.56 cm (Table 2). Forty-six (15.9 %) tumors ex-
hibited lymphatic invasion (LI), while the number of
positive ER and PR tumors was 227 (78.5 %) and 212
(78.5 %), respectively. The number of positive HER2 tu-
mors was 71 (24.6 %, Table 2).

Correlation between tumor characteristics and glucose
metabolism
The mean ± standard deviation of the tumor SUV was
2.97 ± 1.99 for Hormonal, 4.18 ± 2.53 for HER2, 3.95 ±
3.61 for Dual, and 5.18 ± 5.29 for TN cancer types. Post-
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hoc analysis revealed that TN-type tumors showed a
higher SUV than Hormonal-type tumors (p < 0.001). The
mean SUV gradually increased from the Hormonal to
the TN subtype (Figs. 1A and 2). The tumor SUV was
positively correlated with the tumor size (r = 0.288, p <
0.001) and nuclear grade (r = 0.416, p < 0.001). Histo-
pathologic T1 tumors (2.61 ± 1.70) exhibited a lower
SUV than both T2 tumors (5.18 ± 4.20) and T3-4 tumors
(5.14 ± 1.85) (both p < 0.001). In contrast, the tumor
SUV did not differ for the N category (p = 0.382). Tu-
mors with LI tended to show a higher SUV (4.25 ± 2.79)
than tumors without LI (3.36 ± 3.04) (p = 0.068).

The tumor SUV was compared with the molecu-
lar markers monitored in this study. Tumors ex-
pressing EGFR exhibited a higher SUV (p < 0.001).
However, tumors with HER2 tended to show a
higher SUV than tumors without HER2 (p = 0.093).
The SUV for tumors with CK 5/6 was not signifi-
cantly different from that for tumors without CK
5/6 (p = 0.823). The SUV was significantly corre-
lated with Ki-67 (r = 0.332, p < 0.001) and p53 (r =
0.247, p < 0.001) and negatively correlated with the
expression of ER (r = − 0.234, p < 0.001) and PR
(r = − 0.220, p < 0.001).

Table 1 Characteristics of the patients and tumors

Characteristics Hormonal
(n = 182)

HER2
(n = 24)

Dual Positive
(n = 47)

Triple Negative
(n = 36)

P

Age (y) 54.8 ± 11.0 55.6 ± 10.2 53.5 ± 9.4 55.5 ± 12.1 0.813

Histology

IDC 150 20 44 28 0.067

ILC 14 1 1 0

Others 8 3 2 8

T stage

T1 121 17 24 26 0.572

T2 54 7 21 10

T3 6 0 2 0

T4 1 0 0 0

N stage 0.165

N0 109 18 31 31

N1 56 6 11 5

N2 13 0 4 0

N3 4 0 1 0

Nuclear grade < 0.001*

1 77 0 5 2

2 85 7 19 11

3 20 17 23 23

Stage 0.451

IA 84 15 17 23

IB 8 0 1 1

IIA 51 5 20 10

IIB 20 4 4 2

IIIA 14 0 4 0

IIIB 1 0 0 0

IIIC 4 0 1 0

Operation 0.256

BCS 119 13 25 28

MRM 52 9 19 8

SSM 11 2 3 0

BCS breast conserving surgery, IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, MRM modified radical mastectomy, SSM skin-sparing
mastectomy; *P < 0.05
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Histopathologic and molecular profiles according to
tumor subtype
The mean ± standard deviation for Ki-67 expression was
11.0 ± 12.7 for Hormonal, 26.8 ± 22.9 for HER2, 24.3 ±
19.8 for Dual, and 50.4 ± 28.4 for TN tumors (Fig. 1B,
p < 0.001), while that for p53 expression was 17.7 ± 25.3

for Hormonal, 41.9 ± 42.6 for HER2, 230.8 ± 37.1 for
Dual, and 60.8 ± 42.9 for TN tumors (Fig. 1C, p < 0.001).
ANOVA analysis revealed that the Ki-67 expression
levels in TN-type tumors were significantly higher
than those in other subtypes. Ki-67 expression in
HER2- and Dual-type tumors was higher than that in
Hormonal-type tumors (both p < 0.001). Expression
levels of p53 in TN tumors were also significantly
higher than those in Hormonal and Dual tumors. The
expression of p53 in HER2-type tumors was signifi-
cantly higher than that in Hormonal-type tumors
(p = 0.003). The proportion of nuclear grade III tu-
mors was 11.0 % for Hormonal, 70.8 % for HER2,
248.9 % for Dual, and 63.9 % for TN tumors (p <
0.001, Fig. 1D). The proportion of EGFR-positive tu-
mors was 2.2 %, 50.0 %, 10.6 %, and 63.9 % for
Hormonal, HER2, Dual, and TN tumors, respectively
(p < 0.001), while that of CK5/6-positive tumors was
43.4 %, 62.5 %, 27.7 %, and 55.6 %, respectively (p =
0.011). Correlations between the SUV and molecular
markers were analyzed for the Hormonal subgroup.
Expression levels of Ki-67 (r = 0.250, p < 0.001), ex-
pression levels of p53 (r = 0.308, p < 0.001), and nu-
clear grade (r = 0.433, p < 0.001) were significantly
correlated with the tumor SUV.

Table 2 Histopathologic and molecular characteristics of
tumors in this study

Characteristics Positive case (%) or mean ± SD

Size (cm) 1.94 ± 1.56

Lymphatic invasion 46 (15.9 %)

Venous invasion 2 (0.7 %)

Perineural invasion 10 (3.5 %)

ER 227 (78.5 %)

PR 212 (73.4 %)

HER2 71 (24.6 %)

CK5/6 127 (43.9 %)

p53* 27.2 ± 34.8

Ki-67* 19.4 ± 21.8

EGFR 44 (15.2 %)

CK5/6, cytokeratin 5/6; EGFR, epidermal growth factor receptor; ER, estrogen
receptor; PR, progesterone receptor; *upper bound value of positive cell
population (%)
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Analysis of molecular profiles to determine tumor
metabolic activity
Univariate linear regression analysis was conducted to
evaluate the significance of tumor histopathologic pro-
files with regards to the glucose metabolic phenotype
(Table 3). Tumor size, nuclear grade, and the expression
levels of Ki-67, p53, and EGFR were significant determi-
nants of glucose metabolism. A multivariate regression
model (model 1, Table 4) that included both histopatho-
logic and immunohistochemical profiles showed that
tumor size, nuclear grade, and Ki-67 were independent

factors for the determination of the tumor SUV, al-
though their explanation power was low (adjusted R2 of
0.238). Model 2, which was based on the immunohisto-
chemical profiles, showed that Ki-67, p53, and EGFR
were independent factors for the SUV. Interestingly,
there was a significant interaction between p53 and
EGFR (p = 0.028).

Clustering of breast cancer subtypes using molecular
profiles and tumor metabolism
To evaluate and compare the biology of the tumor sub-
types, clustering analysis was performed using the mo-
lecular profiles (ER, HER2, Ki-67, p53, nuclear grade,
and EGFR) and tumor metabolism (i.e., the SUV). As ex-
pected, classification based on ER and HER2 status per-
fectly grouped the subtypes (Fig. 3A). After adding the
Ki-67, p53, nuclear grade, and EGFR results, heteroge-
neous subtype clusters were observed (Fig. 3B). The
addition of metabolism information enabled different
subtypes with varying aggressiveness to be estimated
more accurately (Fig. 3C). Of these parameters, the nu-
clear grade was the most critical factor for classifying the
cancer subtype (Fig. 4; Table 5).

Discussion
With current advances in molecular biology that enable
new therapeutic targets for breast cancer to be found, ef-
fective biomarkers have been employed to monitor
therapeutic efficacy. For example, PIK3A mutations have

Fig. 2 Representative FDG PET images for the breast cancer subtypes (all patients pT stage 2). In this image, the tumor SUV for the Hormonal,
Dual, HER2, and TN tumor types was 2.51, 3.34, 4.88, and 8.04, respectively (blue arrow)

Table 3 Univariate linear regression analysis for determining
metabolic activity

Variable Coefficient 95% CI P

Histopathologic

Size 0.556 0.341–0.770 < 0.001

Nuclear Grade 1.647 1.229–2.064 < 0.001

Lymphatic invasion 0.885 -0.064-1.834 0.068

Immunohistochemical

ER -0.216 − (0.321 − 0.112) < 0.001

HER2 0.692 -0.115-1.500 0.093

Ki-67 0.046 0.031–0.061 < 0.001

p53 0.021 0.012–0.031 < 0.001

EGFR 1.704 0.753–2.656 < 0.001

CK 5/6 0.080 -0.623-0.784 0.823
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been frequently observed in luminal A-type tumors and
have emerged as a therapeutic target using PI3K inhibi-
tors [18, 19]. Relationships between PI3K inhibitors and
the disruption of glucose homeostasis suggest that PI3K
inhibitors could enhance tumoral FDG uptake [20, 21].
FDG PET can provide sensitive and non-invasive infor-
mation on the pharmacodynamics of PI3K inhibitors
based on the PTEN status [22, 23]. The present study
also revealed that the SUV was a significant factor in di-
chotomizing the Hormonal subtype. FDG PET could be
used to evaluate the overall status of tumor glucose me-
tabolism, which may be related to the prognosis and
treatment efficacy of targeted therapies.

TN tumors showed significantly higher Ki-67 expres-
sion, p53 mutations, and nuclear grade, which are
known to be associated with a worse prognosis. The
hallmark of TN tumors is the overexpression of high
proliferation pathways. Ki-67 has become the most
widely used marker for evaluating the proliferation of
breast cancer [24]. Previous studies have reported a
strong correlation between tumoral FDG uptake and Ki-
67 expression levels [13–15, 25]. In the present study,
Ki-67 expression was significantly correlated with the
SUV (Pearson’s r of 0.331, p < 0.001). It was also an in-
dependent factor for the tumor SUV. Interestingly, the
mean values for Ki-67, p53, and the SUV were not

Table 4 Multivariate linear regression analysis for determining metabolic activity

Model Variable Coefficient 95% CI P Adjusted R2

1 Nuclear Grade 1.119 0.632–1.606 < 0.001 0.238

Ki-67 0.024 0.007–0.041 0.005

Size 0.469 0.270–0.668 < 0.001

2 Ki-67 0.034 0.016–0.052 < 0.001 0.126

p53 0.015 0.003–0.028 0.018

EGFR 1.823 0.328–3.319 0.017

p53*EGFR -0.026 − (0.049 − 0.003) 0.028
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significantly different according to CK5/6 positivity (p =
0.503, p = 0.913, and p = 0.858, respectively). Previous
studies have reported that CK5/6 is positively correlated
with high-grade tumors and poor survival [26, 27]. The
nonsignificant difference in CK5/6 positivity between the
tumor subtypes (43.4 %, 27.7 %, 62.5 %, and 55.6 % for
Hormonal, Dual, HER2, and TN tumors, respectively) in
this study may explain this finding.
Of the 44 EGFR-positive tumors, 23 and 12 were TN

and HER2 tumors, respectively. The SUV was signifi-
cantly higher for EGFR-positive tumors than for EGFR-
negative tumors (4.9 vs. 3.2, p = 0.027). EGFR expression
is one of the components of the core basal phenotype in
TN tumors. It is significantly related to BRCA1 muta-
tions [28]. Interestingly, the interaction between p53
mutations and EGFR was noted in the regression ana-
lysis for determining the SUV. p53 status and EGFR sig-
naling can interfere with the control of the cell cycle and
apoptosis. p53 mutations are known to amplify EGFR
signaling in breast cancer [29, 30]. However, the effect of

p53 status on EGFR-inhibitor treatment remains unclear
for other cancer types [31, 32]. In addition, the effect of
p53 on glucose metabolism is believed to be highly
context-dependent [33]. Further research is needed to
determine the mechanisms underlying the interactions
between key mutations in breast cancer.
Several studies have reported the prognostic role of

FDG PET in breast cancer. The change in glucose me-
tabolism after neoadjuvant chemotherapy is a biomarker
for treatment efficacy and histopathologic response.
Early identification of potential non-responders to
chemotherapy may be helpful in patients’ treatment de-
cisions [34, 35]. The metabolic activity of primary breast
cancer can be used as a surrogate marker for patient
survival [36, 37]. Metabolic volume measured using FDG
PET (which is correlated with the number of circulating
tumor cells) has also been suggested to be a useful prog-
nostic marker [38]. Non-invasive monitoring of tumoral
glucose metabolism would be helpful for phenotyping
tumor aggressiveness and suggesting different treatment
strategies even for the same molecular subtype of breast
cancer [39, 40].
Several factors should be considered when interpret-

ing the SUV as a representative of tumor metabolism.
The injected FDG dose, patient weight, time acquired,
wait time before scanning, and acquisition time are
closely related to each other in determining tumoral
FDG uptake. For example, higher injection doses (6
to 10 MBq/kg) and/or longer acquisition times per
bed are needed for patients with a large body mass
[41, 42]. Guidelines have suggested a linear and a
quadratic relationship between the body mass and the
administered dose [43, 44]. Serum glucose levels
should be checked before administering FDG and can
be used to correct the SUV [45]. The recommended
acquisition time is 60 min after FDG injection with
an acceptable range of 55 − 75 min [46]. Efforts to
maintain accurate PET image quality are also neces-
sary in clinical practice for evaluating tumor metabol-
ism as a characteristic of tumor biology.
Voxel-based FDG PET parameters have been used to

investigate tumoral glucose metabolism. The maximum
SUV, which is the highest voxel value within an ROI, is

Fig. 4 ROC curve analysis for dichotomizing the Hormonal subtype
using immunohistochemical and metabolic parameters

Table 5 ROC curve analysis for binary classification of hormonal cancer subtype

Variable Criteria Sensitivity (%) Specificity (%) P AUC

Nuclear Grade 2 99.1 100 < 0.001 0.995

Ki-67 9 % 52.8 85.5 < 0.001 0.733

p53 60 % 12.3 100 0.082 0.572

SUV 2.310 65.1 65.8 < 0.001 0.677

EGFR positive 2.8 98.7 0.468 0.508

ER 6 11.3 98.7 0.372 0.523
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the most widely used PET parameter because of its con-
venient and reproducible measurement process. How-
ever, this has been known to be affected by tumor size
and it is vulnerable to noise [47]. In this study, tumor
size was positively correlated with the tumor SUV, which
might be a confounding factor when evaluating tumor
metabolism. To improve the robustness of the maximum
SUV, the peak SUV has been introduced as an alterna-
tive voxel-based parameter, which is the mean SUV
within a 1-cm3 volume of interest (VOI) including the
maximum SUV. Volumetric PET parameters including
the metabolic tumor volume (MTV) and total lesion gly-
colysis (TLG) have also taken on greater importance in
prognostic prediction over SUV parameters [48, 49]. In
breast cancer, the MTV may be associated with axillary
lymph node metastasis and overall survival [50–52]. In
addition, TLG can be used to predict event-free survival
[53]. Further research evaluating the correlation between
molecular characteristics and volumetric parameters is
necessary for patients with breast cancer.
PET imaging techniques with novel tracers enable the

visualization of IHC markers for breast cancer in vivo.
18 F-fluoroestradiol (FES) is an analog of estradiol and
binds to ER in tumors and normal tissue [54, 55]. The
FES uptake in breast cancer is directly correlated with
ER expression, and FES PET can predict the response to
hormonal therapy [56, 57]. HER2-targeting PET has
been investigated for the detection of HER2-positive tu-
mors and to predict the response to trastuzumab therapy
[58]. The integration of molecular PET imaging would
help to determine the subtypes of breast cancer simul-
taneously and predict the prognosis for patients under-
going target-driven treatment.
Therapy and intervention for tumor tissue often re-

sult in an inflammatory response, which leads to
higher tumor FDG uptake. With breast cancer, fat ne-
crosis of tissue after trauma, biopsy, surgery, or radio-
therapy has been known to lead to false-positive FDG
uptake [59, 60]. Previous studies using FDG positron
emission mammography (PEM) have reported that a
small portion (< 10 %) of cases return false-positive
findings from areas affected by fat necrosis or an ex-
cisional biopsy [61, 62]. In this study, FDG PET/CT
scan was conducted 10.5 ± 5.9 days after the breast bi-
opsy. Although factors affecting FDG uptake in tu-
mors such as a previous biopsy are recognized to
accurately interpret PET images in clinical practice,
these are problematic in quantitative analysis. A sub-
optimized protocol for the control of the time interval
between a biopsy and FDG PET imaging in the
current retrospective study may be a limitation for
the measurement of tumoral glucose metabolism [63].
In this study, clustering analysis was conducted based

on immunohistochemical markers and tumor metabolic

characteristics. Though precision medicine based on
comprehensive molecular biomarkers is accessible for
breast cancer treatment, the improvement of diagnostic
systems using cost-effective basic clinicopathologic pa-
rameters is required for patient management [64]. Tu-
moral metabolic information provided by FDG PET/CT
enables cancer subtypes to be clustered successfully and
raises the possibility of classifying aggressive tumors
from among traditionally determined subtypes. Of the
various methods available for clustering analysis, UMAP,
which was used in this study, has the advantages of ef-
fective dimensional reduction while preserving meaning-
ful distance information between clusters [17]. However,
the prognostic implications of combining molecular and
metabolic information need to be investigated further.
Although we have shown that useful information for

patient management can be obtained by combining
metabolic parameters from FDG PET and pathological
classification, it is important to note that our study has
several limitations. For example, we describe a retro-
spective study at a single institution, which may have led
to possible selection bias. In addition, our cancer typing
was based on immunohistochemistry rather than gene
expression-based assays, but pragmatically this is the
method utilized in most centers when classifying breast
cancer. Our follow-up period also did not allow for the
robust collation of outcome data, such as disease-free
status and overall survival, which will be of interest in
future studies.

Conclusions
The metabolic activity of breast cancer measured
using FDG PET/CT was significantly correlated with
molecular alteration profiles as assessed using immu-
nohistochemical data. Combining molecular markers
and metabolic information may assist in the under-
standing of tumor aggressiveness in breast cancer.
Further investigations are needed to determine the re-
lationship between the molecular landscape and clin-
ical metabolic phenotypes so that appropriate
therapeutic strategies can be developed to improve
patients’ prognoses.
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