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Abstract: Background: Glaucoma, the second leading cause of blindness worldwide, is a chronic op-
tic neuropathy characterized by progressive retinal ganglion cell (RGC) axons degeneration and death.  

Primary open-angle glaucoma (OAG), the most common type, is often associated with increased in-
traocular pressure (IOP), however other factors have been recognized to partecipate to the patogenesis 
of the optic neuropathy. IOP-independent mechanisms that contribute to the glaucoma-related neu-
rodegeneration include oxidative stress, excitotoxicity, neuroinflammation, and impaired ocular blood 
flow. The involvement of several and diverse factors is one of the reasons for the progression of glau-
coma observed even under efficient IOP control with the currently available drugs.	  

Methods: Current research and online content related to the potential of nutritional supplements for 
limiting retinal damage and improving RGC survival is reviewed. 

Results: Recent studies have suggested a link between dietary factors and glaucoma risk. Particularly, 
some nutrients have proven capable of lowering IOP, increase circulation to the optic nerve, modulate 
excitotoxicity and promote RGC survival. However, the lack of clinical trials limit their current thera-
peutic use. The appropriate use of nutraceuticals that may be able to modify the risk of glaucoma may 
provide insight into glaucoma pathogenesis and decrease the need for, and therefore the side effects 
from, conventional therapies. 	  

Conclusion: The effects of nutrients with anti-oxidant and neuroprotective properties are of great in-
terest and nutraceuticals may offer some therapeutic potential although a further rigorous evaluation of 
nutraceuticals in the treatment of glaucoma is needed to determine their safety and efficacy. 
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1. INTRODUCTION 

Glaucoma is a neurodegenerative disease characterized 
by retinal ganglion cells (RGC) death, typical visual field 
defect and eventual blindness [1]. Elevated intraocular pres-
sure (IOP), aging, genetic, epigenetic and environmental 
factors are among a number of recognized risk factors for 
glaucoma [2, 3]. Glaucoma is thus a progressive optic neu-
ropathy with complex pathophysiology and RGC loss in 
glaucoma remains incompletely understood [4]. Several 
mechanisms have been suggested to play a role in  
RCG damage including oxidative stress, excitotoxicity and  
neuroinflammation [5-7]. Particularly, excitotoxicity through 
the overactivation of N-methyl-D-aspartate (NMDA) and  
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non-NMDA glutamate receptors [8, 9] has been proposed as 
one of the determinants involved in RGC damage [5]. 
Furthermore, several studies demonstrate that mitochondrial 
perturbations are among the very first changes occurring 
within RGCs during glaucoma [7, 10-12] suggesting that 
oxidative stress is also a key mechanism of excitotoxic, glu-
tamate induced RGC loss [8, 13, 14]. Several studies have 
shown that free radical species can cause RGC death by in-
hibition of key enzymes of the tricarboxylic acid cycle, the 
mitochondrial electron transport chain, and mitochondrial 
calcium homeostasis, leading to defective energy metabo-
lism [15, 16]. Interestingly, increased levels of oxidative 
stress markers were observed in aqueous humor of patients 
with primary open-angle glaucoma (POAG) [17, 18] and 
with primary angle closure glaucoma (PACG) [19]. Accord-
ingly, a recent meta-analysis by Benoist d’Azy and Col-
leagues reported that oxidative stress increased in glaucoma 
patients, both in serum and aqueous humor [20]. In addition 
to its detrimental effect on the optic nerve, oxidative stress 
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has also been suggested to damage the trabecular meshwork 
(TM) [21-23] resulting in an increase in the IOP. Inciden-
tally, recent experimental data revealed that autophagy 
modulation occurs in RGC under glaucoma-related stressing 
conditions supporting the hypothesis that dysfunctional 
autophagy might participate to the process leading to RGC 
death [24]. Despite accumulating evidence of pressure-
independent causes of glaucomatous optic neuropathy has 
led to the recognition that lowering IOP alone may often be 
insufficient for the long-term preservation of visual function 
[25], most of the current treatment modalities are based on 
lowering the IOP and a need exists for novel therapies able 
to save RGCs from injury or to repair damaged neurons. 
Interestingly, several studies have suggested a link between 
dietary factors, now named “nutraceuticals” [26, 27] and 
glaucoma risk [28, 29].  Deficiencies of specific nutrients 
have been found in patients with glaucoma and supplementa-
tion may play a role in treatment [28]. Interestingly, some 
nutraceuticals have shown their ability to lower IOP [30-32], 
increase circulation to the optic nerve [28], modulate excito-
toxicity and promote RGC survival [14, 33-36]. In this re-
spect, a prospective study for ten years revealed an associa-
tion between low intake of antioxidant nutrients and a higher 
risk of open angle glaucoma [37]. On the contrary, Kang and 
Colleagues reported no strong associations between antioxi-
dants intake and primary open-angle glaucoma (OAG) risk 
[38]. Likewise, more recently, a two-year follow-up of oral 
antioxidants supplementation in OAG did not demonstrate 
beneficial short-term effects [39]. This apparent discrepancy 
could be explained by considering the sample size estimate 
and the different features of clinical trials. In fact, although 
some nutraceuticals have been described as neuroprotective, 
the lack of clinical trials examining their benefits for glau-
coma limits their current therapeutic use [1, 40] suggesting 
that well designed clinical trials are needed to assess their 
efficacy and tolerability in glaucoma treatment. Therefore, 
appropriate use of nutraceuticals with anti-oxidant and neu-
roprotective properties may be able to modify the risk of 
glaucoma, provide insight into glaucoma pathogenesis and 
decrease the need for, and therefore the side effects from, 
conventional therapies. 

This review discusses the most current knowledge on the 
neuroprotective effects of a number of nutraceuticals in RGC 
damage and their potential benefit in glaucoma treatment. 

2. VITAMINS 

Considering the key role played by oxidative stress in 
RGC damage, antioxidant vitamins have been suggested as 
potential neuroprotective agents [41, 42]. However, although 
their deficiency may be linked to symptoms of optic-nerve 
dysfunction, the association between serum vitamin levels 
and glaucoma prevalence in humans remains controversial. 
For example, in 2003, the Nurses’ Health Study and Health 
Professionals Follow-up Study reported no strong associa-
tion between the risk of primary open-angle glaucoma and 
vitamin C, vitamin E, and vitamin A consumption [38]. Ac-
cordingly, a recent meta-analysis by Li and Colleagues re-
ported that normal-tension glaucoma (NTG) risk is not asso-
ciated with serum vitamin B6, vitamin B12, or folic acid 
levels [43]. Moreover, another meta-analysis reported no 
association between serum vitamin B6, vitamin B12, or vi-

tamin D levels and the different types of glaucoma [44]. On 
the contrary, the Rotterdam Study, a prospective study on a 
glaucoma cohort of 3500 Individuals, revealed an association 
between low intake of antioxidant nutrients, including retinol 
equivalents and vitamin B1, and a higher risk of open angle 
glaucoma [37]. Yuki and Colleagues investigated the levels 
of antioxidants as vitamins A, C, E, folic acid in the serum of 
Japanese patients with normal-tension glaucoma compared 
with normal controls. Interestingly, they found lower serum 
levels of vitamin C in glaucoma patients [45]. Furthermore, 
Asregadoo reported a statistically significant lower thiamine 
blood level in 38 glaucoma patients than in 12 controls [46]. 
Moreover, Turgut and Colleagues reported that plasma levels 
of vitamin B6 increase in NTG or POAG patients [47]. Con-
versely no statistical differences were observed in serum 
vitamin B12 and folate levels among control subjects and 
glaucoma groups. In addition, the plasma level of homocys-
teine was found to be increased only in patients with pseudo-
exfoliative glaucoma (PXG) [47]. Similar results were ob-
served by Cumurcu and Colleagues [48]  and Xu and Col-
leagues [49]. Moreove, Kang and Colleagues investigated 
the association between B vitamins (folate, vitamin B6, and 
vitamin B12) intake and exfoliation glaucoma (EG) or sus-
pected EG (SEG) risk and reported that higher folate, but not 
vitamin B6 and vitamin B12 intake, was associated with a 
lower risk for EG/SEG [50]. Wang and Colleagues also in-
vestigated, in a cross-sectional study included 2912 partici-
pants, the potential association between glaucoma prevalence 
and supplemental intake, as well as serum levels of vitamins 
A, C and E. The authors reported no association between 
vitamins with glaucoma prevalence, however supplementary 
consumption of vitamin C was found to be associated with 
decreased odds of glaucoma [51]. Interestingly, Xu and Col-
leagues reported tha vitamin C shows a dose-dependent ef-
fect against oxidative insult by modulation of iron homeosta-
sis and intracellular ROS formation and, in addition, elicits 
the activation of the autophagic lysosomal pathway in TM 
cells [52]. Moreover, Lee and Colleagues reported a correla-
tion of aqueous humor ascorbate concentration with in-
traocular pressure as well as outflow facility in hereditary 
buphthalmic rabbits [53] but found no correlation in OAG 
patients [54]. Vitamin C has also been found, in vitro, to 
stimulate synthesis of hyaluronic acid in trabecular mesh-
work from glaucomatous eyes [55] and to reduce the viscos-
ity of hyaluronic acid and increase outflow through the tra-
beculum [56]. More recently, Goncalves and Colleagues 
reported vitamin D insufficiency is associated with POAG 
[57]. Interestingly, topical administration of 1α,25-
dihydroxyvitamin D(3) or its analog, 2-methylene-19-nor-
(20S)-1α,25-dihydroxyvitamin D(3) (2MD), markedly re-
duced IOP in non-human primates [58]. However, Krefting 
and Colleagues reported that the administration of vitamin 
D3 to healty volunteers with low levels of 25(OH)D does not 
affect IOP [59]. In 2010, Ko and Colleagues reported that 
vitamin E deficiency increased RGC loss in a rat model of 
glaucoma [60]. Particularly, the Authors found that vitamin 
E deficiency alone for ten weeks did not increase RGC 
death. However, when vitamin E deficiency was combined 
with IOP elevation for five weeks, there was a significant 
increase in RGC death and higher levels of retinal lipid per-
oxidation. Interestingly, vitamin E deficiency did not change 
the activities of superoxide dismutase (SOD) and catalase in 
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the rat retina after IOP elevation [60]. Moreover, Yu and 
Colleagues demonstrated that vitamin E is able to reduce the 
transforming growth factor-beta2 (TGFb2)-induced cellular 
changes in cultured human trabecular meshwork cells, sug-
gesting that increasing the antioxidative capacity may help to 
lower the incidence of characteristic glaucomatous changes 
in TM [61]. Interestingly, more recently, Williams and Col-
leagues, demonstrated that oral administration of vitamin B3 
(nicotinamide) a precursor of nicotinamide adenine dinucleo-
tide (NAD) or Nmnat1(nicotinamide/nicotinic acid mononu-
cleotide adenylyltransferase 1) gene therapy reduces mito-
chondrial vulnerability and prevents glaucoma in aged mice 
[11]. 

3. COENZYME Q 

Coenzyme Q is an essential cofactor of the electron 
transport chain, a membrane stabilizer, and a cofactor in the 
production of adenosine triphosphate (ATP) by oxidative 
phosphorylation [36, 62]. Coenzyme Q is endowed with po-
tent antioxidant properties that have been shown to mediate 
its neuroprotection [63-65]. Interestingly, several studies 
demonstrated that the compound protects retinal cells against 
oxidative stress in vitro and in vivo, as well as prevents reti-
nal damage induced by acute IOP elevation or excitotoxicity 
in vivo [14, 62, 66, 67]. In this respect, Nucci and Colleagues 
reported that intraocular administration of coenzyme Q af-
fords neuroprotection in the retina of rats subjected to ische-
mia/reperfusion preventing glutamate increase observed by 
microdialysis and this was accompanied by minimization of 
cell death [66]. Accordingly, Lee and Colleagues reported 
that the compound also inhibits glutamate excitotoxicity and 
oxidative stress-mediated mitochondrial alteration in glau-
comatous DBA/2J mice [36]. Particularly, coenzyme Q pro-
moted RGC survival, preserved the axons in the optic nerve 
head and inhibited astroglial activation [36]. Moreover, it 
prevented the upregulation of NMDA receptor subunit 1 and 
2A, SOD2 and heme oxygenase-1 (HO1), and also prevented 
the apoptotic cell death by decreasing Bax and increasing 
pBad expression. Lee and Colleagues also reported that co-
enzyme Q preserved mitochondrial DNA content and mito-
chondrial transcription factor A/ oxidative phosphorylation 
complex IV protein expression in the retina [36]. Further-
more, Noh and Colleagues demonstrated that coenzyme Q 
protects optic nerve head (ONH) astrocytes against oxidative 
stress-mediated mitochondrial dysfunction or alteration in 
glaucoma and other optic neuropathies [68]. Particularly, 
coenzyme Q decreased SOD2 immunoreactivity in the ONH 
astrocytes exposed to H2O2 and promotes mitofilin and per-
oxisome-proliferator activated receptor-γ coactivator-1 
(PGC-1α). Interestingly, Nakajima and Colleagues reported 
that in cultured retinal ganglion cells (RGC-5), a combina-
tion of coenzyme Q and trolox, a water-soluble vitamin E 
analogue, prevented cell damage more effectively than either 
agent alone [62]. Accordingly, Parisi and Colleagues re-
ported that administration of coenzyme Q associated with 
vitamin E in open-angle glaucoma patients shows a benefi-
cial effect on the inner retinal function with consequent en-
hancement of the visual cortical responses [69]. Concerning 
the mechanism underlying neuroprotection afforded in glau-
coma models by coenzyme Q it is conceivable that a free 
radical scavenging mechanism is only one of the determi-

nants. In fact, neuroprotection afforded by the compound 
was far greater than that provided by treatment with vitamin 
E [66]. The Authors hypothesized that coenzyme Q reduces 
the detrimental action of ischemia/reperfusion on mitochon-
drial energy metabolism and, consequently, on the function 
of glutamate transporters, thus limiting accumulation of ex-
tracellular glutamate and preventing apoptotic death of RGC 
[66]. More recently, in agreement with the latter result, Lulli 
and Colleagues reported that coenzyme Q increases RGC 
viability and inhibits apoptosis in response to different apop-
totic stimuli such as glutamate, chemical hypoxia and serum 
withdrawal by preventing mitochondrial depolarization [67]. 
The opening of the mitochondrial permeability transition 
pore (PTP) followed by extrusion of apoptogenic molecules 
to the cytoplasm [70] is recognized as the main trigger of 
apoptosis. Incidentally, coenzyme Q has been shown to in-
hibit apoptosis by maintaining PTP in the closed conforma-
tion via a mechanism independent from free radical scaveng-
ing [71]. 

4. FLAVONOIDS 

Flavonoids are a large family of phytonutrient com-
pounds widely distributed in fruits and vegetables as well 
as in chocolate and red wine [72-74]. These compounds 
have been shown to demonstrate anti-inflammatory and 
neuroprotective effects that may reduce damage from oxi-
dative stress [75, 76]. Flavonoids exert beneficial effects on 
multiple disease states, including cancer, cardiovascular 
disease, and neurodegenerative disorders [73, 77-79]. Inter-
estingly, several studies in vivo and in vitro also reported 
the beneficial effects of flavonoids in ocular diseases [80-
84], however, a recent meta-analysis showed no statisti-
cally significant effect of flavonoids on lowering intraocu-
lar pressure [85]. Nakayama and Colleagues [86] investi-
gated the neuroprotective potential of three types of fla-
vonoid compounds—kaempferol 3-O-rutinoside (nicotiflo-
rin), quercetin 3-O-rutinoside (rutin), and quercetin 3-
Orhamnoside (quercitrin)—using rat primary-isolated 
RGCs cultured under three kinds of stress conditions: hy-
poxia, excessive glutamate levels, and oxidative stress. Un-
der these conditions all compounds significantly increased 
the RGC survival rate but nicotiflorin and rutin were more 
active than quercitrin [86]. Moreover, rutin significantly 
inhibited the induction of caspase-3 under both hypoxia 
and excessive glutamate stress, as well as blocking the in-
duction of calpain during oxidative stress [86]. Interest-
ingly, resveratrol, a naturally occurring polyphenol found 
in berries, nuts, and red wine, can enhance stress resistance 
and exerts antiinflammatory, anti-oxidant, and anti-
apoptotic effects [87-89]. In this respect, Luna and Col-
leagues investigated the effects of chronic administration of 
resveratrol on the expression of markers for inflammation, 
oxidative damage, and cellular senescence in primary TM 
cells subjected to chronic oxidative stress [90]. Interest-
ingly, resveratrol treatment prevented increased production 
of intracellular ROS, IL1α, IL6, IL8, and ELAM-1 [90]. 
Moreover, it reduced expression of the senescence markers 
sa-β-gal, lipofuscin, and accumulation of carbonylated pro-
teins. In addition, the compound, exerted antiapoptotic ef-
fects that were not associated with a decrease in cell prolif-
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eration [90]. Moreover, Chen and Colleagues investigated 
the role of peroxisome proliferator activated receptor-γ co-
activator 1α (PGC-1α) in resveratrol-triggered mitochon-
drial biogenesis for preventing apoptosis in a retinal gan-
glion cell line RGC-5 [91]. The Authors reported that res-
veratrol promoted the protein expression of SIRT1, facili-
tated PGC-1α translocation from the cytoplasm to the nu-
cleus and up-regulated NRF1 and TFAM [91]. More re-
cently, Lindsey and Colleagues, using an optic nerve crush 
model, reported that long-term dietary resveratrol treatment 
delays RGC dendrite remodeling and loss after optic nerve 
injury and alters the expression of the unfolded protein re-
sponse BiP, CHOP, and XBP [92]. A number of studies 
also investigated the potential effects of epigallocatechin-3-
gallate (EGCG), the major catechin found in green tea. For 
example, Zhang and Colleagues reported that EGCG at-
tenuates damaging influences to the retina caused by 
ischemia/reperfusion and significantly reduced the apopto-
sis induced by H2O2 in cultured RGCs [82]. In addition, 
Xie and Colleagues reported a neuroprotective effect of 
EGCG in an optic nerve crush model in rats [93]. Moreo-
ver, Peng and Colleagues demonstrated that administration 
of EGCG prior to axotomy promotes RGC survival in rats 
[94]. The neuroprotective capacity of EGCG appears to act 
through nitric oxide, anti-apoptotic, and cell survival sig-
naling pathways [94]. More recently, Jin and Colleagues 
reported that key bioactive compounds in green tea leaves 
(EGCG, theanine and caffeine), attenuate the injury of reti-
nal ganglion RGC-5 induced by H2O2 and ultraviolet radia-
tion [95]. Interestingly, the Authors reported that caffeine 
and theanine both protected RGC-5 cells from injury as 
well as enhanced their recovery, while EGCG only pro-
tected the cells from injury and did not help them to re-
cover [95]. 

Ginkgo biloba (Ginkgoaceae) is an ancient species of tree 
similar to plants which were living 270 million years ago. 
Ginkgo biloba leaves also contain many different flavonoids, 
including polyphenolic flavanoids which have been proven 
to exert antioxidative properties by delivering electrons to 
free radicals [96]. The extract from the leaves of ginkgo 
biloba, named as ginkgo biloba extract 761 (EGb761), has 
been shown to be beneficial for cognitive impairment and 
dementia [97]. Interestingly, a number of studies suggested a 
helpful effect of ginkgo biloba for the treatment of glaucoma 
[98-100]. For example, Hirooka and Colleagues reported 
RGC neuroprotection by ginkgo biloba extract in rats after 
IOP elevation [101]. In addition, Ma and Colleagues re-
ported that intraperitoneal injections of ginkgo biloba extract 
given prior to and daily after an experimental and standard-
ized optic nerve crush in rats were associated with a higher 
survival rate of retinal ganglion cells [102, 103]. However, it 
has remained unclear how ginkgo biloba may help RGC to 
survive after the optic nerve crush. In addition, in contrast to 
previous studies, recently, Guo and Colleagues, reported no 
significant improvements in visual field defects and contrast 
sensitivity in Chinese patients with normal tension glaucoma 
after four weeks of oral treatment with ginkgo biloba extract 
[104]. Nevertheless, Shim and colleague reported that sys-
temic administration of Bilberry anthocyanins and Ginkgo 
biloba extract improves visual function in some individuals 
with NTG [105]. 

5. CITICOLINE 

Citicoline is a natural constituent of all cells, where it 
serves as the intermediate in phosphatidylcholine synthesis 
[106]. Citicoline attenuates free fatty acids release and re-
establishes levels of cardiolipin phospholipid component of 
the inner mitochondrial membrane [107]. Citicoline also 
increase neurotrasmitters levels in the central nervous system 
[108] and in retina [109]. Interestingly, a number of studies 
reported citicoline may induce an improvement of the retinal 
and of the visual pathway function in patients with glaucoma 
[110-114]. Neuroprotective properties of citicoline have been 
shown in various experimental model of glaucoma. For ex-
ample, in partial crush injury of the rat optic nerve model, 
citicoline was found effective in rescuing RGC and their 
axons in vivo against delayed degeneration triggered by optic 
nerve crush [115]. Particularly, the Authors reported that 
citicoline increased retinal expression of the apoptotic regu-
lating protein Bcl-2, indicating one of the mechanisms which 
may be engaged in the neuroprotective effect of the com-
pound [115]. Moreover, after intravitreal injection of kainic 
acid (KA), citicoline counteracted increased expression of 
NOS isoforms [116] and decreased ERK1/2 kinase activa-
tion [117] caused by KA. Using murine retinal explants 
Oshitari and Colleagues have shown that citicoline can res-
cue damaged RGCs through an anti- apoptotic effect proba-
bly acting as a BDNF mimic [118, 119]. This effect was cor-
related with the reduction of the expression of active forms 
of caspases-9 and -3 [119]. 

6. POLYUNSATURED FATTY ACIDS 

Omega 3 (ω-3) and omega 6 (ω-6) are polyunsaturated 
essential fatty acids (PUFAs). Both fatty acids are concen-
trated in the phospholipids of cell membranes throughout the 
human body, but especially in the brain, heart, retina, and 
testes [120]. Essential fatty acids omega 3 and omega 6 are 
of special interest due to their reported anti-inflammatory, 
antithrombotic, hypolipidemic, and vasodilatory capacities 
[121, 122]. Interestingly, recent studies suggest a key role for 
PUFAs also in neurodegeneration and neuropsychiatric dis-
eases [123, 124]. Dietary deficiencies in ω-3 polyunsaturated 
fatty acids are also known to effect retinal function including 
RGC activity whereas a diet rich in ω-3 PUFA helps to re-
duce vulnerability of RGCs to dysfunction induced by IOP 
stress [125]. Nguyen and Colleagues demonstrated that an 
increased consumption of omega-3 fatty acids leads to de-
creased IOP through an increased aqueous outflow facility 
via prostaglandins (PGs) [126]. In fact, PGs, are metabolites 
of omega-3 fatty acids [127] and reduce IOP by enhancing 
uveoscleral and trabecular outflow via direct effects on cil-
iary muscle relaxation and remodeling of extracellular matrix 
[128]. Cod liver oil that contains vitamin A and both the ei-
cosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) has been demonstrated to lower IOP in experimental 
animals [129]. Moreover, a number of studies reported that 
omega-3 fatty acids prevented retinal cell structural degrada-
tion and counteracted glial cell activation induced by the 
elevation of IOP [130]. Accordingly, Nguyen and Col-
leagues, also reported that dietary ω-3 deficiency and repeat 
acute IOP insult are additive risk factors for RGC dysfunc-
tion [131]. Interestingly, a diet with increased omega-3 and 
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decreased omega-6 could favor an increase in IOP reducing 
synthesis of PG-F2, leading to a decrease in uveoscleral out-
flow [132]. Conversely, a diet high in omega 6 and low in 
omega 3 to be associated with a reduced occurrence of 
POAG [133]. Therefore, it is important to have an appropri-
ate balance between these fatty acid families [130, 134]. Ac-
cordingly, Pérez de Arcelus and Colleagues, in a prospective 
cohort study found that a diet with a high omega 3:6 ratio 
intake, thus low in omega 6, was associated with a higher 
occurrence of glaucoma [134]. Interestingly, Tourtas and 
Colleagues, reported in cultivated human TM cells, that ω-6 
was efficient in preventing H2O2 mediated anti-proliferative 
effects, but displayed a repressive effect on mitochondrial 
activity and proliferation [135]. For ω-3, the Authors ob-
served no negative side effects but an effective potential to 
prevent H2O2 mediated anti-proliferative/-metabolic effects 
[135]. Nevertheless, Schnebelen and Colleagues demon-
strated that a 6-month supplementation with a combination 
of omega-3 and omega-6 PUFAs is more effective than sin-
gle supplementations, since the EPA plus DHA plus gamma-
linolenic acid dietary combination prevented retinal cell 
structure and decreased glial cell activation induced by the 
elevation of IOP in rats [130]. 

7. TAURINE 

Taurine (2-aminoethylsuphonic acid) is a “semi-
essential” sulfur amino acid structurally similar to the neuro-
transmitters glycine and gamma aminobutyric acid (GABA) 
[136, 137]. Taurine is the most abundant free amino acid in 
mammalian retina after glutamate [138, 139]. The source of 
taurine is mostly exogenous and meats, seafood and fish are 
the major sources of this amino acid [140]. Taurine intake 
from dietary sources is highly dependent on taurine trans-
porter expression in tissues exhibiting a high retinal uptake 
index (26.6 % in serum) [141]. In retinal cells, taurine uptake 
was demonstrated in photoreceptors, retinal ganglion cells, 
retinal glial cells and in the retinal pigment epithelium cells 
[142-145]. Though the exact role of taurine in the retina is 
not fully understood, several studies have reported that 
taurine had a protective effect on cells from neuroretina 
[146] and retinal pigment epithelium [147]. The exact 
mechanism of this protective effect is still unknown. Taurine 
is considered to be an antioxidant, but the mechanisms un-
derlying its antioxidant properties have never been clearly 
characterized, particularly in retinal cells [137]. 

However, activation of GABAA receptors through taurine 
binding may decrease neuronal vulnerability to excitotoxic 
damage [146]. Moreover, Bulley and Shen found that taurine 
reduces glutamate-induced Ca2+ influx via ionotropic gluta-
mate receptors and voltage-dependent Ca2+ channels in the 
neurons, and the effect of taurine was selectively inhibited 
by strychnine and picrotoxin, but not GABA receptor an-
tagonists, although GABA receptors were present in the neu-
rons [136]. Interestingly, taurine supplementation in rats has 
demonstrated to reduce neuronal and glial cell death in dif-
ferent pathological conditions [148-150]. In cats, taurine 
supplementation has been found to prevent the progressive 
degeneration of retinal photoreceptors seen in retinitis pig-
mentosa [151]. In the retina, decreased taurine uptake was 
also found to induce retinal degeneration [152-159]. Retinal 
degeneration has been extensively investigated in taurine 

free-diet fed cats [152-156, 159] and monkeys [157]. The 
taurine depletion was also induced in cats and rats by treat-
ments with taurine transport inhibitors, such as β-alanine or 
guanidoethane sulfonate (GES) [158, 160]. At the level of 
RGCs, Gaucher and Colleagues observed a significant loss 
induced by the GES treatment [161]. This retinal ganglion 
cell degeneration in GES-treated mice was very similar to 
that obtained in vigabatrin-treated neonatal rats [150], which 
was already attributed to the taurine depletion. Accordingly, 
taurine supplementation prevented vigabatrin-induced RGC 
degeneration [150]. Moreover, Froger and Colleagues dem-
onstrated that taurine can improve RGC survival in culture 
or in different animal models of RGC degeneration [162]. 
Particularly, taurine effect on RGC survival was assessed in 
vitro on primary pure RCG cultures under serum-deprivation 
conditions, and on NMDA-treated retinal explants from adult 
rats [162]. In vivo, taurine was administered through the 
drinking water in two glaucomatous animal models (DBA/2J 
mice and rats with vein occlusion) and in a model of retinitis 
pigmentosa with secondary RGC degeneration (P23H rats). 
Taurine significantly enhanced RGCs survival and partly 
prevented NMDA-induced RGC excitotoxicity [162]. 
Moreover, taurine supplementation increased RGC densities 
both in DBA/2J mice, in rats with vein occlusion and in 
P23H rats [162]. This study indicates that enriched taurine 
nutrition can directly promote RGC survival and provides 
evidence that taurine can positively interfere with retinal 
degenerative diseases. More recently, Han and Colleagues 
suggested that taurine neuroprotection may result from inhi-
bition of NADPH oxidases, the primary source of superoxide 
induced by NMDA receptor activation, probably in a cal-
cium-dependent manner [163]. 

8. ALPHA-LIPOIC ACID 
Alpha-lipoic acid (ALA), also known as thioctic acid, is a 

naturally occurring compound synthesized enzymatically in 
the mitochondrion but commonly found in dietary compo-
nents such as vegetables and meats [164]. ALA is a neces-
sary cofactor for mitochondrial α-ketoacid dehydrogenases, 
and thus serves a critical role in mitochondrial energy me-
tabolism [164, 165]. ALA and its reduced form DHLA, are 
considered powerful antioxidant agents with a scavenging 
capacity for many ROS [166, 167] and appears to regenerate 
other endogenous antioxidants (e.g. vitamins C and E) [164]. 
In addition, the compounds elicited several cellular actions 
ranging from metal chelator to a mediator of cell signaling 
pathways to an insulin mimetic to a hypotriglyceridemic 
agent, etc. [164, 165]. Although ALA has been mainly stud-
ied in diabetic polyneuropathies, it showed beneficial proper-
ties for the prevention of vascular disease, hypertension, and 
inflammation [164, 165]. ALA is currently being tested as a 
treatment for neurodegeneration and neuropathy in several 
clinical trials. ALA has been also investigated in glaucoma. 
For example, Filina and Colleagues reported beneficial prop-
erties by ALA in correcting glutathion deficiency, detected 
in OAG patients by increasing lacrimal SH group level 
[168]. Particularly, some studies reported that supplementa-
tion of lipoic acid can increase glutathione in red blood cells 
[169] and lacrimal fluid [170] of patients with glaucoma. 
More recently, using a DBA/2J mouse model of glaucoma, 
Inman and Colleagues reported that addition of ALA to the 
diet increased antioxidant gene and protein expression and 
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improved RGC survival without significant IOP changes 
[35]. Interestingly, Koriyama and Colleagues demonstrated 
that ALA exerts a neuroprotective effect against oxidative 
stress in retinal neurons in vitro and in vivo by inducing the 
expression of heme oxygenase-1 through Kelch-like ECH-
associated protein (Keap1) / NF-E2-related factor 2 (Nrf2) 
signaling [171].  

9. FORSKOLIN 

Forskolin is a diterpenoid isolated from plant Coleus for-
skohlii (Lamiaceae). Forskolin can penetrate cell membranes 
and stimulates the enzyme adenylate cyclase [172] decreas-
ing IOP by reducing aqueous humor inflow in animals [173-
176] and humans [173, 177-179] suggesting potential use for 
glaucoma treatment. Interestingly, oral administration of 
forskolin in association with rutina or with rutina and vita-
mins B1 and B2 contributed to IOP control [180] and could 
act in synergy with topical pharmacological treatments in 
POAG patients [181]. Interestingly, a number of studies sug-
gested that forskolin promotes neuronal survival by stimulat-
ing neurotrophin activity in models of RGC death [182, 
183]. Particularly, Intravitreal injection of forskolin with 
brain-derived neurotrophic factor (BDNF) and ciliary neu-
rotrophic factor (CNTF) contributed to survival and axonal 
regeneration of RGCs in adult cats [184]. Recently, Russo 
and Colleagues reported that forskolin prevents RGC loss 
induced by ischemia-reperfusion in rats and homotaurine and 
L-carnosine potentiate forskolin neuroprotection [185]. The 
treatment with forskolin/ homotaurine/ L-carnosine reduced 
calpain activation and increased Akt activation and GSK-3β 
phosphorylation in the retina subjected to ische-
mia/reperfusion [185]. The observed neuroprotection it was 
independent from PKA activation and distinct from the hy-
potensive effects of forskolin. Interestingly, Mutolo and Col-
leagues reported that a combined administration of forskolin, 
homotaurine, carnosine, and folic acid in POAG patients 
with their IOP compensated by topical drugs, induced a sig-
nificant further decrease of IOP and an improvement of Pat-
tern Electroretinogram (PERG) amplitude [186]. 

10. CURCUMIN 

Curcumin is a polyphenol isolated from the plant Cur-
cuma Longa (Zingiberaceae) and is the principal curcumi-
noid of the popular spice turmeric. Curcumin, has been 
widely used in many countries for centuries both as a spice 
and as a medicine [187]. In the past decade, several bio-
functions of curcumin have been identified, including its 
anti-inflammatory effects, antitumorigenesis effects, antioxi-
dative activity, and its inhibitory effects on histone aectyl-
transferases. Concerning its antioxidative activity, several 
studies have proven that curcumin inhibits oxidative and 
nitrative DNA damage by inhibiting the stress-induced ele-
vated levels of 8-hydroxydeoxyguanosine (a biomarker of 
DNA oxidation) and 8-nitroguanine [188, 189]. Curcumin 
also inhibits oxidative damage by regulating oxygen con-
sumption, ATP content, calcium retention, mitochondrial 
membrane potential, the activities of mitochondrial respira-
tory complexes I, II, III, and V, and mitochondrial respira-
tory capacity [190, 191]. Recently, in a chronic IOP rat 
model, pretreatment of curcumin protected against RGC loss 

and was correlated with significantly increased cell viability 
of BV-2 microglia [192]. In another research, staurosporine-
induced ganglion cell death was attenuated by low dosages 
of curcumin both in vitro and in vivo [193]. Moreover, in an 
acute IOP model in rat, curcumin pretreatment was able to 
reverse the decrease of mitofusin 2 (mfn2), a mitochondrial 
fusion protein, and increase nuclear factor erythroid 2-related 
factor 2 (Nrf2) in the retinal I/R-induced open-angle glau-
coma model in vivo, indicating that the compound could 
maintain the normal mitochondrial function and alleviate the 
retinal I/R injury by regulating the antioxidant system [194]. 
Interestingly, curcumin significantly attenuated NMDA-
induced apoptosis in retinal neuronal/glial cultures in vitro 
by inhibiting the NR1 subunit of the NMDA receptor phos-
phorylation and NMDAR-mediated Ca2C increase [195]. 
More recently, the same Authors confirmed the neuroprotec-
tive activity of curcumin against NMDA toxicity, possibly 
related to an increased level of NR2A [196]. Interestingly, 
using TM cells as in vitro model system, Lin and Wu re-
ported that curcumin treatment protected TM cells against 
oxidative stress-induced cell death [197]. In addition, cur-
cumin pretreatment significantly inhibited proinflammatory 
factors, including IL-6, ELAM-1, IL-1α, and IL-8, whereas it 
decreased activities of senescence marker SA-β-gal, and 
lowered levels of carbonylated proteins and apoptotic cell 
numbers [197]. 

11. ERIGERON BREVISCAPUS  

Erigeron breviscapus (vant.) Hand. Mazz. (EBHM) is a 
widely used Chinese medicinal plant for heart disease [198]. 
Its major active compounds are scutellarin, 1,5-
dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster 
B [199]. EBHM has been suggested as neuroprotectant in 
glaucoma. Particularly, some studies have shown that 
Erigeron breviscapus could improve the activity of cyto-
chrome oxidase in RGCs [200] and optic nerve axoplasmic 
transport in rat models of acute elevated IOP [201]. Interest-
ingly, in the experimental optic nerve crush model in rats, 
EBHM treatment increased the survival rate of the RGC and 
was able to rescue and/or restore the injured RGCs [202]. 
Moreover, administration of EBHM solution partially pro-
tected RGC loss in NMDA-induced retinal neuronal injury in 
rats [203]. EBHM extract also showed a partial protective 
effect on the visual field of glaucoma patients with con-
trolled IOP [204]. In addition, Erigeron breviscapus extract 
treatment improved the impaired visual function (detected by 
multifocal electroretinogram) of persistently elevated IOP in 
rats [205]. Although it is not known to which components of 
EBHM are attributed the specific effects, it has been sug-
gested that the combined activity and a certain interdepen-
dency of several active constituents of EBHM extract are 
responsible for its beneficial effects [206, 207]. For example, 
Bastianetto and collegues reported that the flavonoid fraction 
strongly inhibited both the toxicity and the free radical ac-
cumulation induced by sodium nitroprusside and/or 3-
morpholinosydnonimine [208]. Several studies also showed 
neuroprotective effect of scutellarin and other ingredients 
extracted from Erigeron breviscapus against neuronal dam-
age following cerebral ischemia/reperfusion [209-213]. In-
terestingly, Wang and Colleagues observed that scutellarin 
inhibited lipopolysaccharide (LPS)-induced production of 
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proinflammatory mediators and suppressed LPS-stimulated 
inducible nitric oxide synthase (iNOS), tumor necrosis fac-
tor-alpha (TNF-α), and IL-1β mRNA expression in rat pri-
mary microglia or BV-2 mouse microglial cell line [212]. 
More recently, Yin and Colleagues, reported that DSX, an 
active component extracted from Erigeron breviscapus, sup-
press outward potassium channel currents in rat RGCs, sug-
gesting it may be one of the possible mechanisms underlying 
Erigeron breviscapus prevents vision loss and RGC damage 
caused by glaucoma [214]. 

12. LYCIUM BARBARUM 

Lycium barbarum L. belongs to the Solanaceae family 
(also named Fructus Lycii or called Wolfberry or Goji ber-
ries). It has been used for centuries as a traditional medicinal 
and food supplement in East Asia, however, since the begin-
ning of the 21st century, wolfberries have become increas-
ingly popular in Europe and North America [215, 216]. The 
active components in wolfberry include L. barbarum poly-
saccharides (LBP), zeaxanthine, betaine, cerebroside and 
trace amounts of zinc, iron, and copper [217]. LBP are the 
primary active components and have been reported to pos-
sess a wide array of pharmacological activities [216, 218]. It 
has been reported that LBP exerts beneficial effects in ani-
mal models of ocular diseases. For example, several studies 
have shown neuroprotective effects of LBP on RGCs in 
acute model of glaucoma [219, 220]. Particularly, Mi and 
Colleagues reported that Lycium barbarum polysaccharides 
protect RGCs and retinal vasculature in a mouse model of 
acute ocular hypertension and provide neuroprotection by 
down-regulating receptors for advanced glycation end prod-
ucts (RAGE), endothelin-1 (ET-1), amyloid-beta peptide and 
advanced glycation end products (AGE) in the retina, as well 
as their related signaling pathways [219]. He and Colleagues 
demonstrated that LBPs elicit retino- and neuro-protective 
effects via the activation of nuclear factor erythroid 2-related 
factor (Nrf2) and upregulation of expression of heme oxy-
genase-1 (HO1) [220]. Lycium barbarum have shown neuro-
protective effect also in chronic ocular hypertension model 
of glaucoma [221-223] and MCAO-induced ischemic retina 
[218]. Particularly, Chan and Colleagues suggested that the 
neuroprotective effect of LBPs in chronic ocular hyperten-
sion (COH) rats is partly due to modulating the activation of 
microglia [221], whereas Chiu and Colleagues suggested that 
the prosurvival effect of LBPs on rat RGCs in COH may be 
mediated by an increase in the upregulation of βB2 crystal-
line, a neuroprotective agent [223]. In addition, Li and Col-
leagues reported that LBP reduces secondary degeneration of 
RGCs after partial optic nerve transection suggesting that 
this effect may be linked to the inhibition of oxidative stress 
and the JNK/c-jun pathway in the retina [224]. 

CONCLUSION 

Glaucoma it is not always under the control of currently 
available drugs, thus a need exists for novel therapies able to 
save retinal ganglion cells from injury or to repair damaged 
neurons. Nutraceuticals may offer some therapeutic potential 
in glaucoma management, however the lack of well designed 
clinical trials examining their benefits for glaucoma limits 
their current therapeutic use. The finding of appropriate use 

of nutraceuticals that may be able to modify the risk of glau-
coma may provide insight into glaucoma pathogenesis and 
decrease the need for, and therefore the side effects from, 
conventional therapies. 
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